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1. INTRODUCTION 
The tropical rainfall exhibits quasi-regular low 

frequency variability on both interannual and 
intraseasonal time scales. However, many aspects of 
the interrelationship between intraseasonal and 
interannual modes especially the linkage between 
Madden-Julian Oscillation (MJO, Madden and Julian 
1994) and ENSO have not been described and 
understood clearly. Specifically, whether ENSO and 
MJO modulate or alter each other are still controversial 
(Slingo et al 1999; Kessler and Kleeman 2000). This 
paper examines the interannual and intraseasonal 
variability of tropical rainfall and physical linkages 
between them.  

2. RAINFALL VARIATIONS DURING 1979-2002 
The rainfall data used in this section is the Global 

Precipitation Climatology Project (GPCP, Janowiak and 
Arkin 1991) pentad data that started in 1979. Sea 
surface temperature (SST) is from AVHRR weekly 
product. The mean DJFM rainfall and rain variance 
during 1979-2002 (Fig. 1) indicated largest variance 
around the date line to the south of equator as well as in 
Indian Ocean ITCZ corresponding to the large mean 
rainfall in these regions. The rain variance in summer 
(Fig. 2) is dominated by summer monsoon and east 
Pacific ITCZ.  

 
 
 
 
 
 
 

 
 

 

 
 
Fig.1 Mean DJFM rainfall rate (upper) and variance (lower) 
during 1979-2002 

The time series of pentad were filtered using a 30-60 
day band pass filter. The hovannval(time-longitude) 
variability during the 23 years period (Fig. 3) shows the 
effect of ENSO cycle on modulating the MJO. The 
ENSO seems affecting both eastern and western 
envelope. The eastern envelop intensifies during cold 
episode and the western envelop intensifies in the warm 
episode. However, the most evident linkage is that the 
eastern envelope stretches beyond the date line during 

the ENSO warm phase. At decadal scale, the western 
envelop shows an eastward shifting since the beginning 
of 90’s. 

 
 

 
 
 
 
 
 
 
 

 

 

Fig.2 Mean JJAS rainfall rate (upper) and variance (lower) 
during 1979-2002 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3 Hovannval root mean square variability during 1979-
2002 for 30-60 day band passed rainfall 



3. EXTENDED EOF AND SSA METHODS  

EOF is one of the most commonly used techniques 
to extract qualitative information from two dimensional 
(temporal and spatial) data in atmospheric science (e.g. 
Lorenz, 1956; Barnett, 1977). The EOF method involves 
the solution of the eigenvector equation: 

 
(R - µI)em  = 0                 (1) 
 

where R=FFT/N is the data covariance matrix, F is a 
matrix with M rows and N columns. M is the dimension 
of the spatial field and N is the temporal dimension or 
number of instantaneous samples. I is a unit matrix, µ is 
eigenvalue and em is the resulting eigenvector (EV), and 
m = 1, 2, …, M.  Each of the eigenvalues explains a 
fraction of total variance and leads to an eigenvector 
solution that describes one mode of the spatial 
variability. The temporal behavior of data associated 
with the EV mode is represented by the principal 
components (PC) that are coefficients in reconstructing 
the data in eigenvector space. The detail of the notion of 
EOF can be found in Broomhead and King (1986). In 
normal cases, the dimension of the temporal vector (N) 
should be larger than the dimension of the spatial vector 
(M) to generate a normal covariance matrix R(M, M). 
This often limits the resolution of the spatial data.  

Extended EOF (EEOF) follows the similar derivation 
of EOF.  However, the resulting eigenvector is required 
to be linear predictors of a data field not only at a given 
time but also at some successive times. Therefore, 
EEOF show not only eigenvector patterns but also 
temporal evolutions of eigenvectors. Technically, EEOF 
build the data matrix F with M*L rows and N-L+1 
columns for the data set described in above EOF 
analysis. Where L is number of time lags. Therefore, 
EEOF generate a much bigger covariance matrix and 
therefore require significantly more computer resources. 
EEOF also require longer time series of the data. This 
paper uses EEOF to identify temporal sequence of 
spatial variations and the associated temporal spectrum.  

