******************************************************************************** README for the Himawari Geophysical Parameter Data through the JAXA's P-Tree System Prepared by Earth Observation Research Center (EORC), Japan Aerospace Exploration Agency (JAXA). Aug.31,2015: The Himawari-8 Aerosol Property and Sea Surface Temperature data are released. Mar.28,2015: The Himawari-8 Short Wave Radiation/Photosynthetically Available Radiation data and Chlorophyll-a data are released. Aug.31,2016: The Himawari-8 Cloud Property data are released. Dec.21,2016: The Himawari-8 Wild Fire data are released. Feb. 5,2018: The Himawari-8 Aerosol Property data (Ver. 2.0) are released. Aug.10,2018: The Himawari-8 Aerosol Property data (Level2: Ver.2.1, Level3 Hourly: Ver.3.0), The Himawari-8 Daily data (Aerosol Property, Wild Fire), The Himawari-8 Monthly data (Sea Surface Temperature, Aerosol Property, Wild Fire) are released. Oct.23,2018: Replacement of the Himawar-8 SST Level 2/3 (ver.1.2) files to reprocessed data (fv02) for the period during Feb.15 to Jul.27, 2018 due to a problem in operational processing. Oct.31,2018: The Himawari-8 Cloud Property data (Ver. 1.0) are released. Oct.29,2020: The Himawari-8 Aerosol Property data (Level 2: Ver. 3.0, Level 3: Hourly, Daily, Monthly: Ver 3.1), The Himawari-8 Sea Surface Temperature data (Ver 2.0), The Himawari-8 Wild Fire data (Ver 1.0) are released. Jul. 8,2021: "NOTE" for the Himawari-8 Sea Surface Temperature Level 3 is added. Bug fix of quality level of the Himawari-8 Sea Surface Temperature (Ver 2.0) and reprocessing (new file version: fv02) Oct. 3,2022: The Himawari-8 Short Wave Radiation/Photosynthetically Available Radiation (Ver.2.0), and Chlorophyll-a (Ver.2.0) data are released. Dec. 7,2022: Modify descriptions to apply to Himawari-9. Version-up of Aerosol Property (Level 2 Ver.3.1), SST (Ver.2.1), Short Wave Radiation/Photosynthetically Available Radiation (Ver.2.1), and Chlorophyll-a (Ver.2.1)in corresponding to Himawari-9 data release. ******************************************************************************** In this directory, the Geophysical Parameter Data estimated from the geostationary Himawari-8 Standard Data and Model Paramteters are available in near-real-time. You can also download the past period data of the Geophysical Parameter Data since Mar.20, 2015. Please note that past period data of the JAXA Geophysical Parameter Data will be uploaded to the ftp site upon completion of its processing. ******************************************************************************** # Available Geophysical Parameters ## Aerosol Property (day-time only) Latest version: Version 3.1 (Level 2), Version 3.1 (Level 3) Observation area: Full-disk Temporal resolution: 10-minutes (Level 2),1-hour (Level 3), 1-day (Level 3), 1-month (Level 3) Spatial resolution: 5km (Pixel number: 2401, Line number: 2401) NOTE: Angstrom exponent included this product is under validation. Users should keep in mind that the data is NOT quality assured. Improvement in Version 3.1: Updated error covariance of aerosol model used for a priori estimate or retrieval. Updated alternative calibration coefficients for Himawari-9. ## Sea Surface Temperature (SST) Latest version: Version 2.1 Observation area: Full-disk Temporal resolution: 10-minutes (Level 2), 1-hour (Level 3), 1-day (Level 3), 1-month (Level 3) Spatial resolution: 2km (Pixel number: 6001, Line number: 6001) NOTE: Hourly data (Level 3 with temporal resolution of 1-hour) is calculated from 10-minute data (Level 2) with quality level 5. Daily data (Level 3 with temporal resolution of 1-day) is "daily minimum SST" calculated from hourly data. Monthly data (Level 3 with temporal resolution of 1-month) is "monthly mean SST" calculated from hourly data at each pixel. File version index (fv): Himawari SST product file has a file version index (fvXX) in the filename to describe the number of processing times. File version index will be updated for example when the L3 product file will be re-generated due to L1 missing or delay. The P-tree system distributes the newest product file regarding the file version index. Improvement in Version 2.0: The SST method has been updated with an improved optimal estimation scheme and some minor changes. Cloud masking has been updated with additional use of visible and short wavelength infrared data and a new test to detect clouds with the cloud top temperature higher than SST. In the update, some tests were modified based on the cloud masking developed for SGLI SST. Improvement in Version 2.1: Small changes were made for Himawari-9 data processing. The Bi-Spectral Filter (DOI: 10.1175/JTECH-D-22-0051.1) is applied for denoising the AHI infrared data. ## Nighttime Sea Surface Temperature Latest version: Version 2.1 Observation area: Full-disk Temporal resolution: 1-hour (Level 3) Spatial resolution: 2km (Pixel number: 6001, Line number: 6001) ## Short Wave Radiation / Photosynthetically Available Radiation Latest version: Version 2.1 Observation area: Full-disk Temporal resolution: 10-minutes (Level 2), 1-hour (Level 3), 1-day (Level 3), 1-month (Level 3) Spatial resolution: 5km (Pixel number: 2401, Line number: 2401) 1km Japan* (Pixel number: 2701, Line number: 2601) * This area coverd 24N-50N, 123E-150E. NOTE: This product is a beta version and is intended to show the preliminary result from Himawari-8. Users should keep in mind that the data is NOT quality assured. Ver. 2.0: Vicarious calibration coefficients are updated by considering their temporal change. Ancillary ozone data source is changed to JMA global chemical transport model data (MRI-CCM2). Ver. 2.1: Vicarious calibration coefficients are updated. ## Chlorophyll-a Latest version: 2.1 Observation area: Full-disk Temporal resolution: 1-hour (Level 3), 1-day (Level 3), 1-month (Level 3) Spatial resolution: 5km (Pixel number: 2401, Line number: 2401) 1km Japan* (Pixel number: 2701, Line number: 2601) NOTE: This product is a beta version and is intended to show the preliminary result from Himawari-8. Users should keep in mind that the data is NOT quality assured. Ver. 2.0: Vicarious calibration coefficients are updated by considering their temporal change. Ancillary ozone data source is changed to JMA global chemical transport model data (MRI-CCM2). Ver. 2.1: Vicarious calibration coefficients are updated. ## Cloud Property (day-time only) Latest version: 1.0 Observation area: Full-disk Temporal resolution: 10-minutes (Level 2) Spatial resolution: 5km (Pixel number: 2401, Line number: 2401) ## Wild Fire Latest version: 1.0 Observation area: Full-disk