TRMMデータ利用講習会

APPENDIX

PARAMETER DICIONARY

Ver 1.02

平成10年12月4日

宇宙開発事業団

地球観測データ解析研究センター

ECS (EOSDIS Core System) Metadata Elements [Core Metadata]

	Metadata Element	Defined Names of Parameters in the TOOLKIT	Object Name in the HDF	Туре	Estimated size (bytes)	Description
1	Orbit Number	TK_ORBIT_NUMBER	OrbitNumber	int	17	The orbit number to be used in calculating the spatial extent of this data.
2	Beginning Date	TK_BEGIN_DATE *****.tkyear *****.tkmonth *****.tkday	RangeBeginningDate	date	25	The date when the granule coverage began. Granule coverage defined as the orbit for Level-1 and Level-2 satellite data, as the hour of the granule for Level-1 and Level-2 ground validation data, as the day of the granule for rain gauge and disdrometer data, and as the pentad or month of the granule for Level-3 data.
3	Beginning Time	TK_BEGIN_TIME *****.tkhour *****.tkminute *****.tksecond	RangeBeginningTime	time	23	The time when the granule coverage began. See beginning date.
4	Ending Date	TK_END_DATE *****.tkyear *****.tkmonth *****.tkday	RangeEndingDate	date	22	The date when the granule coverage ended. See beginning date.
5	Ending Time	TK_END_TIME *****.tkhour *****.tkminute *****.tksecond	RangeEndingTime	time	20	The time when the granule coverage ended. See beginning date.
6	Granule ID	TK_GRANULE_ID	GranulePointer	char	48	ID of granule. Same as input file name. (ex. 1B12.19990706.1039.1)
7	ID of ECS Data Object	TK_DATA_ID	ShortName	char	66	The unique identifier of an ECS collection to which this granule belongs. (i.e. "Total Power, Noise", "PR Reflectivity")
8	Size MB ECS Data Object	TK_FILE_SIZE	SizeMBECSDatatGranule	float	21	The size attribute will indicate the volume of data contained in the granule.

9	Longitude of Maximum Latitude	TK_LON_OF_MAX_LAT	LongitudeOfMaximumLatitude	char	50	Longitude of the northernmost extent of the satellite orbit. Decimal degrees with 6 figures precision after the decimal point. Positive east, negative west. A point on the 180th meridian is assigned to the western hemisphere.
10	Spatial Coverage Type	TK_SPAT_COV_TYPE	SpatialCoverageType	char	33	This attribute denotes whether the locality/coverage requires horizontal, vertical or both spatial domain and coordinate system definitions. "both"
11	Ellipsoid Name	TK_ELLIPSOID_NAME	EllipsoideName	char	50	Name of the ellipsoid. "World Geodetic System (WGS) 84"
12	Equatorial Radius	TK_EQ_RADIUS	EquatorialRadius	float	51	Equatorial radius of the earth ellipsoid (meters). "6378.137"
13	Denominator of Flattening Ratio	TK_FLATTENING_RATIO	DenominatorFlatteningRatio	float	51	The reciprocal of the flattening ratio, f, where f = 1 - b/a, a = Equatorial radius of the earth ellipsoid and b = Polar radius of the earth ellipsoid "0.00335281"
14	Orbit Model Name	TK_ORBIT_MODEL_NAME	OrbitModelName	char	98	The reference name to the orbital model to be used to calculate the geolocation of this data to determine global spatial extent. "Definitive FDF Ephemeris"
15	Semi Major Axis	TK_KEP_SEMI_MAJOR_AXIS	SemiMajorAxis	float	19	Half of the long axis of the orbit ellipse (meters). Used Geometric metadata.
16	Mean Anomaly	TK_KEP_MEAN_ANOMALY	MeanAnomaly	float	18	Angle around the orbit at the Epoch Time about the Ellipse center from the ascending node (radians). Used Geometric metadata.
17	Right Ascension of Ascending Node	TK_KEP_RIGHT_ASCEN_NODE	RightAscensionNode	float	42	Right Ascension in Geocentric Inertial Coordinates of the north bound equator crossing (radians). Used Geometric metadata.
18	Argument of Perigee	TK_KEP_ARG_OF_PERIGEE	ArgumentOfPerigee	float	28	Angle from the ascending node to perigee (radians). Used Geometric metadata.

19	Eccentricity	TK_KEP_ECCENTRICITY	Eccentricity	float	21	Eccentricity of ellipse (meters). Used Geometric metadata.
20	Inclination	TK_KEP_INCLINATION	Inclination	float	20	Angle between Orbit plane and Earth Equatorial plane (radians).
21	Epoch date	TK_KEP_EPOCH_DATE	EpochDate	date	19	Reference date for orbital elements. Used Geometric metadata.
22	Epoch time	TK_KEP_EPOCH_TIME	EpochTime	time	19	Reference time for orbital elements. Used Geometric metadata
23	Epoch milliseconds	TK_KEP_EPOCH_MILLISEC	EpochMillisec	int	20	Reference milliseconds for orbital elements. Used Geometric metadata
24	West Bounding Coordinate	TK_WEST_BOUND_COORD	WestBoundingCoordinate	float	29	The degree value for the west longitude of boundary. "-180"
25	East Bounding Coordinate	TK_EAST_BOUND_COORD	EastBoundingCoordinate	float	29	The degree value for the east longitude of boundary. "180"
26	North Bounding Coordinate	TK_NORTH_BOUND_COORD	NorthBoundingCoordinate	float	30	The degree value for the north latitude of boundary. "40"
27	South Bounding Coordinate	TK_SOUTH_BOUND_COORD	SouthBoundingCoordinate	float	30	The degree value for the south latitude of boundary. "-40"
28	Center Point Latitude	TK_CENTER_POINT_LAT	CenterLatitude	float	52	Latitude of center point of product.
29	Center Point Longitude	TK_CENTER_POINT_LON	CenterLongitude	float	52	Longitude of center point of product.
30	Radius	TK_RADIUS	RadiusValue	float	15	Distance in km from Point "-9999.9"
31	Latitude Resolution	TK_LATITUDE_RES	LatitudeResolution	float	27	The minimum diff erence between two adjacent latitude values expressed in Geographic
32	Longitude Resolution	TK_LONGITUDE_RES	LongitudeResolution	float	28	The minimum difference between two adjacent longitude values expressed in Geographic Coordinate units of measure. "-9999.9"
33	Geographic Coordinate Units	TK_GEO_COORD_UNITS	GeographicCoordinateUnits	char	112	Units of measure used for the latitude and longitude resolution values. "Decimal Degrees".
34	Temporal Range Type	TK_TEMPOR_RNG_TYPE	TemporalRangeType	char	50	This tells the system how temporal coverage is specified for the granule.
35	QA Parameter Name	TK_QA_PARAM_NAME	QualityAssuranceParameterName	char	98	"Science Quality Flag"
36	QA Parameter Value	TK_QA_PARAM_VALUE	QualityAssuranceParameterValue	char	99	A post processing indication of quality by the algorithm developer. The Quality Indicator takes the form of 4 possible ASCII strings: "NOT

						BEING INVESTIGATED", "BEING INVESTIGATED". "FAILED", or "PASSED".
37	Reprocessing Status	TK_REPRO_STAT	ReprocessingActual	char	40	This attribute identifies the intent of the product author to reprocess the data (i.e. data gaps, geolocation accuracy, scientist review quality flags). "NULL"
38	Browse Package Reference	TK_BROUSE_NAME	BrowsePointer	char	105	This attribute will contain a system- resolvable reference to an HDF package containing a collection of browse granules. "NULL"
39	Contact Name	TK_CONTACT	ScienceContact	char	93	The name of the algorithm developer related to this granule. The contact name supplied here must exist in the ECS contact database. "NASDA Earth Observation Center".
40	Mean Motion	TK_NUM_ORBITS	MeanMotion	float	50	Number of orbits per day, including fractions of orbits. Used Geometric metadata.
41	Orbit Adjust Flag	TK_ORBIT_ADJUST	OrbitAdjustFlag	int	50	 Orbit Adjust Flag. Values are as follows: 0 = no orbit adjust activity during this orbit. 1 = orbit adjustment control modes occurred during this orbit.
42	Attitude Mode Flag	TK_ATTITUDE_MODE	AttitudeModeFlag	int	50	Attitude Mode Flag. Values are as follows: 0 = forward mode (+X forward) throughout this orbit 1 = backward mode (-X forward) throughout this orbit 2 = yaw maneuver during this orbit
43	Solar beta angle at beginning of granule	TK_BEGIN_SOLAR_BETA	SolarBetaAngleAtBeginningOfGranule	float	50	Elevation of sun in the orbit plane at the orbit start (degrees). Used Geometric metadata.

44	Solar beta angle at end of the granule	TK_END_SOLAR_BETA	SolarBetaAngleAtEndOfGranule	float	50	Elevation of sun in the orbit plane at the orbit start (degrees). Used Geometric metadata.
45	Sensor Alignment	TK_SENSOR_ALGN	SensorAlignment	char	100	Euler Sequence (3 integers) and Euler angles for rotation from spacecraft coordinates to sensor coordinates in degrees. (These are to be provided by the science team) "0.0, 0.0, 0.0, 1.2, 3"
46	Sensor Alignment Channel Off sets	TK_SENSOR_ALGN_CHAN_OFFSET	SensorAlignmentChannelO ff sets	char	50* number of channels	Euler Sequence (3 integers) and Euler angles for rotation from sensor coordinates to Channel coordinates with angles separately f o r each channel in degrees. (These are to be provided by the science team if needed, but they are not nominally used in TSDIS processing since geolocation is not done per channel) "0"
47	Scan Path Model	TK_SCAN_PATH_MODEL	ScanPathModel	char	100	Parameters describing the scan path as used for pixel geolocation. For a (nominal) conical scan model the following parameters are used: Axis of Scan (± 1 , 2, or 3). Ref e rence Axis f or zero rotation angle (± 1 , 2 or 3), and Scan cone angular radius in degrees. Starting rotation angle relative to the scan axis in degrees, Total rotation angle spanned in degrees, Active scan duration time in seconds (between first and last pixel), and Time Off set between spacecraft time of the sensor data packet and the f i rst pixel time, in seconds. "1.3, 90.0, -17.0, 34.0, 0.3, 0.0"
48	Scan Path Parameters Per Channel	TK_SCAN_PATH_PARAM	ScanPathModelParam	char	100	Parameters describing the scan path separately f o r each channel in degrees. (These are to be provided by the science

						team if needed, but they are not nominally used in TSDIS processing since geolocation is not done per channel) "0"
49	Ephemeris file descriptor	TK_EPHEM_FILENAME	EphemerisFileID	char	50	TSDIS granule ID for the ephemeris file. The f o rmat is EPHEM.YYMMDD.nn., where YY is year, MM is month, DD is day of the month, and nn is the version number.

PS (Product Specific) Metadata Elements [Archive Meta data]

	Metadata Element	Defined Names of Parameters in the TOOLKIT	Object Name in the HDF	Туре	Estimated size (bytes)	Description
1	Data Gaps Duration	TK_DATA_GAP	DataGaps	float	50	The sum of the duration of the data gaps in seconds in the orbit (satellite data) or granule (GV data).
2	Number of Data Gaps	TK_NUM_DATA_GAP	NumberOfDataGaps	float	50	The number of data gaps in the data in the orbit (satellite data) or granule (GV data).
3	Algorithm Version	TK_ALGORITHM_VERSION	AlgorithmVersion	char		The version of the science algorithm is written as "M.m", where "M" is an integer corresponding to major revisions of the code. Major revisions are changes in the science algorithm which do affect the science, are delivered to TSDIS in an official delivery package, and require reprocessing. "m" is an integer corresponding to minor revisions or corrections. Minor revisions or corrections are made so the science algorithm will function properly in TSDIS, do not affect the science, are not delivered to TSDIS in an official delivery package, and do not require reprocessing. "M" is written without leading zeroes, with a range from 1 to 99. "m" is written with leading zeroes, with a range from 00 to 99. At launch, the version of all science algorithms is "1.00".

4	Product Version Number	TK_PRODUCT_VERSION	ProductVersion	int	50	A single integer indicating the version of the product. The first Product Version Number is 1. The Product Version Number is incremented every time the product is reprocessed due to the fact that the algorithm creating it changes or the algorithms creating the input to the algorithm change.
5	Toolkit Version	TK_TOOLKIT_VERSION	ToolkitVersion	char	50	Version of Toolkit used to create this granule.
6	Calibration Coefficient Version	TK_CAL_COEF_VERSION	CalibrationCoefficientVersion	int	50	Version of the calibration coefficients. (i.e. 1,2,3, etc.)
7	Missing Data	TK_MISSING_DATA	MissingData	int	50	Number of missing scans in the orbit (satellite data), missing rays (ground radar data) or missing observations (rain gauge or disdrometer data) express in percent.
8	Percentage of Bad or Missing Pixels	TK_PERCENT_BAD_MISS_PIXCEL	PercentOfBadOrMissingPixels	char	50	List by channel of the percentage of bad or missing pixels in the orbit (satellite data) or granule (GV data). "8.95%"
9	Maximum Valid Value of Channel	TK_MAX_VALID_CHANNEL	MaximumValidValueofChannel	char	50	List by channel of the maximum valid value (value specified by the instrument scientist). 1B: "-110", 1C: "20"
10	Minimum Valid Value of Channel	TK_MIN_VALID_CHANNEL	MinimumValidValueofChannel	char	50	List by channel of the minimum valid value (value specified by the instrument scientist).1B: "-20", 1C: "80"
11	Min Max Unit	TK_MIN_MAX_UNITS	MinMaxUnit	char	50	Units of the Minimum and Maximum valid values. 1B: "dBm", 1C: "dBZ"
12	Orbit Size	TK_ORBIT_SIZE	OrbitSize	int	50	Numbers of scans in Orbit. If the granule is empty, Orbit Size $= 0$.

13	Radar Wavelength	TK_RADAR_WAVELENGTH	RadarWavelength	float	50	Wavelength of the (meter). "0.02178"
14	Minimum Reflectivity Threshold	TK_MI_REF_THRESHOLD	MinimumReflectivityThreshold	float	50	The threshold (dBZ) below which ground based radar reflectivity data is set to the missing value. "-9999.9"
15	Algorithm ID	TK_ALGORITHM_ID	AlgorithmID	char	50	Name of the algorithm (i.e. 1B21, 1C21)
16	Data Accuracy	TK_DATA_ACCURACY	DataAccuracy	char	50	List by channel of the accuracy of the data.
17	Input IDs	TK_INPUT_FILES	InputFiles	char	300	List of input granule Ids. "NULL"
18	Data of Generation of Input Files	TK_GEN_DATE_INPUT_FILES	DataOfGenerationOfInputFiles	char	50	List of the generation dates of the input files. For ingested files, this is the date TSDIS received the file.
19	Data Center Source of Input Files	TK_DATA_CENTER_SRC	DataCenterSourceOfInputFiles	char	50	List of the centers generating the input files. e.g., TSDIS NMC.
20	Generation Date	TK_GEN_DATE	GenerationDate	int	50	Date the dataset was generated.
21	Day/Night	TK_DAY_NIGHT	DayNight	float	50	Percentage scans during the orbit in daytime mode. "-9999.9"
22	Solar Channel Gain	TK_SOLAR_GAIN	SolarChannelGains	float	50	Channel 1 Mirror Side A Channel 1 Mirror Side B Channel 2 Mirror Side A Channel 2 Mirror Side B
23	SSM/I Adjustment Coefficients	TK_SSMI_ADJUST	SSMIAdjustCoef	float	300	List of the intercepts and slopes defining the following correction to the brightness temperatures for channel: deltaT={A_ch*(tb-250)/50}+B_ch The entries in the list are as follows: 10GHz Vertical adjustment intercept 10GHz Horizontal adjustment intercept 19GHz Vertical adjustment intercept 21GHz Vertical adjustment intercept

24	Orbit First Scan UTC Date	TK_FIRST_SCAN_UTC_DATE	OrbitFirstScanUTCDate	date	50	37GHz Vertical adjustment intercept 37GHz Horizontal adjustment intercept 85GHz Vertical adjustment intercept 85GHz Horizontal adjustment intercept 10GHz Vertical adjustment slope 10GHz Horizontal adjustment slope 19GHz Vertical adjustment slope 21GHz Vertical adjustment slope 37GHz Vertical adjustment slope 37GHz Vertical adjustment slope 85GHz Vertical adjustment slope 85GHz Vertical adjustment slope
24	Orbit First Scan UTC Date	TK_FIRST_SCAN_UTC_DATE	OrbitFirstScanUTCDate	date		character string with the following characters: YYYY/MM/DD, where YYYY = year, MM = month number, DD = day of month and "/" is a literal. If the granule is empty, the value is '0/0/0'. In 2A-52, UTC date is stored as "/" is replaced by "-". In 1B-11 and 2A-12, UTC date is stored in separate words for year, month and day of month.
25	Orbit First Scan UTC Time	TK_FIRST_SCAN_UTC_TIME	OrbitFirstScanUTCTime	time		Orbit First Scan UTC Time. Time is an 8 character string with the following characters: HH:MM:SS, where HH = hour, MM = minute, SS = second, and ":" is a literal. If the granule is empty, the value is '0:0:0'. In 1B-11 and 2A-12, UTC time is stored in separate words for hour, minute, and second.

