What is the best improvement of PALSAR-2/ScanSAR products to the future success of JJ-FAST or other projects using ScanSAR mosaic?

Masanobu Shimada

Jan. 29-31 2018
KC meeting in Tokyo
Contents

• General of the PALSAR-2/ScanSAR processing
• Specan/Full Aperture
• Resolution Upgrade – comparison
• Future upgrade
• Conclusion
Back Ground

- PALSAR-2/ScanSAR is the driving force for monitoring forest at MOSAIC production and JJ-FAST detections.
- Currently 50m spacing was selected for the production.
- **Specan** is currently selected for the processing algorithm because of the “processing speed and image quality”.
- In order order to maximize the sensitivity for detecting the forest, optimizing the processing parameters, i.e., no. of looks, etc. needs to be performed.
- This presentation shows one examples for this trial.
- What is the best way for improving the image quality?
PALSAR-2 Images (ScanSAR)

ScanSAR: Amazon Rondonia area (HH)

Area: Hokkaido
Bandwidth: 28 MHz
Mode: W(5 scans)

Shimada 2015 APSAR
Imaging and calibration Strategy (i.e., Range Doppler)

SB
UB
HB
WB
VB

Fr-Rx
Br-Rx
RX

I+jQ
I+jQ
I+jQ

RC

UD+APC

Reconst filter

AC(Specan for WB and VB)+Migration +Elevation-Antenna correction

Output

1.5
2.1

RC: Range compression
Fr: Forward Receiver
Br: Backwar receiver

PolCal(HBQ)

R-cal
G-Cal

Antenna Elev
Antenna azimuth

AGC for SB, UB, HB, FB
MGC for WB & VB

Chirp eval.

Phase determ.
SCANSAR multi looking (Specan method)

\[\frac{f_{prf}}{f_{dd}} v_g \]

\[N_{fft} \]

Burst 1

Burst 2

Burst 3

Range direction

SST

Geo-plane

Image plane

Chirp-z FFT, FFT are used.
Telemetry interpretation

Doppler analysis

Interference analysis and correction

Range correlation

Range Curvature

De Ramping

Look summation

SAR image

Specan

Full Aperture

+Data allocation in azimuth
+Azimuth correlation
+Look summation
ScanSAR imaging block diagram

Resolution

Unfocused burst

Focused burst on the ground

final image on the ground

\[x = v_g \cdot \left\{ T_{SCAN} \cdot i + \frac{f_{PRF}}{f_{DD} \cdot 2} \cdot \frac{f_{PRF}}{f_{DD} \cdot N_{az,k}} \cdot j_i \right\} \]