Temporal resolution: 10-minutes (Level 2), 1-hour (Level 3), 1-day (Level 3), 1-month (Level 3) Spatial resolution: 2km (10-minutes, 1-hour, 1-day), 0.25 degree (1-month) ******************************************************************************** # TOP FTP Directory /pub/ ******************************************************************************** # Structure of FTP Directories ## Level 2 (every 10 minutes) ### Aerosol Property (ARP) Level 2 /pub/himawari +---/L2 +---/ARP +---/[VER] +---/[YYYYMM] +---/[DD] +---/[hh] ### Sea Surface Temperature (SST) Level 2 (near-real-time) /pub/himawari +---/L2 +---/SST +---/[VER]_nc4_normal_nrt +---/[YYYYMM] +---/[DD] ### Short Wave Radiation(SWR)/Photosynthetically Available Radiation(PAR) Level 2 /pub/himawari +---/L2 +---/PAR +---/[VER] +---/[YYYYMM] +---/[DD] ### Cloud Property (CLP) Level 2 /pub/himawari +---/L2 +---/CLP +---/[VER] +---/[YYYYMM] +---/[DD] +---/[hh] ### Wild Fire (WLF) Level 2 /pub/himawari +---/L2 +---/WLF +---/[VER] +---/[YYYYMM] +---/[DD] +---/[hh] ## Level 3 (hourly, daily, monthly) ### Aerosol Property Level 3 /pub/himawari +---/L3 +---/ARP +---/[VER] +---/[YYYYMM] +---/[DD] +---/[daily] +---/[monthly] ### Sea Surface Temperature (SST) Level 3 (near-real-time) /pub/himawari +---/L3 +---/SST +---/[VER]_nc4_normal_nrt +---/[YYYYMM] +---/[DD] +---/[VER]_nc4_normal_nrt_daily +---/[YYYYMM] +---/[DD] +---/[VER]_nc4_normal_nrt_monthly +---/[YYYYMM] ### Nighttime Sea Surface Temperature (SST) Level 3 (near-real-time) /pub/himawari +---/L3 +---/SST +---/[VER]_nc4_nightt_nrt +---/[YYYYMM] +---/[DD] ### Short Wave Radiation(SWR)/Photosynthetically Available Radiation(PAR) Level 3 /pub/himawari +---/L3 +---/PAR +---/[VER] +---/[YYYYMM] +---/[DD] +---/[daily] +---/[monthly] ### Chlorophyll-a (CHL) Level 3 /pub/himawari +---/L3 +---/CHL +---/[VER] +---/[YYYYMM] +---/[DD] +---/[daily] +---/[monthly] ### Wild Fire (WLF) Level 3 /pub/himawari +---/L3 +---/WLF +---/[VER] +---/[YYYYMM] +---/[DD] +---/[daily] +---/[monthly] where VER: algorithm version; YYYY: 4-digit year observation start time (timeline); MM: 2-digit month of timeline; DD: 2-digit day of timeline; and hh: 2-digit hour of timeline. ******************************************************************************** # File Naming Convention ## Level 2 ### Aerosol Property NC_Hnn_YYYYMMDD_hhmm_L2ARPVER_FLDK.xxxxx_yyyyy.nc where nn: 2-digit number of Himawari satellite; 08: Himawari-8 09: Himawari-9 YYYY: 4-digit year of observation start time (timeline); MM: 2-digit month of timeline; DD: 2-digit day of timeline; hh: 2-digit hour of timeline; mm: 2-digit minutes of timeline; VER: version; xxxxx: pixel number; and yyyyy: line number. Example: H08_20150727_0800_L2ARP030_FLDK.02401_02401.nc ### Sea Surface Temperature YYYYMMDDhhmmss-JAXA-L2P_GHRSST-SSTskin-Hnn_AHI-vVER-v02.0-fvFVER.nc where YYYY: 4-digit year of observation start time (timeline); MM: 2-digit month of timeline; DD: 2-digit day of timeline; hh: 2-digit hour of timeline; mm: 2-digit minutes of timeline; ss: 2-digit seconds (fixed to "00"); nn: 2-digit number of Himawari satellite; 08: Himawari-8 09: Himawari-9 VER: algorithm version; and FVER: file version;. Example: 20150728081000-JAXA-L2P_GHRSST-SSTskin-H08_AHI-v2.0-v02.0-fv01.0.nc ### Short Wave Radiation/Photosynthetically Available