26	Orbit First Scan UTC Milliseconds	TK_FIRST_SCAN_UTC_MILLISEC	OrbitFirstScanUTCMilliseconds	int	50	Orbit First Scan UTC Milliseconds. Milliseconds is a 3 character string with the following characters: MMM, where MMM = the number of milliseconds later than the last whole second.
27	Orbit First Scantime - Spacecraft Clock Seconds	TK_FIRSTSCAN_SC_SECS	OrbitFirstSCSecs	int	50	The seconds field of the spacecraft clock time of the first scan in the orbit.
28	Orbit First Scantime - Spacecraft Clock Subseconds	TK_FIRSTSCAN_SC_SUBSECS	OrbitFirstSCSubsecs	int	50	The subseconds field of the spacecraft clock time of the first scan in the orbit.
29	Orbit Last Scan UTC Date	TK_LAST_SCAN_UTC_DATE	OrbitLastScanUTCDate	date	50	Orbit Last Scan UTC Date. See Orbit First Scan UTC Date.
30	Orbit Last Scan UTC Time	TK_LAST_SCAN_UTC_TIME	OrbitLastScanUTCTime	time	50	Orbit Last Scan UTC Time. Decided by L1A file header. See Orbit First Scan UTC Time.
31	Orbit Last Scan UTC Milliseconds	TK_LAST_SCAN_UTC_MILLISEC	OrbitLastScanUTCmilliseconds	int	50	Orbit Last Scan UTC Milliseconds. See Orbit Last Scan UTC Milliseconds.
32	Orbit Last Scantime - Spacecraft Clock Seconds	TK_LAST_SCAN_SC_SECS	OrbitLastSCSecs	int	50	The seconds field of the spacecraft clock time of the last scan in the orbit.
33	Orbit Last Scantime - Spacecraft Clock Subseconds	TK_LAST_SCAN_SC_SUBSECS	OrbitLastSCSubsecs	int	50	The subseconds f i eld of the spacecraf t clock time of the last scan in the orbit.
34	UTCF Seconds	TK_UTCF_SECONDS	UTCFSeconds	int	50	The seconds field of the UTCF for the granule.
35	UTCF Subseconds	TK_UTCF_SUBSECONDS	UTCFSubseconds	int	50	The subseconds f i eld of the UTCF f o r the granule.
36	UTCF Flag	TK_UTCF_FLAG	UTCFflag	int	50	Flag that indicates the origin of the UTCF. 0 = UTCF was derived f r om the first ACS packet in the orbit. 1 = a corrected UTFC was used. "0"
37	Leap Second flag	TK_LEAP_SECS_FLAG	LeapSecondsFlag	int	50	Flag that indicates if a leap second occurred within the granule. $0 = no; 1 = yes.$

38	Radar site name	TK_RADAR_NAME	RadarSiteName	char	50	Name of the GV radar or radar site, whichever is applicable. "NULL".
39	Radar city	TK_RADAR_CITY	RadarCity	char	50	Nearest city to the radar site. "NULL".
40	Radar state	TK_RADAR_STATE	RadarState	char	50	State or province containing the radar site, if applicable. "NULL".
41	Radar country	TK_RADAR_COUNTRY	RadarCountry	char	50	Country containing the radar site. "NULL"
42	Number of VOS	TK_NUM_VOS	NumberOfVOS	int	50	The number of volume scans in this granule. "-9999"
43	Radar Grid Origin Latitude	TK_RADAR_ORIGIN_LAT	RadarGridOriginLatitude	int	50	Latitude (degrees) of the origin. "-9999.9"
44	Radar Grid Origin Longitude	TK_RADAR_ORIGIN_LON	RadarGridOriginLongitude	int	50	Longitude (degrees) of the origin. "- 9999.9"
45	Radar Grid Origin Altitude	TK_RADAR_ORIGIN_ALT	RadarGridOriginAltitude	int	50	Altitude (km) of the origin. "-9999.9"
46	Radar Grid Spacing x	TK_RADAR_SPACING_X	RadarGridSpacingX	float	50	The zonal interval (km) between grid points. "-9999.9"
47	Radar Grid Spacing y	TK_RADAR_SPACING_Y	RadarGridSpacingY	float	50	The meridional interval (km) between grid points. "-9999.9"
48	Radar Grid Spacing z	TK_RADAR_SPACING_Z	RadarGridSpacingZ	float	50	The vertical interval (km) between grid points. "-9999.9"
49	Radar Grid Size x	TK_RADAR_GRID_SIZE_X	RadarGridSizeX	int	50	The number of grid points in the zonal grid direction. "-9999"
50	Radar Grid Size y	TK_RADAR_GRID_SIZE_Y	RadarGridSizeY	int	50	The number of grid points in the meridional grid direction. "-9999"
51	Radar Grid Size z	TK_RADAR_GRID_SIZE_Z	RadarGridSizeZ	int	50	The number of grid points in the vertical grid direction. "-9999"
52	DZ Cal	TK_GV_DZCAL	DZCal	float	50	Radar calibration offset (dBZ). "-9999.9"
53	GVL1C_Scale	TK_GV_L1C_SCALE	GVL1C_Scale	float	50	Scaling factor for 1C-51 mask (unitless) "-9999.9"
54	Alpha	TK_GV_ALPHA	Alpha	float	50	Correction for gaseous two-way attenuation (dB/km). "-9999.9"

55	Runtime Options	TK_GV_RUNTIME_OPT	RuntimeOptions	char	100	Runtime options for algorithm including
						QC parameters used. "NULL".
56	Anomaly Flag	TK_ANOMALY_FLAG	AnomalyFlag	char	100	This flag indicates if and why a granule is empty. The possible values are: "EMPTY: GENERATED AFTER SOFTWARE ERROR" * "EMPTY: NO DATA DUE TO NO RAIN" "EMPTY: NO DATA RECORDED" "EMPTY: DATA RECORDED BUT STILL MISSING" "EMPTY: REASON UNKNOWN" * "NOT EMPTY: POSSIBLE PROBLEM" "NOT EMPTY" * It is expected that satellite data would use only the three values followed by an asterisk. GV data is expected to use all seven values.
57	Software Version	TK_SOFTWARE_VERSION	SoftwareVersion	int	50	Version of the Software
58	Database Version	TK_DATABASE_VERSION	DatabaseVersion	int	50	Version of PR Database in the PR L1 software.
59	Total Quality Code	TK_TOTAL_QUALITY_CODE	TotalQualityCode	char	50	Total quality of the PR L1 product. Range is 'G', 'F', or 'P'.
60	Longitude on the Equator	TK_LON_ON_EQUATOR	LongitudeOnEquator	float	50	Longitude on the equator from the ascending node. Range is -180.000 to 179.999.
61	UTC Date on the Equator	TK_UTC_DATE_ON_EQUATOR	UTCDateOnEquator	date	50	UTC date on the equator. See Orbit First Scan UTC Date.

62	UTC Time on the Equator	TK_UTC_TIME_ON_EQUATOR	UTCTimeOnEquator	time		UTC time on the equator. See Orbit First Scan UTC time.
63	UTC milliseconds on the equator	TK_UTC_MILLISEC_ON_EQUATOR	UTCMillisecsOnEquator	int		UTC millisecond on the equator. See Orbit First Scan UTC Milliseconds.
64	Orbit center scan UTC date	TK_CENTER_SCAN_UTC_DATE	CenterScanUTCDate	date		UTC date at orbit center scan. See Orbit First Scan UTC Date.
65	Orbit center scan UTC time	TK_CENTER_SCAN_UTC_TIME	CenterScanUTCTime	time	50	UTC time at orbit center scan. See Orbit First Scan UTC Time.
66	Orbit center scan UTC milliseconds	TK_CENTER_SCAN_UTC_MILLISEC	CenterScanUTCMillisec	int		UTC milliseconds at Orbit center scan. See Orbit First Scan UTC Milliseconds.
67	Orbit first scan latitude	TK_FIRST_SCAN_LAT	FirstScanLat	float	50	Latitude of orbit first scan. Range is -40.000 to 40.000.
68	Orbit first scan longitude	TK_FIRST_SCAN_LON	FirstScanLon	float	50	Longitude of orbit first scan. Range is -180.000 to 179.999
69	Orbit last scan latitude	TK_LAST_SCAN_LAT	LastScanLat	float	50	Latitude of orbit last scan. Range is -40.000 to 40.000.
70	Orbit last scan longitude	TK_LAST_SCAN_LON	LastScanLon	float	50	Longitude of orbit last scan. Range is -180.000 to 179.999
71	Number of Rain Scans	TK_NUM_OF_RAIN_SCANS	NumberOfRainScans	int	50	Number of rain scan whose Minimum Echo Flag is 1 or 2

VIRS Radiance 1B-01 Swath Data [L1B_01_SWATHDATA]

The following sizing parameter is used in describing these formats:

• nscan = the number of scans within one granule = 18026, on average

Scan Time (Vdat	Scan Time (V data Table, record size 8 bytes, nscan records)						
Name	Name in the TOOLKIT	Format	Description				
Scan Time	scanTime	8-byte float	Scan Time is the center time of 1 scan (the time at				
			center of the nadir beam transmitted pulse). It is				
			expressed as the UTC seconds of the day.				

Scan Time (Vdata Table, record size 8 bytes, nscan records)

Geolocation (SDS, array size 2 x 261 x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Geolocation	geolocation(2,261)		The earth location of the center of the IFOV at the altitude of the earth ellipsoid. The first dimension is latitude and longitude, in that order. The next dimensions are pixel and scan. Values are represented as floating point decimal degrees. Off earth is represented as less than o equal to -9999.9 Latitude is positive north, negative south. Longitude is positive east, negative west. A poin on the 180th meridian is assigned to the western hemisphere.

Scan Status (Vdata Table, record size 15 bytes, nscan records):

The status of each scan is represented in terms of quality, platform and instrument control data, and fractional

orbit number.

Name	Name in the TOOLKIT	Format	Description
Missing	scanStatus.missing	1-byte integer	Missing indicates whether information is contained in the scan data. The values are: 0: Scan data elements contain information 1: Scan was missing in the telemetry data
Validity	scanStatus.validity	1-byte integer	 2: Scan data contains no elements with rain Validity is a summary of status modes. If all status modes are routine, all bits in Validity = 0. Routine means that scan data has been measured in the normal operational situation as far as the status modes are concerned. Validity does not assess data or geolocation quality. Validity is broken into 8 bit flags. Each bit = 0 if the status is routine but the bit = 1 if the status is not routine. Bit 0 is the least significant bit (i.e., if bit i = 1 and other bits = 0, the unsigned integer value is 2**i). The non-routine situations follow: Bit Meaning if bit = 1 0: Spare (always 0) 1: Non-routine spacecraft orientation (2 or 3) 2: Non-routine ACS mode (other than 4) 3: Non-routine instrument status (other than 1) 5: Non-routine QAC (non-zero)

			6: VIRS in non-mission mode (non-zero)
			7: VIRS condition is abnormal (non-zero)
QAC	scanStatus.qac	1-byte	The Quality and Accounting Capsule of the Science
C		integer	packet as it appears in Level-0 data. If no QAC is given
		8	in Level-0, which means no decoding errors occurred,
			QAC in this format has a value of zero.
Geolocation Quality	scanStatus.geoQuality	1-byte	Geolocation Quality is broken into 8 one-bit flags. A
Quanty		integer	value of 0 indicates 'good' quality, and 1 indicates 'bad'
			quality. Bit 0 is the most significant bit (i.e., if bit $i = 1$
			and other bits = 0, the unsigned integer value is $2^{**}(8-1)^{**}$
			i) - 1). Each flag is listed below. Note that ranges
			indicated will be refined in early-orbit check out.
			Bit Meaning if bit = 1
			0: Grossly bad geolocation results:
			• Spacecraft position vector magnitude outside
			range 6720
			to 6740 km.
			• Z component of midpoint of scan outside range -
			4100 to
			4100 km.
			• Distance from S/C to midpoint of scan outside
			range 340
			to 360 km.
			1: Unexpectedly large scan to scan jumps in
			geolocated
			positions in along and cross track directions for first,
			middle, and last pixels in each scan. Allowed duration
			from nominal jump in along track motion = 0.06 km (first pixel), 0.04 km (middle pixel), and 0.06 km
			(last
			pixel). Allowed duration from nominal jump in cross
			track motion = 0.05 km (first pixel), 0.04 km (middle
			pixel), and 0.05 km (last pixel). Bit set in normal
			mode
			only.
			2: Scan to scan jumps in yaw, pitch, and roll exceed
			maximum values. Values are : yaw = 0.0001 radians;
			pitch = 0.0001 radians; roll = 0.0001 radians. Bit set
			in
			normal control mode only.
			3: In normal mode, yaw outside range (-0.003, 0.003)
			radians; pitch outside range (-0.007, 0.007) radians;
			roll
			outside range (-0.007, 0.007).
			4: Satellite undergoing maneuvers during which
			geolocation
			will be less accurate.
			5: Questionable ephemeris quality (including use of
			predicted
			Ephemeris for quicklook) or questionable UTCF
			quality.
	1		6: Geolocation calculations failed (fill values inserted

2

r		T	
			in the
			per pixel geolocation products, but not in metadata).7: Missing attitude data. ACS data gap larger than 20 seconds.
Data Quality [5]	scanStatus.ch1Quarity	5 x 1-byte	The Quality of Channel Data for a given channel on a
Dura Quanty [5]	scanStatus.ch2Quarity	integer	given scan line is the percentage of pixels whose values
	scanStatus.ch3Quarity		are within the acceptable range listed in the Metadata.
	scanStatus.ch4Quarity		Quality is listed for each channel in order of the channel
	scanStatus.ch5Quarity		number.
Fractional Orbit	scanStatus.fracOrbitN	4-byte float	The orbit number and fractional part of the orbit at Scan
Number		5	Time. The orbit number will be counted from the
			beginning of the mission. The fractional part is
			calculated as:
			(Scan Time - Orbit Start Time) / (Orbit End Time - Orbit
			Start Time)
Current Spacecraft	scanStatus.scOrient	1-byte	Value Meaning
Orientation		integer	0: +x forward
		U	1: -x forward
			2: -y forward
			3: Inertial - CERES Calibration
			4: Unknown Orientation
Current ACS Mode	scanStatus.acsMode	1-byte	Value Meaning
		integer	0: Standby
		U	1: Sun Acquire
			2: Earth Acquire
			3: Yaw Acquire
			4: Nominal
			5: Yaw Maneuver
			6: Delta-H (Thruster)
			7: Delta-V (Thruster)
			8: CERES Calibration
Yaw Update Status	scanStatus.yawUpdateS	1-byte	Value Meaning
rum opunto status	seams tatasty an epaates	integer	0: Inaccurate
		8	1: Indeterminate
			2: Accurate
VIRS Instrument	scanStatus.virsInstS	1-byte	Value Meaning
Status		integer	0: Day (no calibration occurring)
		8	1: Night
			2: Monitor Scan Stability
			3: Day with Calibration
VIRS mode	scanStatus.	1-byte	Value Meaning
		integer	0 mission mode
		0.00	1 safehold mode
			2 outgas mode
			3 activation mode
VIRS Abnormal	scanStatus.	1-byte	Bit 0 is the most significant bit (i.e., if bit $i = 1$ and other
Conditions	Sound turab.	integer	bits = 0, the unsigned integer value is $2^{**}(8-i) - 1$).
Conditions		meger	Bit Value Meaning
			0 0 normal
			1 scan phase error
L			i scan phase elloi