\[= v_g \cdot \left\{ T_{SCAN} \cdot (i - 1) + \frac{f_{PRF}}{f_{DD} \cdot 2} \cdot \frac{f_{PRF}}{f_{DD} \cdot N_{az,k}} \cdot j_i - 1 \right\} \]
<table>
<thead>
<tr>
<th>i_nseg</th>
<th>k_id_scan_data</th>
<th>prf</th>
<th>swst</th>
<th>irlength</th>
<th>nolines</th>
<th>nolines</th>
<th>ndelay</th>
<th>pulses at the 5th beam sometimes varies to adjust the location of the bursts.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2.661848878954142e+03</td>
<td>4.652259244532803e-03</td>
<td>14880</td>
<td>372</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>3.14513748313091e+03</td>
<td>4.937816302186878e-03</td>
<td>14976</td>
<td>490</td>
<td>372</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>2.40659600097985e+03</td>
<td>5.175067992047713e-03</td>
<td>14976</td>
<td>372</td>
<td>862</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>2.20756934188479e+03</td>
<td>5.481676341948310e-03</td>
<td>14976</td>
<td>370</td>
<td>1234</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>2.82122795570393e+03</td>
<td>5.793416887872763e-03</td>
<td>14976</td>
<td>504</td>
<td>2108</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2.661848878954142e+03</td>
<td>4.652259244532803e-03</td>
<td>14880</td>
<td>372</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3.14513748313091e+03</td>
<td>4.937816302186878e-03</td>
<td>14976</td>
<td>490</td>
<td>2480</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2.40659600097985e+03</td>
<td>5.174438170974154e-03</td>
<td>14976</td>
<td>372</td>
<td>2970</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2.20756934188479e+03</td>
<td>5.481676341948310e-03</td>
<td>14976</td>
<td>370</td>
<td>3342</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2.82122795570393e+03</td>
<td>5.793416887872763e-03</td>
<td>14976</td>
<td>504</td>
<td>3712</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2.661848878954142e+03</td>
<td>4.652259244532803e-03</td>
<td>14880</td>
<td>372</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3.14513748313091e+03</td>
<td>4.937816302186878e-03</td>
<td>14976</td>
<td>490</td>
<td>4216</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2.40659600097985e+03</td>
<td>5.174438170974154e-03</td>
<td>14976</td>
<td>372</td>
<td>4588</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2.20756934188479e+03</td>
<td>5.481676341948310e-03</td>
<td>14976</td>
<td>370</td>
<td>5078</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2.82122795570393e+03</td>
<td>5.793416887872763e-03</td>
<td>14976</td>
<td>504</td>
<td>5450</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- ndelay: Number of delays
- pulses at the 5th beam: Sometimes varies to adjust the location of the bursts.
Resolution Comparison between ScanSAR and Full Aperture

<table>
<thead>
<tr>
<th>Method</th>
<th>Range resolution</th>
<th>samples</th>
<th>Azimuth resolution</th>
<th>samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specan</td>
<td>$c/2/Bw/sin^q$</td>
<td>15m</td>
<td>$f_{PRF}/f_{DD}/NP*^v$</td>
<td>>42m</td>
</tr>
<tr>
<td>Full Aperture</td>
<td>$c/2/Bw/sin^q$</td>
<td>15m</td>
<td>$L/2*NS$</td>
<td>~25m</td>
</tr>
</tbody>
</table>

$F_{PRF} >= 2200\text{Hz}$, $f_{DD} <= -590\text{Hz/s}$, $NP = 370 \sim 500$, $v = 6700\text{m/s}$, $Bw = 14\text{MHz}$

NS: Number of scans

f_{DD}: Doppler chirp frequency rate (Hz/s), NP: Number of pulses, v : the ground speed.

L: antenna azimuth length ($\sim 10\text{m or 12.5 m}$)

Q is the incidence angle
Comparison Table

<table>
<thead>
<tr>
<th>Case</th>
<th>Alg.</th>
<th>No. of samples in range average</th>
<th>Spacing-intermediate in azimuth</th>
<th>Geocoding-spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Specan</td>
<td>4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>Specan</td>
<td>4</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>Specan</td>
<td>2</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>Specan</td>
<td>1</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>Specan</td>
<td>4</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>Specan</td>
<td>2</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>Specan</td>
<td>1</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>Full Aperture</td>
<td>1</td>
<td>-</td>
<td>25</td>
</tr>
</tbody>
</table>
Beam illumination

Satellite moving direction

SPECAN

HH

HV
Beam illumination

Satellite moving direction

Full Aperture Processing
New gain assignment (25 dB HH and 20 dB HV): Specan alogorism used, and Sigma-SAR
Full Aperture Processing
Comparison of the image

• 8 image chips over Specan and Full Aperture
• Two test areas (Urban and river side area) and Filed area
Site 1 (Rice Field area)-HH
Site 1 (Rice Field area)-HV
Site 1 (Urban and river side area)-HH
Site 1 (Urban and river side area)-HV
Proposed update
Conclusion

• FA gives better image quality and resolution than Specan method (needs to be implemented for ALOS-2 future products), while

• FA needs 3~4 times computing load more than SP.