Radiation Hnn_YYYYMMDD_hhmm_RFLVER_FLDK_xxxxx_yyyyy.nc (5km) Hnn_YYYYMMDD_hhmm_rFLVER_FLDK_xxxxx_yyyyy.nc (1km) where nn: 2-digit number of Himawari satellite; 08: Himawari-8 09: Himawari-9 YYYY: 4-digit year of observation start time (timeline); MM: 2-digit month of timeline; DD: 2-digit day of timeline; hh: 2-digit hour of timeline; mm: 2-digit minutes of timeline; VER: algorithm version; xxxxx: pixel number; and yyyyy: line number. Example: NC_H08_20150727_0800_RFL001_FLDK_02401_02401.nc ### Cloud Property NC_Hnn_YYYYMMDD_hhmm_L2CLPVER_FLDK.xxxxx_yyyyy.nc where nn: 2-digit number of Himawari satellite; 08: Himawari-8 09: Himawari-9 YYYY: 4-digit year of observation start time (timeline); MM: 2-digit month of timeline; DD: 2-digit day of timeline; hh: 2-digit hour of timeline; mm: 2-digit minutes of timeline; VER: version; xxxxx: pixel number; and yyyyy: line number. Example: H08_20150727_0800_L2CLPbet_FLDK.02401_02401.nc ### Wildfire NC_Hnn_YYYYMMDD_hhmm_L2WLFVER_FLDK.xxxxx_yyyyy.csv where nn: 2-digit number of Himawari satellite; 08: Himawari-8 09: Himawari-9YYYY: 4-digit year of observation start time (timeline); MM: 2-digit month of timeline; DD: 2-digit day of timeline; hh: 2-digit hour of timeline; mm: 2-digit minutes of timeline; VER: version; xxxxx: pixel number; and yyyyy: line number. Example: H08_20150727_0800_L2WLF010_FLDK.06001_06001.csv ## Level 3 ### Aerosol Property Hnn_YYYYMMDD_hhmm_LL_ARPVER_FLDK.xxxxx_yyyyy.nc (5km) where nn: 2-digit number of Himawari satellite; 08: Himawari-8 09: Himawari-9YYYY: 4-digit year of observation start time (timeline); MM: 2-digit month of timeline; DD: 2-digit day of timeline; hh: 2-digit hour of timeline; mm: 2-digit minutes of timeline; LL: 2-digit temporal resolution (L3:hourly, 1D:daily, 1M:monthly) VER: algorithm version; xxxxx: pixel number; and yyyyy: line number. Example: H08_20150727_0800_1H_ARP031_FLDK.02401_02401.nc ### Sea Surface Temperature YYYYMMDDhhmmss-JAXA-L3C_GHRSST-SSTskin-Hnn_AHI-vVER-v02.0-fvFVER.nc (hourly) YYYYMMDDhhmmss-JAXA-L3C_GHRSST-SSTskin-Hnn_AHI-vVER_daily-v02.0-fvFVER.nc (daily) Hnn_YYYYMMDD_HHMM_1MSSTVER_FLDK.xxxxx_yyyyy.nc (monthly) where YYYY: 4-digit year of observation start time (timeline); MM: 2-digit month of timeline; DD: 2-digit day of timeline; hh: 2-digit hour of timeline; mm: 2-digit minutes of timeline (fixed to "00"); ss: 2-digit seconds of timeline (fixed to "00"); nn: 2-digit number of Himawari satellite; 08: Himawari-8 09: Himawari-9 VER: algorithm version; FVER: file version; xxxxx: pixel number; and yyyyy: line number. Example: 20180804000000-JAXA-L3C_GHRSST-SSTskin-H08_AHI-v2.0-v02.0-fv01.0.nc (hourly) 20180804000000-JAXA-L3C_GHRSST-SSTskin-H08_AHI-v2.0_daily-v02.0-fv01.0.nc (daily) H08_20180701_0000_1MSST200_FLDK.06001_06001.nc (monthly) ### Nighttime Sea Surface Temperature YYYYMMDDhhmmss-JAXA-L3C_GHRSST-SSTskin-Hnn_AHI-vVER_nighttime-v02.0-fvFVER.nc where YYYY: 4-digit year observation start time (timeline); MM: 2-digit month of timeline; DD: 2-digit day of timeline; hh: 2-digit hour of timeline; mm: 2-digit minutes of timeline(fixed to "00"); ss: 2-digit seconds of timeline(fixed to "00"); nn: 2-digit number of Himawari satellite; 08: Himawari-8 09: Himawari-9 VER: algorithm version; and FVER: file version;. Example: 