1 0 normal
1 selftest error
2 0 normal
1 thermal data missing
3 0 normal
1 moon in space view
4 0 normal
1 H/K data drop-out suspected
5 0 not used
6 0 not used
7 0 not used

Navigation (Vdata, record size 88 bytes, nscan records):

Name	Name in the TOOLKIT		Description
Spacecraft	navigate.scPosX	3 X 4-byte	The position (m) of the spacecraft in Geocentric Inertial
Geocentric	navigate.scPosY	float	Coordinates at the Scan mid-Time (i.e., time at the
Position [3]	navigate.scPosZ		middle pixel/IFOV of the active scan period). The order
			of components is: x, y, and z. Geocentric Inertial
			Coordinates are also commonly known as Earth
			Centered Inertial coordinates. These coordinates will be
			True of Date (rather than Epoch 2000 which are also
			commonly used), as interpolated from the data in the
			Flight Dynamics Facility ephemeris files generated for
<u>a</u>		2.32.4.1	TRMM.
Spacecraft	navigate.scVelX	3 X 4-byte	The velocity (ms -1) of the spacecraft in Geocentric
Geocentric	navigate.scVelY	float	Inertial Coordinates at the Scan mid-Time. The order of
Velocity [3]	navigate.scVelZ	4.1	components is: x, y, and z.
Spacecraft Geodetic Latitude	navigate.scLat	4-byte float	The geodedic latitude (decimal degrees) of the
	and the set	4 h 4 c C	spacecraft at the Scan mid-Time.
Spacecraft Geodetic	navigate.scLon	4-byte float	The geodedic longitude (decimal degrees) of the
Longitude			spacecraft at the Scan mid-Time. Range is -180 to 179.999999.
Spacecraft Geodetic	novicate ce Alt	4-byte float	
Altitude	navigate.scAn	4-byte moat	The altitude (m) of the spacecraft above the Earth Ellipsoid at the Scan mid-Time.
Spacecraft Attitude	navigate.scAttRoll	3 X 4-byte	The satellite attitude Euler angles at the Scan mid-
[3]	navigate.scAttPitch	float	Time. The order of the components in the file is roll,
[5]	navigate.scAttYaw	moat	pitch, and yaw. However, the angles are computed using
	navigate.seAtt I aw		a 3-2-1 Euler rotation sequence representing the rotation
			order yaw, pitch, and roll for the rotation from Orbital
			Coordinates to the spacecraft body coordinates. Orbital
			Coordinates represent an orthogonal triad in Geocentric
			Inertial Coordinates where the Z-axis is toward the
			geocentric nadir, the Y-axis is perpendicular to
			the spacecraft velocity opposite the orbit normal
			direction, and the X-axis is approximately in the
			velocity direction for a near circular orbit.
			Note this is geocentric, not geodetic, referenced, so that
			pitch and roll will have twice orbital frequency
			components due to the onboard control system following
			the oblate geodetic Earth horizon. Note also that the yaw
			value will show an orbital frequency component relative
			to the Earth fixed ground track due to the Earth rotation

			relative to inertial coordinates.
Sensor Orientation Matrix [3 X 3]	navigate.att1 navigate.att2 navigate.att3 navigate.att4 navigate.att5 navigate.att6	3 X 3 X 4-byte float	The rotation matrix from the instrument coordinate frame to Geocentric Inertial Coordinates at the Scan mid-Time.
	navigate.att7 navigate.att8 navigate.att9		
Greenwich Hour Angle	navigate.greenHourAng	4-byte float	The rotation angle (degrees) from Geocentric Inertial Coordinates to Earth Fixed Coordinates.

Solar Cal (Vdata, record size 32 bytes, nscan records):

The three components of the solar unit vector in Geocentric Inertial Coordinates, and the Sun-Earth distance in meters.

Name	Name in the TOOLKIT	Format	Description
Solar Position [3]	solarCal.sunVecX	3 X 8-byte	Sun Unit Vector (X-component)
	solarCal.sunVecY	float	Sun Unit Vector (Y-component)
	solarCal.sunVecZ		Sun Unit Vector (Z-component)
			(Geocentric Inertial Coord)
Distance	solarCal.sunMag	8-byte float	Sun-Earth Distance (m)

Calibration Counts (SDS, array size 5 x 2 x 3 x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Calibration Counts	calCounts(5,2,3)	2-byte	Raw calibration counts are given in four dimensions. The
		integer	first dimension is the channel number, the second
			dimension is the data word, the third dimension is
			blackbody, space view and solar diffuser, in that order,
			and the fourth dimension is the number of scans.

Temperature Counts (SDS, array size 6 x nscan, 2-byte integer):

Temperature Counter (SDS, and SEC on notali, 2			, j të 1110-Ber/.
Name	Name in the TOOLKIT	Format	Description
Temperature Counts	tempCounts(6)	2-byte	Temperatures of the black body, primary and redundant,
		integer	the radiant cooler temperatures, primary and redundant,
			the mirror temperature, and the electronics module
			temperature. All
			quantities have units of counts, and have minimum
			values of 0, and maximum values of 4095.

Local Direction (SDS, array size 2 x 2 x 27 x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Local Direction	localDirection(2,2,27)	2-byte	Angles (degrees) to the satellite and sun from the IFOV
		integer	pixel position on the earth are given in 4 dimensions. The
			first dimension is zenith and azimuth angles, in that
			order. The zenith angle is measured between the local
			pixel geodetic zenith and the direction to the satellite.
			The azimuth angle is measured clockwise from the local
			North direction around
			toward the local East direction. The second dimension is
			the object to which the directions point, namely the

5

satellite and the sun, in that order. The third dimension is the pixel number. Angles are given only for every tenth pixel along a scan: pixel 1, 11, 21,, and 261. For the pixel dimension, Offset = 0 and Increment = -10. The fourth dimension is the scan number. Angles are
multiplied by 100 and stored as 2-byte integers.

Channels (SDS, array size 5 x 261 x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Channels	channels(5,261)	2-byte	Scene data for the five channels, measured in Radiance
		integer	(mW cm ⁻² μ m ⁻¹ sr ⁻¹) multiplied by a scale factor and
			stored as 2-byte integers. sr means steradian. The scale
			factors are 500, 1000, 100000, 10000, and 10000 for
			channels 1, 2, 3, 4, and 5, respectively. The three
			dimensions are channel, pixel, and scan. The range and
			accuracy for each channel is as follows.
			Channel Minimum Maximum Accuracy
			1 0 47 10%
			2 0 7.23 10%
			3 0 0.0986 2%
			4 0 1.28 2%
			5 0 1.15 2%

TMI Brightness Temperature 1B-11 Swath Data [L1B_11_SWATHDATA]

The following sizing parameter is used in describing these formats:

• nscan = the number of scans within one granule = 2991, on average

Name	Name in the TOOLKIT	Format	Description
Year	scanTime.year	2-byte	4-digit year, e.g., 1998.
		integer	
Month	scanTime.month	1-byte	The month of the Year.
		integer	
Day of Month	scanTime.dayOfMonth	1-byte	The day of Month.
		integer	
Hour	scanTime.hour	1-byte	The hour (UTC) of the Day.
		integer	
Minute	scanTime.minute	1-byte	The minute of the Hour.
		integer	
Second	scanTime.second	1-byte	The second of the Minute.
		integer	
Day of Year	scanTime.dayOfYear	2-byte	The day of the Year.
		integer	

Scan Time (Vdata Table, record size 9 bytes, nscan records)

Geolocation (SDS, array size 2 x 208 x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Geolocation	geolocation(2,208)	4-byte float	The earth location of the center of the IFOV of the high
			resolution (85 GHz) channels (channels 8 and 9) at the
			altitude of the earth ellipsoid. The first dimension is
			latitude and longitude, in that order. The next
			dimensions are high resolution pixel and scan. Values
			are represented as floating
			point decimal degrees. Off-earth is represented as less
			than or equal to -9999.9 Latitude is positive north,
			negative south. Longitude is positive east, negative
			west. A point on the 180th meridian is assigned to the
			western hemisphere.

Scan Status (Vdata Table, record size 21 bytes, nscan records):

The status of each scan is represented in terms of quality, platform and instrument control data, and fractional

orbit number.

Name	Name in the TOOLKIT	Format	Description
Missing	scanStatus.missing	1-byte	Missing indicates whether information is contained in
		integer	the scan data. The values are:
			0: Scan data elements contain information
			1: Scan was missing in the telemetry data
			2: Scan data contains no elements with rain
Validity	scanStatus.validity	1-byte	Validity is a summary of status modes. If all status
-		integer	modes are routine, all bits in Validity $= 0$. Routine
			means that scan data has been measured in the normal
			operational situation as far as the status modes are
			concerned. Validity does not assess data or geolocation

			<pre>quality. Validity is broken into 8 bit flags. Each bit = 0 if the status is routine but the bit = 1 if the status is not routine. Bit 0 is the least significant bit (i.e., if bit i = 1 and other bits = 0, the unsigned integer value is 2**(8-i)-1). The non-routine situations follow: Bit Meaning if bit = 1 0: Spare (always 0) 1: Non-routine spacecraft orientation (2 or 3) 2: Non-routine ACS mode (other than 4) 3: Non-routine yaw update status (0 or 1) 4: Non-routine TMI status (Bit 0 = 0 or 1 = 0) 5: Non-routine QAC (non-zero) 6: Spare (always 0) 7: Spare (always 0)</pre>
QAC	scanStatus.qac	1-byte integer	The Quality and Accounting Capsule of the Science packet as it appears in Level-0 data. If no QAC is given in Level-0, which means no decoding errors occurred, QAC in this format has a value of zero.
Geolocation Quality	scanStatus.geoQuality	1-byte integer	 Geolocation Quality is broken into 8 one-bit flags. Bit 0 is the most significant bit (i.e., if bit i = 1 and other bits = 0, the unsigned integer value is 2**(8-i) -1). A value of 0 indicates 'good' quality, and 1 indicates 'bad' quality. Each flag is listed below. Note that ranges indicated will be refined in early-orbit check out. Bit Meaning if bit = 1 0: Grossly bad geolocation results: • Spacecraft position vector magnitude outside range 6720 to 6740 km. • Z component of midpoint of scan outside range -4100 km. • Distance from S/C to midpoint of scan outside range 340 to 360 km. 1: Unexpectedly large scan to scan jumps in geolocated positions in along and cross track directions for first, middle, and last pixels in each scan. Allowed duration from nominal jump in along track motion = 0.06 km (first pixel), 0.04 km (middle pixel), and 0.06 km (last pixel). Allowed duration from nominal jump in cross track motion = 0.05 km (first pixel), 0.04 km (first pixel), 0.04 km (middle pixel), and 0.05 km (last pixel). Bit set in normal mode only. 2: Scan to scan jumps in yaw, pitch, and roll exceed maximum values. Values are : yaw = 0.0001 radians; pitch = 0.0001 radians; roll = 0.0001 radians; pitch = 0.0001 radians; roll = 0.0001 radians; pitch = 0.0001 radians; roll = 0.0001 radians;

			normal control mode only.
			3: In normal mode, yaw outside range (-0.003, 0.003) radians; pitch outside
			range (-0.007, 0.007) radians; roll outside range (-
			0.007,
			4: Satellite undergoing maneuvers during which geolocation
			will be less accurate.
			5: Questionable ephemeris quality (including use of
			predicted
			Ephemeris for quicklook) or questionable UTCF
			quality.
			6: Geolocation calculations failed (fill values inserted
			in the
			per pixel geolocation products, but not in metadata). 7: Missing attitude data. ACS data gap larger than 20
			seconds.
Data Quality [9]	scanStatus.ch1	9 x 1-byte	The Quality of Channel Data for a given channel on a
	scanStatus.ch2	integer	given scan line is the percentage of pixels whose values
	scanStatus.ch3 scanStatus.ch4		are within the acceptable range listed in the Metadata.
	scanStatus.ch5		Quality is given for each channel in the order of the channel number.
	scanStatus.ch6		
	scanStatus.ch7		
	scanStatus.ch8		
	scanStatus.ch9		
Current Spacecraft	scanStatus.scOrient	1-byte	Value Meaning
Orientation		integer	0: +x forward
			1: -x forward
			2: -y forward 3: Inertial - CERES Calibration
			4: Unknown Orientation
Current ACS Mode	scanStatus.acsMode	1-byte	Value Meaning
		integer	0: Standby
		C	1: Sun Acquire
			2: Earth Acquire
			3: Yaw Acquire
			4: Nominal
			5: Yaw Maneuver 6: Delta-H (Thruster)
			7: Delta-V (Thruster)
			8: CERES Calibration
Yaw Update Status	scanStatus.yawUpdateS	1-byte	Value Meaning
-		integer	0: Inaccurate
			1: Indeterminate
	-		2: Accurate
	scanStatus.tmiISstatus	1-byte	Bit 0 is the most significant bit (i.e., if bit $i = 1$ and other
Status		integer	bits = 0, the unsigned integer value is $2^{**}(8-i) - 1$).
			Bit Meaning 00 Receiver Status (1=ON, 0=OFF)
	l		00 Receiver Status (1–01, 0–0 $\Gamma\Gamma$)

			 01 Spin-up Status (1=ON, 0=OFF) 02 Spare Command 1 Status 03 Spare Command 2 Status 04 1 Hz Clock Select (1=A, 0=B) 05 21 GHz Cold Count Flag 06 Spare Command 4 Status 07 Spare Command 5 Status
Fractional Orbit Number	scanStatus.fracOrbitN	4-byte float	The orbit number and fractional part of the orbit at Scan Time. The orbit number will be counted from the beginning of the mission. The fractional part is calculated as: (Time - Orbit Start Time) / (Orbit End Time - Orbit Start Time)

Navigation (Vdata, record size 88 bytes, nscan records):

Name	Name in the TOOLKIT	Format	Description
Spacecraft	navigate.scPosX	3 X 4-byte	The position (m) of the spacecraft in Geocentric Inertial
Geocentric	navigate.scPosY	float	Coordinates at the Scan mid-Time (i.e., time at the
Position [3]	navigate.scPosZ		middle pixel/IFOV of the active scan period). The order
			of components is: x, y, and z. Geocentric Inertial
			Coordinates are also commonly known as Earth
			Centered Inertial coordinates. These coordinates will be
			True of Date (rather than Epoch 2000 which are also
			commonly used), as interpolated from the data in the
			Flight Dynamics Facility ephemeris files generated for
			TRMM.
Spacecraft	navigate.scVelX	3 X 4-byte	The velocity (ms -1) of the spacecraft in Geocentric
Geocentric	navigate.scVelY	float	Inertial Coordinates at the Scan mid-Time. The order of
Velocity [3]	navigate.scVelZ		components is: x, y, and z.
Spacecraft Geodetic	navigate.scLat	4-byte float	The geodetic latitude (decimal degrees) of the
Latitude			spacecraft at the Scan mid-Time.
Spacecraft Geodetic	navigate.scLon	4-byte float	The geodedic longitude (decimal degrees) of the
Longitude			spacecraft at the Scan mid-Time. Range is -180 to
			179.999999.
Spacecraft Geodetic	navigate.scAlt	4-byte float	The altitude (m) of the spacecraft above the Earth
Altitude			Ellipsoid at the Scan mid-Time.
Spacecraft Attitude	navigate.scAttRoll	3 X 4-byte	The satellite attitude Euler angles at the Scan mid-
[3]	navigate.scAttPitch	float	Time. The order of the components in the file is roll,
	navigate.scAttYaw		pitch, and yaw. However, the angles are computed using
			a 3-2-1 Euler rotation sequence representing the rotation
			order yaw, pitch, and roll for the rotation from Orbital
			Coordinates to the spacecraft body coordinates. Orbital
			Coordinates represent an orthogonal triad in Geocentric
			Inertial Coordinates where the Z-axis is toward the
			geocentric nadir, the Y-axis is perpendicular to
			the spacecraft velocity opposite the orbit normal direction, and the X-axis is approximately in the
			velocity direction for a near circular orbit.
			Note this is geocentric, not geodetic, referenced, so that
			pitch and roll will have twice orbital frequency
			components due to the onboard control system following
			components due to the onoblid control system following

			value will show an orbital frequency component relative to the Earth fixed ground track due to the Earth rotation relative to inertial coordinates.
Sensor Orientation	navigate.att1	3 X 3 X	The rotation matrix from the instrument coordinate
Matrix [3 X 3]	navigate.att2	4-byte float	frame to Geocentric Inertial Coordinates at the Scan
	navigate.att3		mid-Time.
	navigate.att4		
	navigate.att5		
	navigate.att6		
	navigate.att7		
	navigate.att8		
	navigate.att9		
Greenwich Hour	navigate.greenHourAng	4-byte float	The rotation angle (degrees) from Geocentric Inertial
Angle			Coordinates to Earth Fixed Coordinates.

