IPWG ALGORITHM INVENTORY

IMPORTANT
The following algorithms were listed as a result of a first IPWG inventory worldwide.
The list does not pretend to be exhaustive at the moment and the inventory will be a continuous process.
Therefore the list is under a constant revision process as new algorithms are identified.
Each algorithm is briefly described following a standard form issued by the IPWG.

You are encouraged to SUBMIT to IPWG the description of your algorithm. Please proceed as follows:
  • download the following FORM in WORD DOC and fill it;
  • send it as an e-mail attachment to the IPWG.

IR-based algorithms

Algorithm name Institution Developer/contact person
CMA China Meteorological Agency (CMA), People Rep. of China L. Naimeng
High resolution Precipitation Index (HPI) EUMETSAT, EU T. Heinemann
Hydro-Estimator for short term (1-6 hr) Extreme Precipitation NOAA/NESDIS, USA Bob Kuligowski
JMAMSC Japan Meteorological Agency, Japan N. Ohkawara



Multiple precipitation estimations blend

Algorithm name Institution Developer/contact person
GOES Multispectral Rainfall Algorithm (GMSRA) NOAA/NESDIS, USA M.Ba and A. Gruber
GPCP 1 Degree Daily NASA/GSFC, USA G. J. Huffman
GPCP Satellite-Gauge Combination NASA/GSFC, USA G. J. Huffman
TRMM var (3B41RT) NASA/GSFC, USA G. J. Huffman



MW-based algorithms

Algorithm name Institution Developer/contact person
AMSR-E L2 NOAA-NESDIS global rain rates NOAA/NESDIS, USA R. R. Ferraro
AMSU NOAA-NESDIS orbital, pentad and monthly global rain rates NOAA/NESDIS, USA R. R. Ferraro
Microwave Integrated Retrieval System (MIRS) NOAA/NESDIS, USA S. A. Boukabara
SSM/I NOAA-NESDIS orbital, pentad and monthly global rain rates NOAA/NESDIS, USA R. R. Ferraro
TRMM HQ (3B40RT) NASA/GSFC, USA G. J. Huffman



Blended MW-IR algorithms

Algorithm name Institution Developer/contact person
CPC Morphing technique (CMORPH) NOAA, USA R. Joyce
GSMaP Osaka University, Japan Tomoo Ushio and Ken'ichi Okamoto
Multi-sensor Precipitation Estimate (MPE) EUMETSAT, Germany T. Heinemann
NRL Blended Satellite Technique Naval Research Laboratory, USA F. J. Turk
Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) Univ. of California Irvine, USA K.-L. Hsu
Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks - Cloud Classification System (PERSIANN-CCS) Univ. of California Irvine, USA Yang Hong
Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) NOAA-NESDIS-STAR, USA Bob Kuligowski
TRMM HQ/VAR (3B42RT) NASA/GSFC, USA G. J. Huffman