The SSA has been developed and used in atmospheric 
science quite recently (Vautars and Gil, 1989; Rasmusson et 
al., 1990). Although the SSA involves the solution of the 
same eigenvector equation, it address the spectrum aspect of 
the chaotic data instead of the spatial patterns in EOF.  The 
data used in SSA is a one dimensional time series.  In SSA, 
the R in equation (1) is an auto-correlation matrix of the time 
series. The size of the auto-correlation matrix of the times 
series is determined by the number of lags (M). Normally, the 
number of lags must be at least an order of magnitude smaller 
than the size of the time series. This requires time period of 
data be much longer than the spectrum of interest. In this 
study, the SSA is used to capture the intra-seasonal spectrum, 
the number of lags is about 20 (100 days) that is an order 
smaller than the length of the time series (four years). The 
eigenvectors of SSA capture the spectrum of the time series, 
while the principal components show the temporal behavior 
of the spectrum. Therefore, the EEOF method was applied to 
the time series of global data, while the SSA was applied to 
time series in regions of interest. 

The first EEOF, which explains 7% of the total 
variances, from DJFM analysis (Fig. 4) indicate a 
stationary pattern. The centers of the dipole are located 
at 130o E and 170o W. The patterns do not vary during a 
55-day sequence. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The second EEOF (Fig. 6) represents a transit patter. 

The centers of the dipole are located at 90o E and 170o 
E. The dipole completes a total oscillation within 60 
days with a phase speed about 3.5 m/s. 

The PCs of the first two EEOF (Fig. 7) indicate that 
the first EEOF is more linked to the ENSO signal and 
explains less variance of MJO as compared to the 
second EEOF. 

The SSA eigenvector of the first PC of EEOF (Fig. 8) 
indicates a dominant model of interannual variability 
associated with ENSO cycle (Fig. 9). The first (mean) 
modes explains about 63% of the total variance. The 
MJO mode (third and fourth) explains about 16% of the 
total variance. The 25-30 day mode (fifth to seventh) 
explains about 3% of the variance. The SSA 
eigenvector of second PC of EEOF (Fig. 10) represents 
the dominant mode of MJO. The MJO mode (first and 
second) explains about 73% of the total variance. The 
25-30 day mode (fourth and fifth) explains 11% of the 
total variance. The mean mode (third) explains only 
15.9% of the variance and is weakly linked to ENSO 
signal (Fig. 11). 
 
 
 

Fig. 4  First EEOF from DJFM rainfall data, each 
successive lag is 5 days. 

 
The second EEOF (Fig. 5) represents a transit patter. 

The centers of the dipole are located at 90o E and 170o 
E. The dipole completes a total oscillation within 60 
days with a phase speed about 3.5 m/s. 

The PCs of the first two EEOF (Fig. 6) indicate that 
the first EEOF is more linked to the ENSO signal and 
explains less variance of MJO as compared to the 
second EEOF. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5  Second EEOF from DJFM rainfall data, successive lag is 5 
days. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 PCs of the first two EEOF 

The SSA eigenvector of the first PC of EEOF (Fig. 7) 
indicates a dominant model of interannual variability 
associated with ENSO cycle. The first (mean) modes 

explains about 63% of the total variance. The MJO 
mode (third and fourth) explains about 16% of the total 
variance. The 25-30 day mode (fifth to seventh) explains 
about 3% of the variance.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7  First 8 eigenvectors of SSA derived from the PC of 
the first EEOF from DJFM rainfall data 

The SSA eigenvector of second PC of EEOF (Fig. 
8) represents the dominant mode of MJO. The MJO 
mode (first and second) explains about 73% of the total 
variance. The 25-30 day mode (fourth and fifth) 
explains 11% of the total variance. The mean mode 
(third) explains only 15.9% of the variance and is 
weakly linked to ENSO signal 
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Fig. 8  First 8 eigenvectors of SSA derived from the PC of 
the second EEOF from DJFM rainfall data 



4. TRMM-GPCP PARALLEL ANALYSIS  
In order to verify the above finding, the TRMM rain 

product, which provides more reliable estimate, was 
used to compare the GPCP spectral results. The time 
series (Fig. 9) indicate that in strong MJO zone, TMI and 
GPCP rain estimates are very close on both spectrum 
and magnitude. In weak MJO zone, TMI estimates show 
stronger oscillation and wet biases.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 Time series of GPCP and TMI rain estimates.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Fig. 10  First 8 eigenvectors of SSA derived from GPCP 
time series averaged over (10S-10N, 120-140E).  

The parallel spectrum analyses for the two data sets 
show similar patters (Fig. 10, Fig. 11). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11  First 8 eigenvectors of SSA derived from TMI time 
series averaged over (10S-10N, 120-140E). 
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