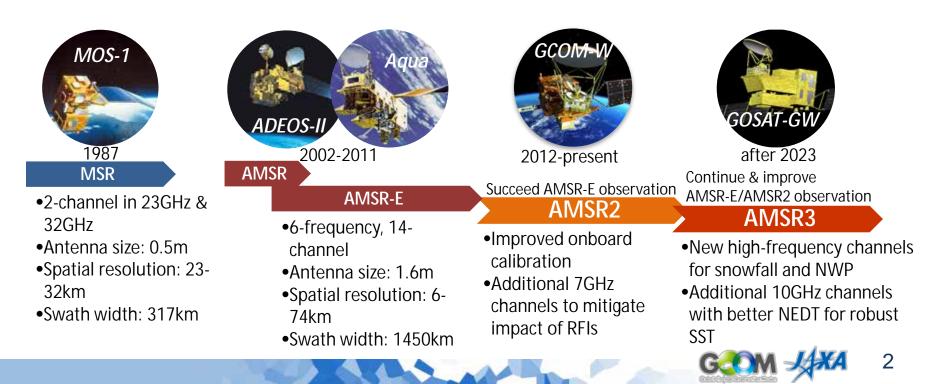


Status of GCOM-W and GOSAT-GW/AMSR3

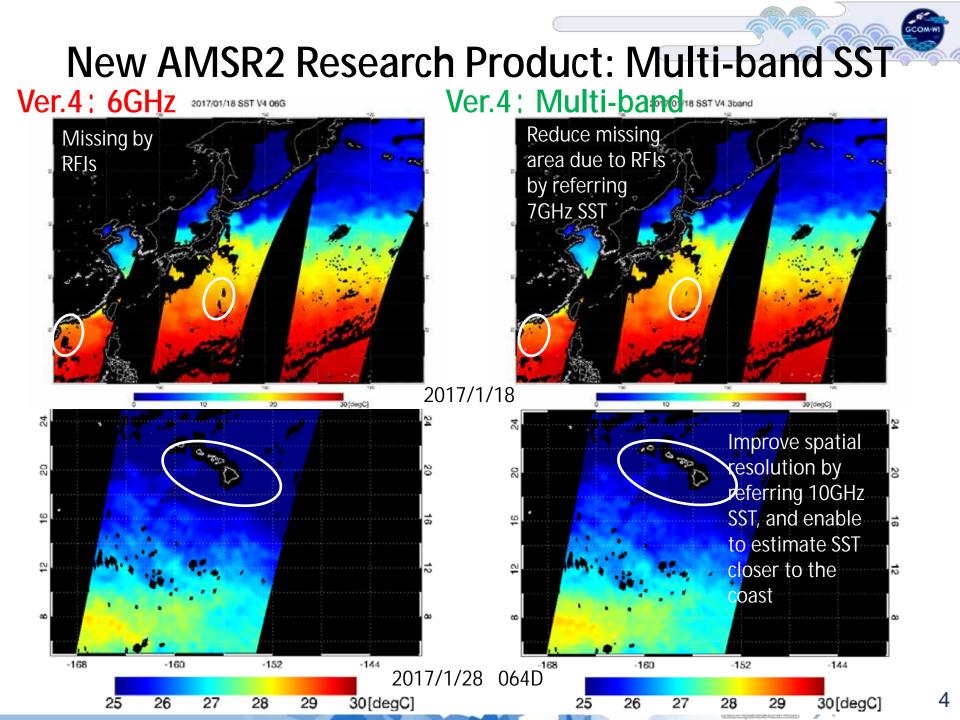

Misako Kachi (JAXA/EORC) Marehito Kasahara (JAXA GOSAT-GW Project Team)