Calibration (Vdata Table, record size 95 bytes, nscan records):

Name	Name in the TOOLKIT	Format	Description
Hot Load Temperature [3]	calib.hotTemp1 calib.hotTemp2 calib.hotTemp3	3 x 2-byte integer	The physical temperatures, in degrees Kelvin, for the 3 temperature sensors attached to the hot load. This temperature is reduced by 80K, multiplied by 100, and stored in the file as a 2-byte integer. Stored value = $(T - 80K) * 100$. Range: 0 to 400 K.
Hot Load Bridge Reference Positive Bridge Voltage Hot Load Bridge	calib.posBridgeVolt calib.nearZeroVolt	2-byte integer 2-byte	The positive bridge voltage of the hot load bridge reference. Range: 0 to 4095. The near zero voltage of the hot load bridge reference.
Reference Near Zero Voltage		integer	Range: 0 to 4095.
85.5 GHz Receiver Temperature	calib.temp85Ghz	2-byte integer	The receiver shelf temperature of the 85.5 GHz channel. This temperature is increased by 200, multiplied by 100, and stored in the file as a 2-byte integer. Range: -273.15 to 126.85 C
Top Radiator Temperature	calib.topRadTemp	2-byte integer	The temperature of the top of the radiator channel. This temperature is increased by 200, multiplied by 100, and stored in the file as a 2-byte integer. Range: -273.15 to 126.85 C
Automatic Gain Control [9]	calib.autoCont1 calib.autoCont2 calib.autoCont3 calib.autoCont4 calib.autoCont5 calib.autoCont6 calib.autoCont7 calib.autoCont8 calib.autoCont9	9 X 1-byte integer	Automatic gain control for the 9 channels in counts. Range: 0 to 15.
Calibration Coefficient A [9]	calib.calCoef1A calib.calCoef2A calib.calCoef3A calib.calCoef4A calib.calCoef5A calib.calCoef6A	9 X 4-byte float	Calibration coefficient A (degrees Kelvin / counts) for the 9 channels. Coefficient A for each channel is used in the following equation to convert counts, C, to antenna temperature, $T_A: T_A = A C + B$

	calib.calCoef7A calib.calCoef8A calib.calCoef9A		
Calibration Coefficient B [9]	calib.calCoef1B calib.calCoef2B calib.calCoef3B calib.calCoef4B calib.calCoef5B calib.calCoef6B calib.calCoef7B calib.calCoef8B calib.calCoef9B	9 X 4-byte float	Calibration coefficient B (degrees Kelvin) for the 9 channels. Coefficient B for each channel is used in the following equation to convert counts, C, to antenna temperature, $T_A: T_A = A C + B$

Calibration Counts (SDS, array size 16 x 2 x 9 x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Calibration Counts	calCounts(16,2,9)	2-byte	Calibration measurements, in counts. The dimensions
		integer	are: samples, load, channel, and scan. The sample
			dimension has a maximum of 16. The load dimension
			has first hot load and then cold sky. The low resolution
			channels (1-7) have 8
			samples (the remaining 8 elements in the array are not
			used for each low resolution channel) and the high
			resolution channels (8 - 9) have 16 samples.

Satellite Local Zenith Angle (SDS, array size 12 x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Satellite Local Zenith Angle	satLocZenAngle(12)		The angle, in degrees, between the local pixel geodetic zenith and the direction to the satellite. This angle is given for every twentieth high resolution pixel along a scan: pixel 1,21,41,, 201, 208. For the pixel dimension, Offset = 0 and Increment = -20.

Low Resolution Channels (SDS, array size 7 x 104 x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Low Resolution	lowResCh(7,104)	2-byte	Brightness temperature (K) reduced by 100 K,
Channels		integer	multiplied by 100, and stored as a 2-byte integer, i.e.
			Stored value = $(T - 100 K) * 100$
			The dimensions are: channel, pixel, scan. The pixel
			dimension has $Offset = 0$ and $Increment = -2$. The data
			range is 100 K to 375 K. The following channels are
			included.
			Channel Frequency Polarization
			1 10 GHz Vertical
			2 10 GHz Horizontal
			3 19 GHz Vertical
			4 19 GHz Horizontal
			5 21 GHz Vertical
			6 37 GHz Vertical
			7 37 GHz Horizontal

Name	Name in the TOOLKIT	Format	Description
High Resolution	highResCh(2,208)	2-byte	Brightness temperature (K) reduced by 100 K,
Channels		integer	multiplied by 100, and stored as a 2-byte integer, i.e.
			Stored value = $(T - 100 K) * 100$
			The dimensions are: channel, pixel, scan. The data
			range is 100 K to 375 K. The following channels are
			included:
			Channel Frequency Polarization
			8 85 GHz Vertical
			9 85 GHz Horizontal

High Resolution Channel	s (SDS, ar	ay size 2 x 208 x nscan	, 2-byte integer):First Echo
--------------------------------	------------	-------------------------	------------------------------

PR Power 1B-21 Calibration Coefficients [L1B21_L1C21_HEADER]

Calibration coefficients consist of several parameters describing the PR electronic performance. They are controlled by NASDA based on the results of PR calibration data analysis.

These coefficients are applied in 1B21 (PR received power) calculations.

Name	Name in the TOOLKIT	Format	Description
Transmitter gain correction factor	prCalCoef(49).transCoef	4-byte float	Transmission gain correction factor for PR
Receiver gain correction factor	prCalCoef(49).receptCoef	4-byte float	Receiver gain correction factor for PR
LOGAMP Input/Output characteristics	- · · ·	16 x 4-byte float	LOGAMP Input/Output characteristics

Calibration coefficients	(Vdata Table, record size	e 4 bytes, 18 records)
---------------------------------	---------------------------	------------------------

PR Power 1B-21 Ray Header [L1B21_L1C21_HEADER]

The Ray Header contains information that is constant in the granule, such as the parameters used in the radar equation, the parameters in the minimum echo test, and the sample start range bin number.

These parameters are provided for each angle bin.

Name	Name in the TOOLKIT	Format	Description
Ray Start	rayHdr(49).rayStart	2-byte	Range bin number of starting normal sample, see Note
		integer	(a)
Ray Size	rayHdr(49).raySize	2-byte	Number of normal samples in 1 angle, see Note (a)
		integer	
Scan Angle	rayHdr(49).angle	4-byte float	unit deg, see Note (b)
Starting Bin	rayHdr(49).startBinDist	4-byte float	Distance (m) between the satellite and the starting bin
Distance			sample. unit m, see Note (c)
Rain Threshold #1	rayHdr(49).rainThres1	4-byte float	see Note (d)
Rain Threshold #2	rayHdr(49).rainThres2	4-byte float	see Note (d)
Transmitter Antenna	rayHdr(49).transAntenna	4-byte float	unit dB
Gain			
Receiver Antenna	rayHdr(49).recvAntenna	4-byte float	unit dB
Gain			
One-way 3dB	rayHdr(49).onewayAlong	4-byte float	unit rad, see Note (e)
Along-track	Track		
Beamwidth			
One-way 3dB Cross-	rayHdr(49).onewayCrossT	4-byte float	unit rad, see Note (e)
track Beamwidth	rack		
Equivalent	rayHdr(49).eqvWavelengt	4-byte float	unit m, see Note (f)
wavelength	h		, , , , , , , , , , , , , , , , , , ,
Rader Constant	rayHdr(49).radarConst	4-byte float	unit dB, see Note (g)
PR Internal delayed time	rayHdr(49).printrDelay	4-byte float	set to 0

Ray Header (Vdata Table, record size 60 bytes, 49 records)

Range Bin Size	rayHdr(49).rangeBinSize	4-byte float	unit m, see Note (a), (h)
Logarithmic	rayHdr(49).logAveOffset	4-byte float	unit dB, see Note (i)
Averaging Offset			
Mainlobe Clutter	rayHdr(49).mainlobeEdge	1-byte	see Note (j)
Edge		integer	<i></i>
Sidelobe Clutter	rayHdr(49).sidelobeRang	3 x 1-byte	see Note (k)
Range	e(3)	integer	
[3]			

Notes

a) The Precipitation Radar (PR) has 400 internal (logical) range bins (A/D sample points) and records "normal sample data" every other range bin from "Ray Start" in order to sample radar echoes from 0-km (the reference ellipsoid surface) to 15-km height.

The number of recorded samples at an angle bin depends on the scan angle and is defined by "Ray Size."

The Nth normal sample data can be converted to the internal logical range bin number as follows;

Logical range bin number at Nth normal sample

= Ray Start +
$$2 \times (N-1)$$

- b) Scan Angle is defined as the cross-track angle at the radar electric coordinates which are rotated by 4 degrees about the Y-axis (Pitch) of spacecraft coordinates.*¹ The angle is positive when the antenna beam is rotated counter clockwise (CCW) from the nadir about the +X axis of the radar electric coordinates.
- c) Starting Bin Distance is determined by the sampling timing of the PR. The distance between the satellite and the center of the Nth normal sample bin is calculated as follows:

Distance = "Starting Bin Distance" + "Range Bin Size" $\times (N-1)$

This distance is defined as the center of a radar resolution volume which extends ± 125 m.

- d) Rain Thresholds are used in the minimum echo test.
- e) Beam widths, both along track beam width and cross track beam width, are recorded based on the fact that the PR main beam is assumed to have a two-dimensional Gausian beam pattern.
- f) "Equivalent Wavelength" = $2q(t_1 + t_2)$ where c is the speed of light, and f1 and f2 are PR's two frequencies.
- g) Radar Constant is defined as follows, and is used in the radar equation:

$$C0 = 10 \log \left[\pi^3 \frac{|K|^2}{2^{10} \ln 2} 10^{-18} \right]$$

 $K = (\varepsilon - 1)/(\varepsilon + 2)$

 ε : the relative dielectric constant of water $|\mathbf{K}^2 = 0.925\xi$

¹ If there is no attitude error, +X (or sometimes -X, see Spacecraft Orientation in Scan Status) is along the spacecraft flight direction, +Z is along the local nadir, and +Y is defined so that the coordinates become a right-hand Cartesian system.

 $|K|^2$ is the calculated value at 13.8 GHz and 0 degree C based on Ray (1972). With this constant,

users can convert from PR receiving powers to rain reflectivity. (See the 1C products.)

- h) Range Bin Size is the PR range resolution and is the width at which pulse electric power decreases 6dB (-6 dB width).
- i) Logarithmic Averaging Offset is the offset value between the logarithmic average and the powerlinear average. The PR outputs the data of 1 range bin which is the average of 64 LOGAMP outputs. "Received power" in the PR1B21 output is corrected for the bias error caused by the logarithmic average and is thus equal to normal average power.
- j) Main Lobe Clutter Edge is a parameter previously used as the lowest range bin for the minimum echo test. This is the absolute value of the difference in range bin number between the surface peak and the edge of the clutter from the main lobe.
- k) Absolute value of the difference in Range bin numbers between the bin number of the surface peak and the possible clutter position. A maximum of three range bins can be allocated as "possible" clutter locations. "Zero" indicates no clutter.

Note: Items j) and k) are not useful for detailed examination of radar echo range profile, especially over land.

PR Power 1B-21 Swath Data [L1B_21_SWATHDATA]

The following sizing parameters are used in describing the format:

- nray = the number of rays = 49
- nscan = the number of scans within one granule = 9150, on average

Scan Time (Vdata Table, record size 8 bytes, nscan records)

Name	Name in the TOOLKIT	Format	Description
Scan Time	scanTime	8-byte float	Scan Time is the center time of 1 scan (the time at
			center of the nadir beam transmitted pulse). It is
			expressed as the UTC seconds of the day.

Geolocation (SDS, array size 2 x nlay x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Geolocation	geolocation(2,49)	4-byte float	The earth location of the center of the IFOV at the
			altitude of the earth ellipsoid. The first dimension is
			latitude and
			longitude, in that order. The next dimensions are pixel
			and scan. Values are represented as floating point
			decimal degrees. Off earth is represented as less than or
			equal to -9999.9 Latitude is positive north, negative
			south. Longitude is positive east, negative west. A point
			on the 180th meridian is assigned to the western
			hemisphere.

Scan Status (Vdata Table, record size 15 bytes, nscan records):

The status of each scan is represented in terms of quality, platform and instrument control data, and fractional

orbit number.

Name	Name in the TOOLKIT	Format	Description
Missing	scanStatus.missing	1-byte integer	 Missing indicates whether information is contained in the scan data. The values are: 0: Scan data elements contain information 1: Scan was missing in the telemetry data 2: Scan data contains no elements with rain
Validity	scanStatus.validity	1-byte integer	 Validity is a summary of status modes. If all status modes are routine, all bits in Validity = 0. Routine means that scan data has been measured in the normal operational situation as far as the status modes are concerned. Validity does not assess data or geolocation quality. Validity is broken into 8 bit flags. Each bit = 0 if the status is routine but the bit = 1 if the status is not routine. Bit 0 is the least significant bit (i.e., if bit i = 1 and other bits = 0, the unsigned integer value is 2**i). The non-routine situations follow: Bit Meaning if bit = 1 0: Spare (always 0) 1: Non-routine ACS mode (other than 4) 3: Non-routine yaw update status (0 or 1)

			4: Non-routine instrument status (other than 1) 5: Non-routine QAC (non-zero)
			6: Spare (always 0) 7: Spare (always 0)
QAC	scanStatus.qac	1-byte integer	The Quality and Accounting Capsule of the Science packet as it appears in Level-0 data. If no QAC is given in Level-0, which means no decoding errors occurred, QAC in this format has a value of zero.
Geolocation Quality	scanStatus.geoQuality	1-byte integer	Geolocation quality is a summary of geolocation quality in the scan. A zero integer value indicates †goodl geolocation. A non-zero value broken down into the following bit flags indicates: Bit Meaning if bit = 1 0: latitude limit error 1: geolocation discontinuity 2: attitude change rate limit error 3: attitude limit error 4: satellite undergoing maneuvers 5: using predictive orbit data 6: geolocation calculation error 7: not used
Data Quality	scanStatus.dataQuarity	1-byte integer	 7: not used Data quality is a summary of data quality in the scan. Unless this is 0 (normal), the scan data is meaningless to higher processing. Bit 0 is the least significant bit (i.e., if bit i = 1 and other bits = 0, the unsigned integer value is 2**i). Bit Meaning if bit = 1 0: missing 5: Geolocation Quality is not normal 6: Validity is not normal
Current Spacecraft Orientation	scanStatus.scOrient	1-byte integer	Value Meaning 0: +x forward 1: -x forward 2: -y forward 3: Inertial - CERES Calibration 4: Unknown Orientation
Current ACS Mode	scanStatus.acsMode	1-byte integer	Value Meaning 0: Standby 1: Sun Acquire 2: Earth Acquire 3: Yaw Acquire 4: Nominal 5: Yaw Maneuver 6: Delta-H (Thruster) 7: Delta-V (Thruster) 8: CERES Calibration
Yaw Update Status	scanStatus.yawUpdateS	1-byte integer	Value Meaning 0: Inaccurate 1: Indeterminate 2: Accurate

PR Mode	scanStatus.prMode	1-byte integer	Value Meaning 0: Other Mode 1: Observation Mode
PR Status 1	scanStatus.prStatus1	1-byte integer	The flags listed here indicate warnings of PR conditions (noise level, echo power and echo position, and mode change). In data processing, users should be cautions with the following as a scan with non-zero status includes questionable range bins or angle bins. 0: LOGAMP noise limit error 1: Noise level limit error (The meaning of this warning is the same as the System Noize Warning Flag) 2: Out of PR dynamic range (Surface echo is so strong that it exceeds the PR receiver dynamic range. Calibration with the saturated echo may be questionable.) 3: Not reach surface position (If Surface echo is out of range window, Bin Surface Peak and related data become uncertain.) 7: FCIF mode change
PR Status 2	scanStatus.prStatus2	1-byte integer	In some cases, antenna sidelobes are directed to nadir receive surface echo positions. When the main beam is off nadir, the timing of such nadir-surface clutter can contaminate the rain echo. In "PR STATUS2," a warning flag is set ON (1) when the nadir surface echo (at the nadir angle bin #25) exceeds a predetermined threshold. When the flag is ON, please be careful about the echoes at all angle bins around the same logical range bin number as the Bin-surface-peak at nadir (angle bin number 25).
Fractional Orbit Number	scanStatus.fracOrbitN	4-byte float	The orbit number and fractional part of the orbit at Scan Time. The orbit number will be counted from the beginning of the mission. The fractional part is calculated as: (Scan Time - Orbit Start Time) / (Orbit End Time - Orbit Start Time)

Navigation (Vdata, record size 88 bytes, nscan records):

Name	Name in the TOOLKIT	Format	Description
Spacecraft	navigate.scPosX	3 X 4-byte	The position (m) of the spacecraft in Geocentric Inertial
Geocentric	navigate.scPosY	float	Coordinates at the Scan mid-Time (i.e., time at the
Position [3]	navigate.scPosZ		middle pixel/IFOV of the active scan period). The order
			of components is: x, y, and z. Geocentric Inertial
			Coordinates are also commonly known as Earth
			Centered Inertial coordinates. These coordinates will be
			True of Date (rather than Epoch 2000 which are also
			commonly used), as interpolated from the data in the
			Flight Dynamics Facility ephemeris files generated for
1			TRMM.