20150728080000-JAXA-L3C_GHRSST-SSTskin-H08_AHI-v2.0_nighttime-v02.0-fv01.0.nc ### Short Wave Radiation/Photosynthetically Available Radiation Hnn_YYYYMMDD_hhmm_LL_RFLVER_FLDK.xxxxx_yyyyy.nc (5km) Hnn_YYYYMMDD_hhmm_LL_rFLVER_FLDK.xxxxx_yyyyy.nc (1km) where nn: 2-digit number of Himawari satellite; 08: Himawari-8 09: Himawari-9 YYYY: 4-digit year of observation start time (timeline); MM: 2-digit month of timeline; DD: 2-digit day of timeline; hh: 2-digit hour of timeline; mm: 2-digit minutes of timeline; LL: 2-digit temporal resolution (L3:hourly, 1D:daily, 1M:monthly) VER: algorithm version; xxxxx: pixel number; and yyyyy: line number. Example: H08_20150727_0800_1H_RFL001_FLDK.02401_02401.nc ### Chlorophyll-a Hnn_YYYYMMDD_hhmm_LL_ROCVER_FLDK.xxxxx_yyyyy.nc (5km) Hnn_YYYYMMDD_hhmm_LL_rOCVER_FLDK.xxxxx_yyyyy.nc (1km) where nn: 2-digit number of Himawari satellite; 08: Himawari-8 09: Himawari-9YYYY: 4-digit year of observation start time (timeline); MM: 2-digit month of timeline; DD: 2-digit day of timeline; hh: 2-digit hour of timeline; mm: 2-digit minutes of timeline; LL: 2-digit temporal resolution (1H:hourly, 1D:daily, 1M:monthly) VER: algorithm version; xxxxx: pixel number; and yyyyy: line number. Example: H08_20150727_0800_1H_ROC001_FLDK.02401_02401.nc ### Wild Fire Hnn_YYYYMMDD_hhmm_LLWLFVER_FLDK.xxxxx_yyyyy.csv where nn: 2-digit number of Himawari satellite; 08: Himawari-8 09: Himawari-9 YYYY: 4-digit year of observation start time (timeline); MM: 2-digit month of timeline; DD: 2-digit day of timeline; hh: 2-digit hour of timeline; mm: 2-digit minutes of timeline; LL: 2-digit temporal resolution (L3:hourly, 1D:daily, 1M:monthly) VER: algorithm version; xxxxx: pixel number; and yyyyy: line number. Example: H08_20180501_0000_L3WLF010_FLDK.06001_06001.csv ******************************************************************************** # Format All data except for Wild Fire is in NetCDF4 format and compressed with gzip. Please note that NetCDF format of SST (except monthly product) follows the GHRSST Data Specification (GDS) 2.0. Details of GDS2.0, see the Group of High Resolution Sea Surface Temperature (GHRSST) web site (https://www.ghrsst.org/). File format of Wild Fire product is CSV. Please see following file (H8_WLF_format.txt) for more details. ******************************************************************************** # Documents ## Operational schedule of Himawari satellites Operational information of the geostationary Himawari-8 and -9 satellites is available from the JMA's web site; https://www.data.jma.go.jp/mscweb/en/oper/operation.html ## Timetable of Himawari-8/9 Imaging The Himawari-8/9 Imaging Schedule is available from the JMA's web site. Please note that no observations are planned at 0240-0250UTC and 1440-1450UTC everyday for house-keeping of the Himawai-8 and -9 satellites. http://www.data.jma.go.jp/mscweb/en/operation8/Himawari-8%20Imaging%20Schedule.pdf ******************************************************************************** # References # About Himawari-8 satellite and instrument: K. Bessho et al., 2016: An introduction to Himawari-8/9 - Japan's new-generation geostationary meteorological satellites, J. Meteorol. Soc. Japan, 94, doi:10.2151/jmsj.2016-009. http://jmsj.metsoc.jp/EOR/2016-009.pdf # About Sea Surface Temperature Algorithm: Y. Kurihara et al, 2021: A quasi-physical sea surface temperature method for the split-window data from the Second-generation Global Imager (SGLI) onboard the Global Change Observation Mission-Climate (GCOM-C) satellite. Remote Sens. Environ., DOI: 10.1016/j.rse.2021.112347. https://doi.org/10.1016/j.rse.2021.112347 Y. Kurihara, H. Murakami, and M. Kachi, 2016: Sea surface temperature from the new Japanese geostationary meteorological Himawari-8 satellite. Geophys. Res. Letters. DOI: 10.1002/2015GL067159. http://onlinelibrary.wiley.com/doi/10.1002/2015GL067159/full (Bi-Spectral Filter used since Ver.2.1) Y. Kurihara, 2022: A bi-spectral approach for destriping and denoising the sea surface temperature from SGLI thermal infrared data. J. Atmos. Oceanic Technol., DOI:10.1175/JTECH-D-22-0051.1. https://doi.org/10.1175/JTECH-D-22-0051.1 # About Aerosol Algorithm: (L2 Aerosol Algorithm) Yoshida, M, M. Kikuchi, T. M. Nagao, H. Murakami, T. Nomaki, and A.Higurashi 2018, Common retrieval of aerosol properties for imaging satellite sensors, J. Meteor. Soc. Japan, doi:10.2151/jmsj.2018-039. https://www.jstage.jst.go.jp/article/jmsj/advpub/0/advpub_2018-039/_article/-char/en. (L3 Hourly Aerosol Algorithm) Kikuchi, M., H. Murakami, K. Suzuki, T. M. Nagao, and A. Higurashi, Improved Hourly Estimates of Aerosol Optical Thickness using Spatiotemporal Variability Derived from Himawari-8 Geostationary Satellite, IEEE Transactions on Geoscience and Remote Sensing, accepted. # About Short Wave Radiation / Photosynthetically Available Radiation Algorithm: R. Frouin and H. Murakami, 2007: Estimating photosynthetically available radiation at the ocean surface from ADEOS-II global imager data. J. Oceanography, 63, 493-503. (JMA Objective Analysis data (Ozone) used as ancirally data since Ver.2.0) JMA 2019, OUTLINE OF THE OPERATIONAL NUMERICAL WEATHER PREDICTION AT THE JAPAN METEOROLOGICAL AGENCY, March 2019, Appendix to WMO TECHNICAL PROGRESS REPORT ON THE GLOBAL DATA-PROCESSING AND FORECASTING SYSTEM AND NUMERICAL WEATHER PREDICTION, https://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm # About Chlorophyll-a Algorithm: Murakami, H. (2016): Ocean color estimation by Himawari-8/AHI, Proc. SPIE 9878, Remote Sensing of the Oceans and Inland Waters: Techniques, Applications, and Challenges, 987810 (May 7, 2016); doi:10.1117/12.2225422; http://dx.doi.org/10.1117/12.2225422. (JMA Objective Analysis data (Ozone) used as ancirally data since Ver.2.0) JMA 2019, OUTLINE OF THE OPERATIONAL NUMERICAL WEATHER PREDICTION AT THE JAPAN METEOROLOGICAL AGENCY, March 2019, Appendix to WMO TECHNICAL PROGRESS REPORT ON THE GLOBAL DATA-PROCESSING AND FORECASTING SYSTEM AND NUMERICAL WEATHER PREDICTION, https://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm # About Cloud Retrieval Algorithm: (Cloud Flag Algorithm) Ishida, H., and T. Y. Nakajima, 2009: Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager, J. Geophys. Res., 114, D07206, doi:10.1029/2008JD010710. Ishida, H., T. Y. Nakajima, T. Yokota, N. Kikuchi, and H. Watanabe, 2011: Investigation of GOSAT TANSO-CAI cloud screening ability through an inter-satellite comparison, J. Appl. Meteor. Climatol., 50, 1571?1586. doi: http://dx.doi.org/10.1175/2011JAMC2672.1. Letu, H., T. M. Nagao, T. Y. Nakajima, and Y. Matsumae, 2014: Method for validating cloud mask