JFY2020 Joint PI WS @ Jan. 18, 2021

History of Passive Microwave Observations

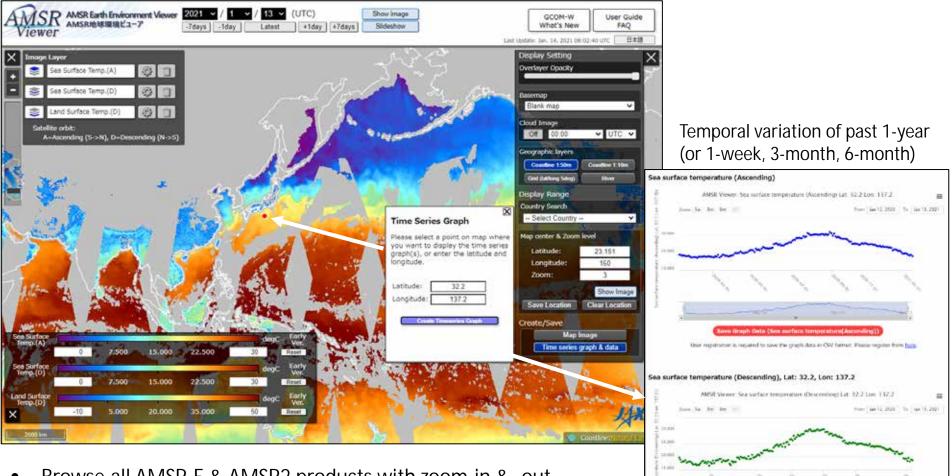
- With experience of development and operation of MSR, JAXA developed 1st generation of AMSR (AMSR and AMSR-E) with large antenna size and C-band channels. AMSR-E continuous its science observation about 9.5-year, and its high capabilities enable to expand utilizations in operational and research areas.
- 2nd generation of AMSR (AMSR2) was launched in 2012 and succeeds AMSR-E observations to establish its data utilization in various areas.
- 3rd generation of AMSR (AMSR3) is being developed and to be launched in JFY2023.

AMSR2 on GCOM-W



Instrument	Advanced Microwave Scanning Radiometer 2 (AMSR2)
Altitude	705 km
Orbital inclination	98.2 deg
Local sun time at Ascending node	13 :30
Launch vehicle	H-IIA
Launch	May 18, 2012
Designed lifetime	5 years

- Successor of Aqua/AMSR-E (launched in May 2002), providing continuous data for climate studies and operational applications
- **ü** Carrying AMSR2, a multi-polarization and multifrequency microwave imager
- **ü** Improving on-board calibration target has resulted reduction of annual TB variation due to calibration and improvement of TB stability
- Achieved designed mission life (5-year) on May 18, 2017, and continues observation
- ü Highlights in last year
 - Uversion-up of SST and Sea Surface Wind Speed & release of new research products in Oct. 2020
 - **ü** Release of AMSR Environment Viewer on web in Jun. 2020
 - ü Capturing TPW & SST variation during heavy rainfalls around Japan in Jul. 2020
 - Capturing SST decrease during passing of three typhoons in Aug.-Sep. 2020
 - ü Capturing second minimum sea ice extent in Sep. 2020


3

AMSR Earth Environment Viewer

https://www.eorc.jaxa.jp/AMSR/viewer/index_e.html

5

- Browse all AMSR-E & AMSR2 products with zoom-in & -out
- Display 3 products of same UTC day (Asc. & Dsc.) at same time
- Display & download time series graph of specific point
- Scalable color bars, etc.

AMSR3 on GOSAT-GW: Global Observation SATellite for Greenhouse gases and Water cycle

- GOSAT-GW will carry two instruments, AMSR3 and TANSO-3.
 - AMSR3, led by JAXA, will succeed AMSR series observations adding new high-frequency channels for solid precipitation retrievals and water vapor analysis in NWP.
 - TANSO-3, led by Japanese Ministry of Environment (MOE) and National Institute of Environment Studies (NIES), will improve observation capability of greenhouse gases from GOSAT-2/TANSO-2.
 - Target launch is JFY2023 (Apr. 2023 Mar. 2024)
- Mission targets of AMSR3
 - To produce long-term continuous data record
 - To enhance operational utilization of near-real time data
 - weather forecast including hurricane analysis
 - fishery in coastal area
 - navigational assistance on arctic shipping route
 - New geophysical parameter products

GOSAT-GW Satellite Specifications

		outointe opoonnoutions	
	Туре	Sun-synchronous, Sub-recurrent orbit	
Orbit Altitude		666km, recurrent cycle 3days (same as GOSAT)	
	MLTAN	13:30±15min (same as GCOM-W)	
Mass		2.6 ton (Including propellant)	
Power		> 5.3 kW	
Design l	ife	> 7 years	
Launch	vehicle	H-IIA rocket	
Mission downlin		Direct transmission with X-band: 400 Mbps Direct transmission with S-band: 1 Mbps (Only for AMSR3)	
Instrum	ent	TANSO-3 (for GHG) AMSR3 (for Water Cycle)	