Spacecraft	navigate.scVelX	3 X 4-byte	The velocity (ms -1) of the spacecraft in Geocentric
Geocentric	navigate.scVelY	float	Inertial Coordinates at the Scan mid-Time. The order of
Velocity [3]	navigate.scVelZ		components is: x, y, and z.
	8		r r , , , , , , , , , , , , , , , , , ,
Spacecraft Geodetic	navigate.scLat	4-byte float	The geodedic latitude (decimal degrees) of the
Latitude			spacecraft at the Scan mid-Time.
Spacecraft Geodetic	navigate.scLon	4-byte float	The geodedic longitude (decimal degrees) of the
Longitude			spacecraft at the Scan mid-Time. Range is -180 to
			179.999999.
Spacecraft Geodetic	navigate.scAlt	4-byte float	The altitude (m) of the spacecraft above the Earth
Altitude			Ellipsoid at the Scan mid-Time.
Spacecraft Attitude	navigate.scAttRoll	3 X 4-byte	The satellite attitude Euler angles at the Scan mid-
[3]	navigate.scAttPitch	float	Time. The order of the components in the file is roll,
	navigate.scAttYaw		pitch, and yaw. However, the angles are computed using
			a 3-2-1 Euler rotation sequence representing the rotation
			order yaw, pitch, and roll for the rotation from Orbital
			Coordinates to the spacecraft body coordinates. Orbital
			Coordinates represent an orthogonal triad in Geocentric
			Inertial Coordinates where the Z-axis is toward the
			geocentric nadir, the Y-axis is perpendicular to
			the spacecraft velocity opposite the orbit normal
			direction, and the X-axis is approximately in the
			velocity direction for a near circular orbit.
			Note this is geocentric, not geodetic, referenced, so that
			pitch and roll will have twice orbital frequency
			components due to the onboard control system following
			the oblate geodetic Earth horizon. Note also that the yaw
			value will show an orbital frequency component relative
			to the Earth fixed ground track due to the Earth rotation
			relative to inertial coordinates.
Sensor Orientation	navigate.att1	3 X 3 X	The rotation matrix from the instrument coordinate
Matrix [3 X 3]	navigate.att2	4-byte float	frame to Geocentric Inertial Coordinates at the Scan
	navigate.att3		mid-Time.
	navigate.att4		
	navigate.att5		
	navigate.att6		
	navigate.att7		
	navigate.att8		
	navigate.att9		
Greenwich Hour	navigate.greenHourAng	4-byte float	The rotation angle (degrees) from Geocentric Inertial
Angle			Coordinates to Earth Fixed Coordinates.

Powers (Vdata Table, record size 6 bytes, nscan records):

Name	Name in the TOOLKIT	Format	Description
Radar Transmission Power	powers.radarTransPower		The total (sum) power of 128 SSPA elements corrected with SSPA temperature in orbit, based on temperature test data of SSPA transmission power. The units are dBm * 100. For this variable, the TSDIS Toolkit does not provide scaling.
Transmitted Pulse Width	power.transPulseWidth		Transmitted pulse width (s) corrected with FCIF temperature in orbit, based on temperature test data of FCIF.

System Noise (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
System Noise	systemNoise(49)	2-byte integer	System Noise (dBm) is an average of the 4 measured system noise values, multiplied by 100 and stored as a 2-byte integer. The system noise consists of external noise and PR internal noise, and is recorded as the total equivalent noise power at the PR antenna output. The range is -120 dBm to -20 dBm with an accuracy of 0.9 dBm. Missing data are given the value of -32734.

System Noise Warning Flag (SDS, array size nray x nscan, 1-byte integer):

Name	Name in the TOOLKIT	Format	Description
System Noise	sysNoiseWarningFlag(49	1-byte	If the system noise level exceeds the noise level limit,
Warning Flag)	integer	the flag is set to 1. This will occur when (1) a radio interference is received, (2) system noise increases anomalously, or (3) noise level exceeds the limit due to the statistical variation of the noise. In cases (1) and (2), data should be used carefully. In case (3), this flag may be neglected.Received power levels in all range bins will increase in cases (1) and (2) as much as the increase of the system noise.
			 PR may receive radio interference in the following areas. N3.1 E101.7 (in Malaysia) N33.8 W118.2 (around Los Angeles) S34.8 W68.4 (around Santiago) N10.5 W66.9 (in Chili) N4.7 E36.9 (around Ethiopia – Kenya border) S32.8 W63.4 (around Amazon)

Minimum Echo Flag (SDS, array size nray x nscan, 1-byte integer):

Name	Name in the TOOLKIT	Format	Description
Minimum Echo Flag	minEchoFlag(49)	1-byte integer	 Five values are used in the Minimum Echo Flag: 0: No rain. (Echoes are very weak.) 10: Rain possible but may be noise. (Some weak echoes above noise exist in clutter free ranges.) 20: Rain certain. (Some strong echoes above noise exist in clutter free ranges.) 11: Rain possible but may be noise or surface clutter. (Some weak echoes exist in possibly cluttered ranges.)
			12: Rain possible but may be clutter. (Some strong echoes
			exist in possibly cluttered ranges.) Please be careful using the Minimum Echo Flag except when it is 0 or 20.

First Echo Height (SDS, array size 2 x nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
First Echo Height	υ	2-byte integer	The First Echo Height (storm height) is represented by the logical range bin number (1 to 400, 125-m interval). Two types of First Echo Height are estimated, depending on wheter the minimum echo flag = 10 or 20. (If the first echo is detected below the clutter-free bottom, the two types depend on whether the flag = 11 or 12.)

Range Bin Number of Ellipsoid (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Range Bin Number of Ellipsoid	binEllipsoid(49)	2-byte integer	Ellipsoid Height is represented by the logical range bin number (1 to 400). This is calculated by the following equation. binEllipsoid[j] = Normal sample start range bin + (Spacecraft Range - Distance between satellite and the normal sample start range)/binsize × 2

Range Bin Number of Clutter-free Bottom (SDS, array size 2 x nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Range Bin Number of Clutter-free Bottom	binClutterFreeBottom(2,4 9)	integer	This is the bottom range-bin number (logical range bin number) in clutter-free range bins estimated by the algorithm provided by Dr. Awaka (Hokkaido Tokai Univ. in Japan). binClutterFreeBottom(1,49): clutter free certain, binClutterFreeBottom(2,49): clutter free probable.

Range Bin Number of Mean DID (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Range Bin Number	· · ·	5	binDIDHmean represents the range bin number
or Mean DID		e	corresponding to the mean height of all DID data samples available in a 5×5 km area that overlaps most
			with the footprint.

Range Bin Number of Top of DID (SDS, array size 2 x nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Range Bin Number	binDIDHtop(2,49)	2-byte	binDIDHtop(1,46) represents the range bin number
of		integer	corresponding to the highest value (top) of all DID data
Top of DID			samples in a 5×5 km box, and binDIDHtop(2,49), the
			range bin number corresponding to the highest value in a
			11×11 km box.

Range Bin Number of Bottom of DID (SDS, array size 2 x nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Range Bin Number	binDIDHbottom(2,49)	2-byte	The definition is the same as that of binDIDHtop(2,49)
of		integer	except that the value represents the lowest value
Bottom of DID			(bottom) of all DID samples in a 5×5 km or 11×11 km
			box.

9

Satellite Local Zenith Angle (SDS, array size nray x nscan, 4-byte float):

Sutenite Lotal Zeniti Tingle (525, ana)		bille intug n	instant, i syte nout).
Name	Name in the TOOLKIT	Format	Description
Satellite Local	scLocalZenith(49)	4-byte float	The angle, in degrees, between the local zenith and the
Zenith Angle			beam's center line. The local (geodetic) zenith at the
			intersection of the ray and the earth ellipsoid is used.

Spacecraft Range (SDS, array size nray x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Spacecraft Range	spacecraftRange(49)	4-byte float	Distance (m) between the spacecraft and the center of
			the footprint of the beam on the earth ellipsoid.

Bin start of Oversample (SDS, array size 2 x 29 x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Bin start of	osBinStart(2,29)	2-byte	The first dimension is the Bin Start of Oversample and
Oversample		integer	Surface Tracker Status. The second dimension is the ray.
			The number of rays is 29 because this information only
			applies to the rays
			that have oversample data (rays #11 to #39). The third
			dimension is the scan. The Bin Start of Oversample is
			the starting range bin number of the oversample (either
			surface or rain) data, counting from the top down. The
			Surface Tracker Status has the value of 0 (Lock) or 1
			(Unlock), where Lock means that (1) the on board
			surface detection detected the surface and (2) the
			surface detected later by processing on the ground fell
			within the oversample bins. Unlock means that
			Lock was not achieved. The range bin number is defined
			in this volume in the section on Precipitation Radar,
			Instrument and Scan Geometry.

Land/Ocean Flag (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Land/Ocean Flag	landOceanFlag(49)	•	Land or ocean information. The values of the flag are: 0 = Water (ocean or inland water) 1 = Land 2 = Coast (not water or land)

Topographic Height (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Topographic Height	surWarningFlag(49)	2-byte	The topographic mean height (m) of all DID samples in
		integer	a 5 x 5 km.

Bin Number of Surface Peak (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Bin Number of	binSurfPeak(49)	2-byte	The bin surface peak indicates the logical range bin
Surface Peak		integer	number of the peak surface echo. If the surface is not
			detected, Bin Surface Peak is set to a value of -9999.
			Note that the echo peak may appear either in the normal
			sample data or in the over-sample data.

Normal Sample (SDS, array size 140 x nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Normal Sample	normalSample(140,49)	2-byte	The normal sampled PR received powers are recorded
		integer	(unit: dBm/100). The data is stored in the array of 49
			angles * 140 elements.Since each angle has a different
			number of samples, the elements after the end of sample
			are filled with a value of -32767. If a scan is missing, the
			elements are filled with the value -32734. The range is
			-120 dBm to -20 dBm with an accuracy of 0.9 dBm.

Surface Oversample (SDS, array size 5 x 29, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Surface Oversample	osSurf(5,29)	2-byte	The PR records the over-sampled data in five range bins
		integer	around the surface peak detected on board (not Bin
			Surface Peak) in a total of 29 angle bins (nadir \pm 14
			angles) to examine the surface peak precisely. If the
			surface tracker status is lock-off, the data position is
			unknown. To use the oversample data, fill the five data
			starting at "Bin Start of Over Surface" in every other
			logical range bin, then merge with the interleaving
			normal sample data. The range is -120 dBm to -20 dBm
			with an accuracy of 0.9 dBm.

Rain Oversample (SDS, array size 28 x 11, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Rain Oversample	osRain(28,11)	2-byte	The PR records the over-sampled data at 28 range bins in
		integer	a total of 11 angle bins (nadir \pm 5 angles) to record the
			detailed vertical profile of the rain. The 125m interval
			dataset in heights from 0 km to 7.5 km can be generated
			by interleaving the Normal Samples with the Surface
			oversamples and rain oversamples. The data are merged
			in the same way as the Surface
			Oversample. The range is -120 dBm to -20 dBm with an
			accuracy of 0.9 dBm.

PR Reflectivity 1C-21 Calibration Coefficients [L1B21_L1C21_HEADER]

The 1C-21 product has the same format as 1B-21.

PR Reflectivity 1C-21 Ray Header [L1B21_L1C21_HEADER]

The 1C-21 product has the same format as 1B-21.

PR Reflectivity 1C-21 Swath Data [L1C_21_SWATHDATA]

The 1C-21 product has the same format as 1B-21. In 1C-21, the normal sample, surface orversample and rain oversample contain radar reflectivity factors (dBZ, mm⁶/m³) which are converted from the PR received powers in the corresponding places in 1B21 output. The radar equation used is

 $\Pr(range) = \frac{\pi^3 |K|^2}{2^{10} \ln 2} \frac{Pt * Gt * Gr * along * cross * c * pulse}{wavelength^2} \frac{1}{range^2} Zm$

 $dBZ_m = 10\log(10^{(P_s/10)} - 10^{(P_n/10)}) - C + 20\log(range)$

Ps: 1B21 received power Pn : 1B21 noise level range : Distance

 $C = Pt + Gt + Gr + 10\log(along \times cross) + 10\log(c \times pulse) - 20\log(wavelength) + C0$

Pt: transmitter power (in power)
pulse : transmitter pulse width (in power)
Gt: transmit antenna gain (in ray header)
Gr: receive antenna gain (in ray header)
along : Along-track beam width (in ray header)
cross : Cross-track beam width (in ray header)
c : speed of light
wavelength : wave length (in ray header)
C0: Radar Constant (in ray header)

If received power is below the noise level, the reflectivity is filled with a dummy value of -32700.

• Note that the radar reflectivity factors given in 1C-21 are apparent values and include rain or atomospheric attenuation.

Normal Sample (SDS, array size 140 x nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Normal Sample	normalSample(140,49)	2-byte	The normal sampled PR radar refrectivity factors are
		integer	recorded (unit: dBZ/100). The data is stored in the array
			of 49 angles * 140 elements.Since each angle has a
			different number of samples, the elements after the end
			of sample are filled with a value of -32767. If a scan is
			missing, the elements are filled with the value -32734.
			If received power is below the noise level, the
			reflectivity is filled with a dummy value of -32700. The
			range is -20 dBZ to 80 dBZ with an accuracy of 1.0
			dBZ.

Surface Oversample (SDS, array size 5 x 29, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Surface Oversample	osSurf(5,29)	2-byte	The PR records the over-sampled data in five range bin
		integer	around the surface peak detected on board (not Bin
			Surface Peak) in a total of 29 angle bins (nadir \times 14
			angles) to examine the surface peak precisely. If the
			surface tracker status is lock-off, the data position is
			unknown. To use the oversample data, fill the five data
			starting at iBin Start of Over Surfaceî in every other
			logical range bin, then merge with the interleaving
			normal sample data. The range is -20 dBZ to 80 dBZ
			with an accuracy of 1.0 dBZ.

Surface Oversample (SDS, array size 28 x 11, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Rain Oversample	osRain(28,11)	2-byte	The PR records the over-sampled data at 28 range bins
		integer	in a total of 11 angle bins (nadir 5 angles) to record
			the detailed vertical profile of the rain. The 125m
			interval dataset in heights from 0 km to 7.5 km can be
			generated by interleaving the Normal Samples with the
			Surface oversamples and rain oversamples. The data
			are merged in the same way as the Surface
			Oversample. The range is -20 dBZ to 80 dBZ with an
			accuracy of 1.0 dBZ.