obtained from satellite measurements using ground-based sky camera. Applied optics, 53(31), 7523-7533. Nakajima, T. Y., T. Tsuchiya, H. Ishida, and H. Shimoda, 2011: Cloud detection performance of spaceborne visible-to-infrared multispectral imagers. Applied Optics, 50, 2601-2616. (Cloud Retrieval Algorithm) Kawamoto, K., T. Nakajima, and T. Y. Nakajima, 2001: A Global Determination of Cloud Microphysics with AVHRR Remote Sensing, J. Clim., 14(9), 2054-2068, doi:10.1175/1520-0442(2001)014<2054:AGDOCM>2.0.CO;2. Nakajima, T. Y., and T. Nakajima, 1995: Wide-Area Determination of Cloud Microphysical Properties from NOAA AVHRR Measurements for FIRE and ASTEX Regions, J. Atmos. Sci., 52(23), 4043-4059, doi:10.1175/1520-0469(1995)052<4043:WADOCM>2.0.CO;2. (Scattering property database for nonspherical ice particles) Ishimoto, H., K. Masuda., Y. Mano, N. Orikasa, and A. Uchiyama, 2012a, Optical modeling of irregularly shaped ice particles in convective cirrus. In radiation processed in the atmosphere and ocean (IRS2012): Proceedings of the International Radiation Symposium (IRC/IAMAS) 1531, 184-187. Ishimoto, H., K. Masuda, Y. Mano, N. Orikasa, and A. Uchiyama, 2012b: Irregularly shaped ice aggregates in optical modeling of convectively generated ice clouds, J. Quant. Spectrosc. Radiat. Transfer, 113, 632-643. Masuda, K., H. Ishimoto, and Y. Mano, 2012: Efficient method of computing a geometric optics integral for light scattering, Meteorology and Geophysics ., 63, 15-19. Letu, H., T. Y. Nakajima, and T. N. Matsui, 2012: Development of an ice crystal scattering database for the global change observation mission/second generation global imager satellite mission: Investigating the refractive index grid system and potential retrieval error. Appl. Opt., 51, 6172-6178. Letu, H. H. Ishimoto, J. Riedi, T. Y. Nakajima, L. C.-Labonnote, A. J. Baran, T. M. Nagao, and M. Sekiguchi, 2016: Investigation of ice particle habits to be used for ice cloud remote sensing for the GCOM-C satellite mission. Atmos. Chem. Phys, 16(18), 12287-12303. Letu, H., T. M. Nagao, T. Y. Nakajima J. Riedi, H. Ishimoto, A. J. Baran, H. Shang, M. Sekiguchi, and M. Kikuchi: Ice cloud properties from Himawari-8/AHI next-generation geostationary satellite: Capability of the AHI to monitor the DC cloud generation process. IEEE Transactions on Geoscience and Remote Sensing, in revision. # Radiative Transfer Code Nakajima, T., and M. Tanaka (1986), Matrix formulation for the transfer of solar radiation in a plane-parallel scattering atmosphere, J. Quant. Spectrosc. Radiat. Transfer, 35, 13?21, doi:10.1016/0022-4073(86)90088-9. Nakajima, T., and M. Tanaka (1988), Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation, J. Quant. Spectrosc. Radiat. Transfer, 40, 51?69, doi:10.1016/0022-4073(88)90031-3. Ota, Y., A. Higurashi, T. Nakajima, and T. Yokota (2009), Matrix formulations of radiative transfer including the polarization effect in a coupled atmosphere-ocean system, J. Quant. Spectrosc. Radiat. Transfer, 111, 878?894, doi:10.1016/j.jqsrt.2009.11.021. # About Wild Fire Algorithm: Y. Kurihara, K. Tanada, H. Murakami, and M. Kachi, 2020: Australian bushfire captured by AHI/Himawari-8 and SGLI/GCOM-C. JpGU-AGU Joint Meeting 2020. ********************************************************************************