6

Current Status of AMSR3

- Dec. 2019: Started GOSAT-GW Project
- Jun. 2020 Preliminary Design Review (PDR) of GOSAT-GW Satellite System

To be completed by the end of JFY2020 (Mar. 2021)

Ø Aug. 26, 2020: Completed AMSR3 PDR

- Changed the specification of Ka-band passband to reduce the future risk of RF interference from 5-G mobile communication system
- Being coordinated major characteristics and performances of Gband
- Being conducted manufacture and test of engineering models of AMSR3 component (ex. G-band antenna sub-system, Receivers)

Future Plan

- Critical Design Review (CDR) of AMSR3 in first half of JFY2021
- Completion of AMSR3 Development in second half of JFY2022
- Launch of GOSAT-GW Satellite in JFY2023
 - AMSR3 Product will be released to the public about one year after the launch.

Specification of AMSR3 Instrument

AMSR	3 Sensor Characteristics	
	Conical scanning total	
Sensor type	power microwave	
	radiometer	
Antenna	Off-set parabolic antenna	
AIItenna	(φ2 .0m aperture)	
Swath width	> 1530m	
Quantization	12 bit	
Incidence	55 deg.	
angle	except 89GB, 166G,183G	
X-polarization	< -20dB	
Beam	> 90%	
efficiency	> 90 78	
Range	2.7-340K	
Sampling	5-10km	
interval	5-TOKITI	
Data rate	87.4 kbps (average)	
Life time	7 years	

AMSR3 Channel Sets

Center frequency [GHz]	Polariz ation	Band width [MHz]	NEDT (1σ)	Beam width (spatial resolution)
6.925 7.3	H/V	350	< 0.34 K	1.8 ° (34km x 58km)
10.25	H/V	500	< 0.34 K	1.2 ° (22km x 39km)
10.65	H/V	100	< 0.70 K	1.2 ° (22km x 39km)
18.7	H/V	200	< 0.70 K	0.65 ° (12km x 21km)
23.8	H/V	400	< 0.60 K	0.75 ° (14km x 24km)
36.5→ 36.42	H/V	1000→ 840	< 0.70 K (TBD)	0.35 ° (7km x 11km)
89.0 A/B	H/V	3000	< 1.20 K	0.15 ° (3km x 5km)
165.5	V	4000	< 1.50 K (TBD)	0.3 ° (TBD) (6km × 10km) → (4km × 9km)
183.31 ± 7	V	2000 × 2	< 1.50 K (TBD)	0.28 (TBD)→0.27 ° (5km × 9km)→ (4km × 8km)
183.31 ± 3	V	2000 × 2	< 1.50 K (TBD)	0.28 (TBD)→0.27 ° (5km × 9km)→ (4km × 8km)

Additional channels from AMSR2 in red Changes from JFY 2019 joint PI Meeting in blue

List of AMSR3 Products

Standard Product

Brightness Temperature (6-183GHz) (L1B)

Resampled Brightness Temperature (6-183GHz) (L1R)

Total Precipitable Water (over ocean & land)

Integrated Cloud Liquid Water Content (over ocean)

Precipitation (liquid & solid)

Sea Surface Temperature

(6GHz & 4-frequency)

Sea Surface Wind Speed

All Weather Sea Surface Wind Speed

Sea Ice Concentration

High-resolution Sea Ice Concentration

Soil Moisture Content

Snow Depth (snow depth & SWE)

Red indicates differences from AMSR2 Blue indicates changes from JFY2019 workshop

Research Product

FOV-center Matched Brightness Temperature (L1C)

High-resolution Brightness Temperature (L1H)

High-resolution Sea Surface Temperature (20km res.)

Sea Ice Motion Vector

Land Surface Temperature

Vegetation Water Content

Thin Ice Detection

Soil Moisture Content & Vegetation Water Content by Land Data Assimilation (L4)

Climate Data Record (CDR) for each parameter

(as of Oct. 2020)