TMI Profiling 2A-12 Swath Data [L2A_12_SWATHDATA]

The following parameters are used in describing the formats:

- nscan: the number of scans within one granule (2891+50+50=2991, on average).
- npixel: the number of high resolution pixels within one scan line (208).
- nlayer: the number of profiling layers within one pixel (14).
- ngeo: the number of geolocation data (2).

Scan Time (Vdata Table, record size 9 bytes, nscan records):

Name	Name in the TOOLKIT	Format	Description
Year	scanTime.year	2-byte	4-digit year, e.g., 1998.
		integer	
Month	scanTime.month	1-byte	The month of the Year.
		integer	
Day of Month	scanTime.dayOfMonth	1-byte	The day of Month.
		integer	
Hour	scanTime.hour	1-byte	The hour (UTC) of the Day.
		integer	
Minute	scanTime.minute	1-byte	The minute of the Hour.
		integer	
Second	scanTime.second	1-byte	The second of the Minute.
		integer	
Day of Year	scanTime.dayOfYear	2-byte	The day of the Year.
		integer	

The Scan Time is the time associated with each scan.

Geolocation (SDS, array size ngeo x npixel x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Geolocation	geolocation(2,208)		The earth location of the center of the IFOV of the high resolution (85 GHz) channels (channels 8 and 9) at the altitude of the earth ellipsoid. The first dimension is latitude and longitude, in that order. The next dimensions are high resolution pixel and scan. Values are represented as floating point decimal degrees. Off-earth is represented as less
			than or equal to -9999.9 Latitude is positive north, negative south. Longitude is positive east, negative west. A point on the 180th meridian is assigned to the western hemisphere.

Scan Status (Vdata Table, record size 21 bytes, nscan records):

The status of each scan is represented in terms of quality, platform and instrument control data, and fractional

orbit number. All bytes in the Scan Status are copied from the 1B-11 Scan Status including the Missing byte. 2A-12 should reset the Missing byte if it determines data is missing or there is no-rain.

Name	Name in the TOOLKI	Г Format	Description
Missing	scanStatus.missing	1-byte	Missing indicates whether information is contained in
		integer	the scan data. The values are:
			0: Scan data elements contain information
			1: Scan was missing in the telemetry data

			2: Scan data contains no elements with rain
Validity	scanStatus.validity	1-byte integer	Validity is a summary of status modes. If all status modes are routine, all bits in Validity = 0. Routine means that scan data has been measured in the normal operational situation as far as the status modes are concerned. Validity does not assess data or geolocation quality. Validity is broken into 8 bit flags. Each bit = 0 if the status is routine but the bit = 1 if the status is not routine. Bit 0 is the least significant bit (i.e., if bit i = 1 and other bits = 0, the unsigned integer value is $2^{**}(8\text{-}i)\text{-}1$). The non-routine situations follow: Bit Meaning if bit = 1 0: Spare (always 0) 1: Non-routine spacecraft orientation (2 or 3) 2: Non-routine ACS mode (other than 4) 3: Non-routine TMI status (Bit 0 = 0 or 1 = 0) 5: Non-routine QAC (non-zero) 6: Spare (always 0) 7: Spare (always 0)
QAC	scanStatus.qac	1-byte	The Quality and Accounting Capsule of the Science
	seuno tata organo	integer	packet as it appears in Level-0 data. If no QAC is given in Level-0, which means no decoding errors occurred, QAC in this format has a value of zero.
Geolocation Quality	scanStatus.geoQuality	1-byte integer	 Geolocation Quality is broken into 8 one-bit flags. Bit 0 is the most significant bit (i.e., if bit i = 1 and other bits = 0, the unsigned integer value is 2**(8-i) -1). A value of 0 indicates 'good' quality, and 1 indicates 'bad' quality. Each flag is listed below. Note that ranges indicated will be refined in early-orbit check out. Bit Meaning if bit = 1 O: Grossly bad geolocation results: Spacecraft position vector magnitude outside range 6720 to 6740 km. Z component of midpoint of scan outside range - 4100 to 4100 km. Distance from S/C to midpoint of scan outside range 340 to 360 km. I: Unexpectedly large scan to scan jumps in geolocated positions in along and cross track directions for first, middle, and last pixels in each scan. Allowed duration from nominal jump in along track motion = 0.06 km (first pixel), 0.04 km (middle pixel), and 0.05 km (first pixel), 0.04 km (middle pixel), and 0.05 km (first pixel). Bit set in normal mode only. 2: Scan to scan jumps in yaw, pitch, and roll exceed maximum values. Values are : yaw = 0.0001 radians; pitch = 0.0001 radians; roll = 0.0001 radians; roll = 0.0001 radians; roll = 0.0001 radians. Bit set in normal control mode only.

			 3: In normal mode, yaw outside range (-0.003, 0.003) radians; pitch outside range (-0.007, 0.007) radians; roll outside range (-0.007, 0.007). 4: Satellite undergoing maneuvers during which geolocation will be less accurate. 5: Questionable ephemeris quality (including use of predicted Ephemeris for quicklook) or questionable UTCF quality. 6: Geolocation calculations failed (fill values inserted in the per pixel geolocation products, but not in metadata). 7: Missing attitude data. ACS data gap larger than 20
			seconds.
Data Quality [9]	scanStatus.ch1 scanStatus.ch2 scanStatus.ch3 scanStatus.ch4 scanStatus.ch5 scanStatus.ch6 scanStatus.ch7 scanStatus.ch8 scanStatus.ch8	9 x 1-byte integer	The Quality of Channel Data for a given channel on a given scan line is the percentage of pixels whose values are within the acceptable range listed in the Metadata. Quality is given for each channel in the order of the channel number.
Current Spacecraft	scanStatus.scOrient	1-byte	Value Meaning
Orientation		integer	0: +x forward 1: -x forward 2: -y forward 3: Inertial - CERES Calibration 4: Unknown Orientation
Current ACS Mode	scanStatus.acsMode	1-byte integer	Value Meaning 0: Standby 1: Sun Acquire 2: Earth Acquire 3: Yaw Acquire 4: Nominal 5: Yaw Maneuver 6: Delta-H (Thruster) 7: Delta-V (Thruster) 8: CERES Calibration
Yaw Update Status	scanStatus.yawUpdateS	1-byte integer	Value Meaning 0: Inaccurate 1: Indeterminate 2: Accurate
TMI Instrument Status	scanStatus.tmiISstatus	1-byte integer	Bit 0 is the most significant bit (i.e., if bit i = 1 and other bits = 0, the unsigned integer value is 2**(8-i) - 1). Bit Meaning 00 Receiver Status (1=ON, 0=OFF) 01 Spin-up Status (1=ON, 0=OFF) 02 Spare Command 1 Status 03 Spare Command 2 Status 04 1 Hz Clock Select (1=A, 0=B) 05 21 GHz Cold Count Flag 06 Spare Command 4 Status 07 Spare Command 5 Status

Fractional Orbit	scanStatus.fracOrbitN	4-byte float	The orbit number and fractional part of the orbit at Scan
Number		-	Time. The orbit number will be counted from the
			beginning of the mission. The fractional part is
			calculated as:
			(Time - Orbit Start Time) / (Orbit End Time - Orbit Start
			Time)

Navigation (Vdata, record size 88 bytes, nscan records):

Name	A, record size 88 bytes, r		Description
Spacecraft	navigate.scPosX	3 X 4-byte	The position (m) of the spacecraft in Geocentric Inertial
Geocentric	navigate.scPosY	float	Coordinates at the Scan mid-Time (i.e., time at the
Position [3]	navigate.scPosZ		middle pixel/IFOV of the active scan period). The order
			of components is: x, y, and z. Geocentric Inertial
			Coordinates are also commonly known as Earth
			Centered Inertial coordinates. These coordinates will be
			True of Date (rather than Epoch 2000 which are also
			commonly used), as interpolated from the data in the
			Flight Dynamics Facility ephemeris files generated for TRMM.
Spacecraft	navigate.scVelX	3 X 4-byte	The velocity (ms -1) of the spacecraft in Geocentric
Geocentric	navigate.scVelY	float	Inertial Coordinates at the Scan mid-Time. The order of
Velocity [3]	navigate.scVelZ		components is: x, y, and z.
Spacecraft Geodetic	navigate.scLat	4-byte float	The geodetic latitude (decimal degrees) of the
Latitude			spacecraft at the Scan mid-Time.
Spacecraft Geodetic	navigate.scLon	4-byte float	The geodedic longitude (decimal degrees) of the
Longitude			spacecraft at the Scan mid-Time. Range is -180 to 179.999999.
Spacecraft Geodetic	navigate.scAlt	4-byte float	The altitude (m) of the spacecraft above the Earth
Altitude			Ellipsoid at the Scan mid-Time.
Spacecraft Attitude	navigate.scAttRoll	3 X 4-byte	The satellite attitude Euler angles at the Scan mid-
[3]	navigate.scAttPitch	float	Time. The order of the components in the file is roll,
	navigate.scAttYaw		pitch, and yaw. However, the angles are computed using
			a 3-2-1 Euler rotation sequence representing the rotation
			order yaw, pitch, and roll for the rotation from Orbital
			Coordinates to the spacecraft body coordinates. Orbital
			Coordinates represent an orthogonal triad in Geocentric
			Inertial Coordinates where the Z-axis is toward the
			geocentric nadir, the Y-axis is perpendicular to
			the spacecraft velocity opposite the orbit normal
			direction, and the X-axis is approximately in the
			velocity direction for a near circular orbit.
			Note this is geocentric, not geodetic, referenced, so that
			pitch and roll will have twice orbital frequency
			components due to the onboard control system following
			the oblate geodetic Earth horizon. Note also that the yaw
			value will show an orbital frequency component relative
			to the Earth fixed ground track due to the Earth rotation relative to inertial coordinates.
Sensor Orientation	navigate.att1	3 X 3 X	The rotation matrix from the instrument coordinate
Matrix [3 X 3]	navigate.att2	4-byte float	frame to Geocentric Inertial Coordinates at the Scan
	navigate.att3		mid-Time.
	navigate.att4		
	navigate.att5		

	navigate.att6 navigate.att7 navigate.att8 navigate.att9		
Greenwich Hour	navigate.greenHourAng	4-byte float	The rotation angle (degrees) from Geocentric Inertial
Angle			Coordinates to Earth Fixed Coordinates.

Data Flag (SDS, array size npixel x nscan, 1-bytes integer):

Name	Name in the TOOLKIT	Format	Description
Data Flag	dataFlag(208)	1-byte	The Data Flag indicates the quality of data. Values
		integer	greater than or equal to zero indicate good data quality.
			Values less than zero indicate bad data quality. Specific
			values are:
			0: Good data quality
			-9: Channel brightness temperature outside valid
			range
			-15: The neighboring 5 x 5 pixel array is incomplete due
			to
			edge or bad data quality
			-21: Surface type invalid
			-23: Date time invalid
			-25: Latitude or longitude invalid

Rain Flag (SDS, array size npixel x nscan, 1-byte integer):

Name	Name in the TOOLKIT	Format	Description
Rain Flag	rainFlag(208)	1-byte	The Rain Flag indicates if rain is possible. If the value is
		integer	greater than or equal to zero rain is possible. If the value
			is less than zero the pixel has been pre-screened as
			non-raining; the exact value is used to identify the
			screen itself.

Surface Flag (SDS, array size npixel x nscan, 1-byte integer):

Name	Name in the TOOLKIT	Format	Description
Surface Flag	surfaceFlag(208)	1-byte	The Surface Flag indicates the type of surface and has
		integer	the following values:
			0: ocean;
			1: land;
			2: coast;
			3: other.

Surface Rain (SDS, array size npixel x nscan, 4-byte float):

surface Hum (525), undy size apriler a ascun, + 65 to nou).				
Name	Name in the TOOLKIT	Format	Description	
Surface Rain	surfaceRain(208)	4-byte float	The Surface Rain is the instantaneous rain rate (mm/h)	
			at the surface for each pixel. It ranges between 0.0 and	
			3000.0 mm/h.	

Confidence (SDS, array size npixel x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Confidence	confidence(208)	4-byte float	The Confidence is that associated with the surface rain.
			It is measured as an rms deviation in temperatures with
			units in degrees (K). The data range is 0.0 to 300.0K

The following five variables represent profiled quantities at 14 layers. The top of each layer is given at 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 8.0, 10.0, 14.0, and 18.0 km above the surface.

Cloud Liquid Water (SDS, array size nlayer x npixel x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Cloud Liquid Water	cldWater(14,208)	2-byte	This is the cloud liquid water content for each pixel at 14
		integer	layers. It ranges from 0.00 to 10.00 g/m ³ and is multiplied
			by 1000 and stored as a 2-byte integer.

Precipitation Water (SDS, array size nlayer x npixel x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Precipitation Water	precipWater(14,208)	2-byte	This is the precipitation water content for each pixel at
		integer	14 layers. It ranges from 0.00 to 10.00 g/m ³ and is
			multiplied by 1000 and stored as a 2-byte integer.

Cloud Ice Water (SDS, array size nlayer x npixel x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Cloud Ice Water	cldIce(14,208)	2-byte	This is the cloud ice water content for each pixel at 14
		integer	layers. It ranges from 0.00 to 10.00 g/m ³ and is multiplied
			by 1000 and stored as a 2-byte integer.

Precipitation Ice (SDS, array size nlayer x npixel x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Precipitation Ice	precipIce(14,208)	2-byte	This is the precipitation content for each pixel at 14
		integer	layers. It ranges from 0.00 to 10.00 g/m ³ and is multiplied
			by 1000 and stored as a 2-byte integer.

Latent Heating (SDS, array size nlayer x npixel x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Latent Heating	latentHeat(14,208)	2-byte	This is the latent heating release (°C/day) for each pixel
-		Ŭ	at 14 layers. It is multiplied by 10 and stored as a 2-byte integer. Ranges are -256 deg/hour to 256 deg/hour.

PR Surface Cross Section 2A-21 Swath Data [L2A_21_SWATHDATA]

The following parameters are used in describing the formats:

- nscan: the number of PR scans within one granule (9150, on average).
- nray: the number of rays within one PR scan line (49).

Scan Time (Vdata Table, record size 8 bytes, nscan records)

Name	Name in the TOOLKIT	Format	Description
Scan Time	scanTime	8-byte float	Scan Time is the center time of 1 scan (the time at
			center of the nadir beam transmitted pulse). It is
			expressed as the UTC seconds of the day.

Geolocation (SDS, array size 2 x nlay x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Geolocation	geolocation(2,49)		The earth location of the center of the IFOV at the altitude of the earth ellipsoid. The first dimension is latitude and longitude, in that order. The next dimensions are pixel and scan. Values are represented as floating point decimal degrees. Off earth is represented as less than or equal to -9999.9 Latitude is positive north, negative south. Longitude is positive east, negative west. A point on the 180th meridian is assigned to the western hemisphere.

Scan Status (Vdata Table, record size 15 bytes, nscan records):

The status of each scan is represented in terms of quality, platform and instrument control data, and fractional

orbit number. All bytes in Scan Status are copied from the 1B-21 Scan Status including the Missing byte. 2A-21 should reset the Missing byte if it determines data is missing or there is no-rain.

Name	Name in the TOOLKIT	Format	Description
Missing	scanStatus.missing	1-byte	Missing indicates whether information is contained in
		integer	the scan data. The values are:
			0: Scan data elements contain information
			1: Scan was missing in the telemetry data
			2: Scan data contains no elements with rain
Validity	scanStatus.validity	1-byte	Validity is a summary of status modes. If all status
		integer	modes are routine, all bits in Validity $= 0$. Routine
			means that scan data has been measured in the normal
			operational situation as far as the status modes are
			concerned. Validity does not assess data or geolocation
			quality. Validity is broken into 8 bit flags. Each bit = 0 if
			the status is routine but the bit $= 1$ if the status is not
			routine. Bit 0 is the least significant bit (i.e., if bit $i = 1$
			and
			other bits = 0, the unsigned integer value is 2^{**i}). The
			non-routine situations follow:
			Bit Meaning if bit = 1
			0: Spare (always 0)
			1: Non-routine spacecraft orientation (2 or 3)
			2: Non-routine ACS mode (other than 4)
			3: Non-routine yaw update status (0 or 1)

			4: Non-routine instrument status (other than 1)
			5: Non-routine QAC (non-zero)
			6: Spare (always 0)
			7: Spare (always 0)
QAC	scanStatus.qac	1-byte	The Quality and Accounting Capsule of the Science
		integer	packet as it appears in Level-0 data. If no QAC is given
			in Level-0, which means no decoding errors occurred,
			QAC in this format has a value of zero.
Geolocation Quality	scanStatus.geoQuality	1-byte	Geolocation quality is a summary of geolocation quality
		integer	in the scan. A zero integer value indicates $\dagger good I$
			geolocation. A non-zero value broken down into the
			following bit flags indicates:
			Bit Meaning if bit = 1
			0: latitude limit error
			1: geolocation discontinuity
			2: attitude change rate limit error
			3: attitude limit error
			4: satellite undergoing maneuvers
			5: using predictive orbit data
			6: geolocation calculation error
			7: not used
Data Quality	scanStatus.dataQuarity	1-byte	Data quality is a summary of data quality in the scan.
		integer	Unless this is 0 (normal), the scan data is meaningless
			to higher processing. Bit 0 is the least significant bit
			(i.e., if bit $i = 1$ and other bits = 0, the unsigned integer
			value is 2**i).
			Bit Meaning if bit = 1
			0: missing
			5: Geolocation Quality is not normal
			6: Validity is not normal
Current Spacecraft	scanStatus.scOrient	1-byte	Value Meaning
Orientation		integer	0: +x forward
			1: -x forward
			2: -y forward
			3: Inertial - CERES Calibration
			4: Unknown Orientation
Current ACS Mode	scanStatus.acsMode	1-byte	Value Meaning
		integer	0: Standby
			1: Sun Acquire
			2: Earth Acquire
			3: Yaw Acquire
			4: Nominal
			5: Yaw Maneuver
			6: Delta-H (Thruster)
			7: Delta-V (Thruster)
			8: CERES Calibration
Yaw Update Status	scanStatus.yawUpdateS	1-byte	Value Meaning
		integer	0: Inaccurate
			1: Indeterminate
			2: Accurate
		11.	
PR Mode	scanStatus.prMode	1-byte	Value Meaning
			-

		integer	0: Other Mode
PR Status 1	scanStatus.prStatus1	1-byte integer	 1: Observation Mode The flags listed here indicate warnings of PR conditions (noise level, echo power and echo position, and mode change). In data processing, users should be cautions with the following as a scan with non-zero status includes questionable range bins or angle bins. 0: LOGAMP noise limit error 1: Noise level limit error (The meaning of this warning is the same as the System Noize Warning Flag) 2: Out of PR dynamic range (Surface echo is so strong that it exceeds the PR receiver dynamic range. Calibration with the saturated echo may be questionable.) 3: Not reach surface position (If Surface echo is out of range window, Bin Surface Peak and related data become uncertain.)
PR Status 2	scanStatus.prStatus2	1-byte integer	7: FCIF mode change In some cases, antenna sidelobes are directed to nadir receive surface echo positions. When the main beam is off nadir, the timing of such nadir-surface clutter can contaminate the rain echo. In "PR STATUS2," a warning flag is set ON (1) when the nadir surface echo (at the nadir angle bin #25) exceeds a predetermined threshold. When the flag is ON, please be careful about the echoes at all angle bins around the same logical range bin number as the Bin-surface-peak at nadir (angle bin number 25).
Fractional Orbit Number	scanStatus.fracOrbitN	4-byte float	The orbit number and fractional part of the orbit at Scan Time. The orbit number will be counted from the beginning of the mission. The fractional part is calculated as: (Scan Time - Orbit Start Time) / (Orbit End Time - Orbit Start Time)

Navigation (Vdata, record size 88 bytes, nscan records):

Name	Name in the TOOLKIT	Format	Description
Spacecraft	navigate.scPosX	3 X 4-byte	The position (m) of the spacecraft in Geocentric Inertial
Geocentric	navigate.scPosY	float	Coordinates at the Scan mid-Time (i.e., time at the
Position [3]	navigate.scPosZ		middle pixel/IFOV of the active scan period). The order
			of components is: x, y, and z. Geocentric Inertial
			Coordinates are also commonly known as Earth
			Centered Inertial coordinates. These coordinates will be
			True of Date (rather than Epoch 2000 which are also
			commonly used), as interpolated from the data in the
			Flight Dynamics Facility ephemeris files generated for
			TRMM.
Spacecraft	navigate.scVelX	3 X 4-byte	The velocity (ms -1) of the spacecraft in Geocentric
Geocentric	navigate.scVelY	float	Inertial Coordinates at the Scan mid-Time. The order of

Velocity [3]	navigate.scVelZ		components is: x, y, and z.
Spacecraft Geodetic Latitude	navigate.scLat	4-byte float	The geodetic latitude (decimal degrees) of the spacecraft at the Scan mid-Time.
Spacecraft Geodetic Longitude	navigate.scLon	4-byte float	The geodetic longitude (decimal degrees) of the spacecraft at the Scan mid-Time. Range is -180 to 179.999999.
Spacecraft Geodetic Altitude	navigate.scAlt	4-byte float	The altitude (m) of the spacecraft above the Earth Ellipsoid at the Scan mid-Time.
Spacecraft Attitude [3]	navigate.scAttRoll navigate.scAttPitch navigate.scAttYaw	3 X 4-byte float	The satellite attitude Euler angles at the Scan mid- Time. The order of the components in the file is roll, pitch, and yaw. However, the angles are computed using a 3-2-1 Euler rotation sequence representing the rotation order yaw, pitch, and roll for the rotation from Orbital Coordinates to the spacecraft body coordinates. Orbital Coordinates represent an orthogonal triad in Geocentric Inertial Coordinates where the Z-axis is toward the geocentric nadir, the Y-axis is perpendicular to the spacecraft velocity opposite the orbit normal direction, and the X-axis is approximately in the velocity direction for a near circular orbit. Note this is geocentric, not geodetic, referenced, so that pitch and roll will have twice orbital frequency components due to the onboard control system following the oblate geodetic Earth horizon. Note also that the yaw value will show an orbital frequency component relative to the Earth fixed ground track due to the Earth rotation relative to inertial coordinates.
Sensor Orientation Matrix [3 X 3]	navigate.att1 navigate.att2 navigate.att3 navigate.att4 navigate.att5 navigate.att6 navigate.att7 navigate.att8 navigate.att9	3 X 3 X 4-byte float	The rotation matrix from the instrument coordinate frame to Geocentric Inertial Coordinates at the Scan mid-Time.
Greenwich Hour Angle	navigate.greenHourAng	4-byte float	The rotation angle (degrees) from Geocentric Inertial Coordinates to Earth Fixed Coordinates.

Sigma-zero (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Sigma-zero	sigmaZero(49)	2-byte	The Sigma-zero is the normalized surface cross section.
		integer	It ranges from -50.00 to 20.00 dB and is multiplied by 100
			and stored as a 2-byte integer.

Path Attenuation (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Path Attenuation	pathAtten(49)	2-byte	This is the estimate of positive 2-way integrated
		U	attenuation dB when rain is present. It ranges from 0.00 to 50.00 dB and is multiplied by 100 and stored as a 2-
			byte integer.

Name	Name in the TOOLKIT	Format	Description
Reliability Flags	reliabFlag(49)	2-byte	Reliability Flags holds various information in the form of
		integer	single digit integer flags. The 2-byte integer is expressed
			in the form vwxyz where v, w, x, y, and z are integers
			between 0 and 9 (v must be 0, 1, or 2). Each digit has the
			following definition:
			v = Miscellaneous information (e.g., land/sea/coast;
			whether
			a problem exists with the reference data set;
			missing data,
			etc.) Details are TBD .
			w = Path attenuation estimate is:
			0 - unreliable
			1 - marginally reliable
			2 - reliable
			3 - lower bound
			9 - no-rain case
			x = Information about surface detection validity
			(including
			whether surface tracking is in the 'locked' or
			'unlocked'
			state). Details are TBD .
			y = Indicator of which surface reference estimate has
			been
			chosen (temporal or spatial). Details are TBD .
			z = TBD

Reliability Flags (SDS, array size nray x nscan, 2-byte integer):

Reliability Factor (SDS array size nray x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Reliability Factor	reliabFactor(49)	4-byte float	The Reliability Factor is the ratio of the estimated value
			of path attenuation to the standard deviation associated
			with the mean value of the reference estimate. This ratio
			will likely not exceed 5.0 and is unitless.

Incident Angle (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Incident Angle	incAngle(49)	2-byte	The Incident Angle is the angle, in degrees, between the
		integer	PR nadir and the radar beam. It ranges from -30.0 to
			+30.0 degrees and is multiplied by 10 and stored as a
			2-byte integer.

Rain Flag (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Rain Flag	rainFlag(49)	2-byte	The Rain Flag has the following values:
-		integer	0: no rain;
			1: rain present.

PR Qualitative 2A-23 Swath Data [L2A_23_SWATHDATA]

The following parameters are used in describing the formats:

- nscan: the number of PR scans within one granule (9150, on average).
- nray: the number of rays within one PR scan line (49).

Scan Time (Vdata Table, record size 8 bytes, nscan records)

Name	Name in the TOOLKIT	Format	Description
Scan Time	scanTime	8-byte float	Scan Time is the center time of 1 scan (the time at
			center of the nadir beam transmitted pulse). It is
			expressed as the UTC seconds of the day.

Geolocation (SDS, array size 2 x 49 x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Geolocation	geolocation(2,49)	4-byte float	The earth location of the center of the IFOV at the
			altitude of the earth ellipsoid. The first dimension is
			latitude and
			longitude, in that order. The next dimensions are pixel
			and scan. Values are represented as floating point
			decimal degrees. Off earth is represented as less than or
			equal to -9999.9 Latitude is positive north, negative
			south. Longitude is positive east, negative west. A point
			on the 180th meridian is assigned to the western
			hemisphere.

Scan Status (Vdata Table, record size 15 bytes, nscan records):

The status of each scan is represented in terms of quality, platform and instrument control data, and fractional

orbit number. All bytes in Scan Status are copied from the 1B-21 Scan Status including the Missing byte. 2A-23 should reset the Missing byte if it determines data is missing or there is no-rain.

Name	Name in the TOOLKIT	Format	Description
Missing	scanStatus.missing	1-byte	Missing indicates whether information is contained in
		integer	the scan data. The values are:
			0: Scan data elements contain information
			1: Scan was missing in the telemetry data
			2: Scan data contains no elements with rain
Validity	scanStatus.validity	1-byte	Validity is a summary of status modes. If all status
		integer	modes are routine, all bits in Validity $= 0$. Routine
			means that scan data has been measured in the normal
			operational situation as far as the status modes are
			concerned. Validity does not assess data or geolocation
			quality. Validity is broken into 8 bit flags. Each bit $= 0$ if
			the status is routine but the bit $= 1$ if the status is not
			routine. Bit 0 is the least significant bit (i.e., if bit $i = 1$
			and
			other bits = 0, the unsigned integer value is 2^{**i}). The
			non-routine situations follow:
			Bit Meaning if bit = 1
			0: Spare (always 0)
			1: Non-routine spacecraft orientation (2 or 3)
			2: Non-routine ACS mode (other than 4)

			 3: Non-routine yaw update status (0 or 1) 4: Non-routine instrument status (other than 1) 5: Non-routine QAC (non-zero) 6: Spare (always 0) 7: Spare (always 0)
QAC	scanStatus.qac	1-byte integer	The Quality and Accounting Capsule of the Science packet as it appears in Level-0 data. If no QAC is given in Level-0, which means no decoding errors occurred, QAC in this format has a value of zero.
Geolocation Quality		1-byte integer	Geolocation quality is a summary of geolocation quality in the scan. A zero integer value indicates †goodl geolocation. A non-zero value broken down into the following bit flags indicates: Bit Meaning if bit = 1 0: latitude limit error 1: geolocation discontinuity 2: attitude change rate limit error 3: attitude limit error 4: satellite undergoing maneuvers 5: using predictive orbit data 6: geolocation calculation error 7: not used
Data Quality	scanStatus.dataQuarity	1-byte integer	Data quality is a summary of data quality in the scan. Unless this is 0 (normal), the scan data is meaningless to higher processing. Bit 0 is the least significant bit (i.e., if bit i = 1 and other bits = 0, the unsigned integer value is 2**i). Bit Meaning if bit = 1 0: missing 5: Geolocation Quality is not normal 6: Validity is not normal
Current Spacecraft Orientation	scanStatus.scOrient	1-byte integer	Value Meaning 0: +x forward 1: -x forward 2: -y forward 3: Inertial - CERES Calibration 4: Unknown Orientation
Current ACS Mode	scanStatus.acsMode	1-byte integer	Value Meaning 0: Standby 1: Sun Acquire 2: Earth Acquire 3: Yaw Acquire 4: Nominal 5: Yaw Maneuver 6: Delta-H (Thruster) 7: Delta-V (Thruster) 8: CERES Calibration
Yaw Update Status	scanStatus.yawUpdateS	1-byte integer	Value Meaning 0: Inaccurate 1: Indeterminate 2: Accurate

PR Mode	scanStatus.prMode	1-byte integer	Value Meaning 0: Other Mode 1: Observation Mode
PR Status 1	scanStatus.prStatus1	1-byte integer	 The flags listed here indicate warnings of PR conditions (noise level, echo power and echo position, and mode change). In data processing, users should be cautions with the following as a scan with non-zero status includes questionable range bins or angle bins. 0: LOGAMP noise limit error 1: Noise level limit error (The meaning of this warning is the same as the System Noize Warning Flag) 2: Out of PR dynamic range (Surface echo is so strong that it exceeds the PR receiver dynamic range. Calibration with the saturated echo may be questionable.) 3: Not reach surface position (If Surface echo is out of range window, Bin Surface Peak and related data become uncertain.) 7: FCIF mode change
PR Status 2	scanStatus.prStatus2	1-byte integer	In some cases, antenna sidelobes are directed to nadir receive surface echo positions. When the main beam is off nadir, the timing of such nadir-surface clutter can contaminate the rain echo. In "PR STATUS2," a warning flag is set ON (1) when the nadir surface echo (at the nadir angle bin #25) exceeds a predetermined threshold. When the flag is ON, please be careful about the echoes at all angle bins around the same logical range bin number as the Bin-surface-peak at nadir (angle bin number 25).
Fractional Orbit Number	scanStatus.fracOrbitN	4-byte float	The orbit number and fractional part of the orbit at Scan Time. The orbit number will be counted from the beginning of the mission. The fractional part is calculated as: (Scan Time - Orbit Start Time) / (Orbit End Time - Orbit Start Time)

Navigation (Vdata, record size 88 bytes, nscan records):

Name	Name in the TOOLKIT	Format	Description
Spacecraft	navigate.scPosX	3 X 4-byte	The position (m) of the spacecraft in Geocentric Inertial
Geocentric	navigate.scPosY	float	Coordinates at the Scan mid-Time (i.e., time at the
Position [3]	navigate.scPosZ		middle pixel/IFOV of the active scan period). The order
			of components is: x, y, and z. Geocentric Inertial
			Coordinates are also commonly known as Earth
			Centered Inertial coordinates. These coordinates will be
			True of Date (rather than Epoch 2000 which are also
			commonly used), as interpolated from the data in the
			Flight Dynamics Facility ephemeris files generated for
			TRMM.

Spacecraft	navigate.scVelX	3 X 4-byte	The velocity (ms -1) of the spacecraft in Geocentric
Geocentric	navigate.scVelY	float	Inertial Coordinates at the Scan mid-Time. The order of
Velocity [3]	navigate.scVelZ		components is: x, y, and z.
	8		r r , , , , , , , , , , , , , , , , , ,
Spacecraft Geodetic	navigate.scLat	4-byte float	The geodetic latitude (decimal degrees) of the
Latitude		-	spacecraft at the Scan mid-Time.
Spacecraft Geodetic	navigate.scLon	4-byte float	The geodetic longitude (decimal degrees) of the
Longitude			spacecraft at the Scan mid-Time. Range is -180 to
			179.999999.
Spacecraft Geodetic	navigate.scAlt	4-byte float	The altitude (m) of the spacecraft above the Earth
Altitude			Ellipsoid at the Scan mid-Time.
Spacecraft Attitude	navigate.scAttRoll	3 X 4-byte	The satellite attitude Euler angles at the Scan mid-
[3]	navigate.scAttPitch	float	Time. The order of the components in the file is roll,
	navigate.scAttYaw		pitch, and yaw. However, the angles are computed using
			a 3-2-1 Euler rotation sequence representing the rotation
			order yaw, pitch, and roll for the rotation from Orbital
			Coordinates to the spacecraft body coordinates. Orbital
			Coordinates represent an orthogonal triad in Geocentric
			Inertial Coordinates where the Z-axis is toward the
			geocentric nadir, the Y-axis is perpendicular to
			the spacecraft velocity opposite the orbit normal
			direction, and the X-axis is approximately in the
			velocity direction for a near circular orbit.
			Note this is geocentric, not geodetic, referenced, so that
			pitch and roll will have twice orbital frequency
			components due to the onboard control system following
			the oblate geodetic Earth horizon. Note also that the yaw
			value will show an orbital frequency component relative
			to the Earth fixed ground track due to the Earth rotation
			relative to inertial coordinates.
Sensor Orientation	navigate.att1	3 X 3 X	The rotation matrix from the instrument coordinate
Matrix [3 X 3]	navigate.att2	4-byte float	frame to Geocentric Inertial Coordinates at the Scan
	navigate.att3		mid-Time.
	navigate.att4		
	navigate.att5		
	navigate.att6		
	navigate.att7		
	navigate.att8		
a tru	navigate.att9	4.1	
Greenwich Hour	navigate.greenHourAng	4-byte float	The rotation angle (degrees) from Geocentric Inertial
Angle			Coordinates to Earth Fixed Coordinates.

Rain Flag (SDS, array size nray x nscan, 1-byte integer):

Name	Name in the TOOLKIT	Format	Description
Rain Flag	rainFlag(49)	1-byte	The Rain Flag is almost identical to the Minimum Echo
		integer	Flag of 1C21:
			0: no rain;
			10: rain possible
			11: echo greater than rain threshold #1 in clutter region
			12: echo greater than rain threshold #2 in clutter region
			20: rain certain

Name	Name in the TOOLKIT	Format	Description
Rain Type Flag	rainType(49)	1-byte	The Rain Type Flag is set as follows:
		integer	10: Stratiform certain.
			When R_type_V = T_stra; (BB exists)
			and $R_type_H = T_stra;$
			11: Stratiform certain.
			When $R_type_V = T_stra$; (BB exists)
			and $R_{type}H = T_{others}$;
			12: Probably stratiform.
			When $R_type_V = T_others;$
			and $R_type_H = T_stra;$
			13: Maybe stratiform.
			When $R_{type_V} = T_{stra}$; (BB detection certain)
			and R_type_H = T_conv
			20: Convective certain.
			When $R_{type_V} = T_{conv}$; (no BB)
			and $R_type_H = T_conv$;
			21: Convective certain.
			When $R_type_V = T_others;$
			and R_type_H = T_conv; 22: Convective certain.
			When R_type_V = T_conv;
			and R_type_H = T_others;
			23: Probably convective.
			When R_type_V = T_conv; (BB exists)
			and R_type_H = T_conv;
			24: Maybe convective.
			When R_type_V = T_conv;
			and R_type_H = T_stra;
			25: Maybe convective.
			When $R_type_V = T_stra$; (BB detection not so
			confident)
			and R_type_H = T_conv;
			30: Others.
			When $R_type_V = T_others;$
			and R_type_H = T_others;
			where
			R_type_V: rain type classified by the V-profile method,
			R_type_H: rain type classified by the H-pattern
			method,
			which is based on SHY95 developed by Prof.
			Houze and his group.
			The above assignment of numbers has the following
			meaning:
			Rain Type Flag / $10 = 1$: stratiform,
			2: convective,
			3: others.
			Rain Type Flag % $10 =$ This indicates the level of
			confidence, which decreases
			as the number increases.
			where Rain Type Flag % 10 means MOD (Rain Type
			Flag, 10) in FORTRAN.

Rain Type Flag (SDS, array size nray x nscan, 1-byte integer):

-99: data missing		When it is "no rain" or "data missing", Rain Type Flag contains the following values: -88: no rain -99: data missing
-------------------	--	---

Warm Rain Flag (SDS, array size nray x nscan, 1-byte integer):

Name	Name in the TOOLKIT	Format	Description
Warm Rain Flag	warmRain(49)	1-byte	The Warm Rain Flag is set as follows:
		integer	0: warm rain is not detected;
			1: there may be "warm" rain;
			2: warm rain is detected (with high confidence).
			-88: no rain
			-99: data missing

Status Flag (SDS, array size nray x nscan, 1-byte integer):

Name	Name in the TOOLKIT	Format	Description
Status Flag	status(49)	1-byte	The Status Flag indicates whether the data are obtained
		integer	over sea or land and the confidence of 2A-23 product
			data. It is set as follows:
			0: good (over ocean)
			10: BB detection may be good (over ocean)
			20: R-type classification may be good (over ocean)
			(BB detection is good or BB does not exist)
			30: Both BB detection and R-type classification may
			be good (over ocean)
			50: not good (because of warnings) (over ocean)
			100: bad (possible data corruption) (over ocean)
			1: good (over land)
			11: BB detection may be good (over land)
			21: R-type classification may be good (over land)
			(BB detection is good or BB does not exist)
			31: Both BB detection and R-type classification may
			be good (over land)
			51: not good (because of warnings) (over land)
			101: bad (possible data corruption) (over land)
			2: good (over coastline)
			12: BB detection may be good (over coastline)
			22: R-type classification may be good (over coastline)
			(BB detection is good or BB does not exist)
			32: Both BB detection and R-type classification may
			be good (over coastline)
			52: not good (because of warnings) (over coastline)
			102: bad (possible data corruption) (over coastline)
			4: good (over inland lake)
			14: BB detection may be good (over inland lake)
			24: R-type classification may be good (over inland
			lake)
			(BB detection is good or BB does not exist)
			34: Both BB detection and R-type classification may
			be good (over inland lake)
			54: not good (because of warnings) (over inland lake)
			104: bad (possible data corruption) (over inland lake)

6

9: may be good (land/sea unknown)
19: BB detection may be good (land/sea unknown)
29: R-type classification may be good (BB detection
is good or BB does not exist) (land/sea unknown)
39: Both BB detection and R-type classification may
be good (land/sea unknown)
59: not good (because of warnings) (land/sea
unknown)
109: bad (possible data corruption) (land/sea unknown)
When it is "no rain" or "data missing", Status Flag
contains the following values:
-88: no rain
-99: data missing
Assignment of the above numbers are based on the
following rules:
When Status ≥ 0
Status/100 = 0: good, may be good, or not good
1: doubtful
(Status/10) % $10 = 0$: good, may be good when status
(51a103, 10) / 10 = 0.2000, may be good when status <100,
and not good when status ≥ 100
1: BB detection not so confident
2: R-type classification not so
confident
(but BB detection is good, or
when BB
does not exist)
3: BB detection is not so confident
and
R-type classification not so
confident
5: Over-all quality of the processed
data
for the j-th scan angle is not good
(but
may not be too bad to be
classified as
bad data)
Status % $10 = 0$: over ocean
1: over land
2: over coastline
4: over inland lake
4: over infand lake 9: land/sea unknown
In other words, we can check the confidence level of
2A-23 by the following way:
Status Flag ≥ 100 : bad (untrustworthy because of
possible data corruption)
100> Status Flag \geq 10 : result not so confident
(warning)
Status $Flag = 9$: may be good
9> Status Flag ≤ 0 : good
The last digit of Status Flag indicates over ocean, land,
etc.

7

Range Bin Number (SDS, array size nray x nscan, 2-byte integer):				
Name	Name in the TOOLKIT	Format	Description	
Range Bin Number	rangeBinNum(49)	2-byte	A positive Range Bin Number corresponds to the height	
		integer	of bright band. Negative values are defined as follows:	
			-1111: No bright band	
			-8888: No rain	

mbor (SDS arrow aize) buto into D:-- NI-

Height of Bright Band (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Height of Bright	HBB(49)	2-byte	A positive Height of Bright Band is defined in meters
Band		integer	above mean sea level. Negative values are defined as
			follows:
			-1111: No bright band
			-8888: No rain
			-9999: Data missing

Height of Freezing Level (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Height of Freezing	freezH(49)	2-byte	A positive Height of Freezing Level is the height of the
Level		integer	0°C isotherm above mean sea level in meters, estimated
			from climatological surface temperature data. Negative
			values are defined as:
			-5555: When error occurred in the estimation of Height
			of Freezing Level
			-8888: No rain
			-9999: Data missing

Height of Storm (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Height of Storm	stormH(49)	2-byte	A positive Height of Storm is the height of the storm top
		integer	above mean sea level in meters. A positive Height of
			Storm is given only when rain is present with a high
			degree of
			confidence in 1C21, i.e., the Minimum Echo Flag in
			1C21 has the value of 2 (rain certain). Negative values
			are defined as:
			-1111: Height of Storm not calculated because rain is
			not
			present with a high level of confidence in 1C21
			-8888: No rain
			-9999: Data missing

Bright Band Intensity (SDS, array size nray x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Bright Band	BBintensity(49)	4-byte float	The maximum value of the bright band (dBZ) obtained
Intensity			from normal samples. The range is from 0.00 to 100.0
			dBZ. Negative values are defined as:
			-1111: No bright band
			-8888: No rain
			-9999: Data missing

Spare (SDS, array size nray x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Spare	spare(49)		Spare will characterize the width of the bright band.
			Since this characterization requires much research, the
			meaning is not disclosed.

PR Profile 2A-25 Clutter Flag [CLUTTER_FLAGS]

The Clutter Flags are identical to the clutter information in 1B-21 in the Ray Header.

Name	Name in the TOOLKIT	Format	Description
Mainlobe Clutter	clutFlag(49).mainlobeEd	1-byte	Absolute value of the difference in Range bin Numbers
Edge	ge	integer	between the detected surface and the edge of the clutter
			from the mainlobe.
Sidelobe Clutter	clutFlag(49).sidelobeRan	3 x 1-byte	Absolute value of the difference in Range Bin Numbers
Range	ge	integer	between the detected surface and the clutter position
[3]	(3)		from the sidelobe. A zero means no clutter indicated in
			this field since less than 3 bins contained significant
			clutter.

Clutter Flag (Vdata Table, record size 4 bytes, 49 records)

PR Profile 2A-25 Swath Data [L2A_25_SWATHDATA]

The following parameters are used in describing the formats:

- nscan: the number of PR scans within one granule (9150, on average).
- nray: the number of rays within one PR scan line (49).
- ngeo: the number of geolocation data (2).
- ncell1: the number of radar range cells at which the rain rate is estimated (80).
- ncell2: the number of radar range cells at which the Z-R parameters are output (5).
- nmeth: the number of methods used (2).

Scan Time (Vdata Table, record size 8 bytes, nscan records)

Name	Name in the TOOLKIT	Format	Description
Scan Time	scanTime	2	Scan Time is the center time of 1 scan (the time at center of the nadir beam transmitted pulse). It is expressed as the UTC seconds of the day.

Geolocation (SDS, array size 2 x 49 x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Geolocation	geolocation(2,49)	4-byte float	The earth location of the center of the IFOV at the
			altitude of the earth ellipsoid. The first dimension is
			latitude and
			longitude, in that order. The next dimensions are pixel
			and scan. Values are represented as floating point
			decimal degrees. Off earth is represented as less than or
			equal to -9999.9 Latitude is positive north, negative
			south. Longitude is positive east, negative west. A point
			on the 180th meridian is assigned to the western
			hemisphere.

Scan Status (Vdata Table, record size 15 bytes, nscan records):

The status of each scan is represented in terms of quality, platform and instrument control data, and fractional

orbit number.

Name	Name in the TOOLKIT	Format	Description
Missing	scanStatus.missing	1-byte	Missing indicates whether information is contained in
-		integer	the scan data. The values are:
		_	0: Scan data elements contain information
			1: Scan was missing in the telemetry data
			2: Scan data contains no elements with rain
Validity	scanStatus.validity	1-byte	Validity is a summary of status modes. If all status
		integer	modes are routine, all bits in Validity $= 0$. Routine
		-	means that scan data has been measured in the normal
			operational situation as far as the status modes are
			concerned. Validity does not assess data or geolocation
			quality. Validity is broken into 8 bit flags. Each bit = 0 if
			the status is routine but the bit $= 1$ if the status is not
			routine. Bit 0 is the least significant bit (i.e., if bit $i = 1$
			and
			other bits = 0, the unsigned integer value is 2^{**i}). The
			non-routine situations follow:
			Bit Meaning if bit = 1
			0: Spare (always 0)
			1: Non-routine spacecraft orientation (2 or 3)
			2: Non-routine ACS mode (other than 4)
			3: Non-routine yaw update status (0 or 1)
			4: Non-routine instrument status (other than 1)
			5: Non-routine QAC (non-zero)
			6: Spare (always 0)
			7: Spare (always 0)
QAC	scanStatus.qac	1-byte	The Quality and Accounting Capsule of the Science
		integer	packet as it appears in Level-0 data. If no QAC is given
			in Level-0, which means no decoding errors occurred,
			QAC in this format has a value of zero.
Geolocation Quality	scanStatus.geoQuality	1-byte	Geolocation quality is a summary of geolocation quality
		integer	in the scan. A zero integer value indicates † good 1
			geolocation. A non-zero value broken down into the
			following bit flags indicates:
			Bit Meaning if bit = 1
			0: latitude limit error
			1: geolocation discontinuity
			2: attitude change rate limit error
			3: attitude limit error
			4: satellite undergoing maneuvers
			5: using predictive orbit data
			6: geolocation calculation error
			7: not used
Data Quality	scanStatus.dataQuarity	1-byte	Data quality is a summary of data quality in the scan.
		integer	Unless this is 0 (normal), the scan data is meaningless
			to higher processing. Bit 0 is the least significant bit
			(i.e., if bit $i = 1$ and other bits = 0, the unsigned integer
			value is 2**i).
			Bit Meaning if bit = 1
			0: missing
			5: Geolocation Quality is not normal
			6: Validity is not normal

Current Spacecraft	scanStatus.scOrient	1-byte	Value Meaning
Orientation	scanStatus.scOrient		0: +x forward
Orientation		integer	1: -x forward
			2: -y forward
			3: Inertial - CERES Calibration
			4: Unknown Orientation
Current ACS Mode	scanStatus.acsMode	1 have	
Current ACS Mode	scanStatus.acsMode	1-byte	Value Meaning
		integer	0: Standby
			1: Sun Acquire
			2: Earth Acquire
			3: Yaw Acquire 4: Nominal
			5: Yaw Maneuver
			6: Delta-H (Thruster)
			7: Delta-V (Thruster)
V. Halets Chat	Less Clater - Hallet C	11.4	8: CERES Calibration
Yaw Update Status	scanStatus.yawUpdateS	1-byte	Value Meaning 0: Inaccurate
		integer	
			1: Indeterminate
			2: Accurate
PR Mode	scanStatus.prMode	1-byte	Value Meaning
		integer	0: Other Mode
			1: Observation Mode
PR Status 1	scanStatus.prStatus1	1-byte	The flags listed here indicate warnings of PR conditions
		integer	(noise level, echo power and echo position, and mode
			change). In data processing, users should be cautions with
			the following as a scan with non-zero status includes
			questionable range bins or angle bins.
			0: LOGAMP noise limit error
			1: Noise level limit error (The meaning of this warning
			is the same as the System Noize Warning Flag)
			2: Out of PR dynamic range (Surface echo is so strong
			that it exceeds the PR receiver dynamic range.
			Calibration with the saturated echo may be
			questionable.)
			3: Not reach surface position (If Surface echo is out of
			range window, Bin Surface Peak and related data
			become uncertain.)
			7: FCIF mode change
PR Status 2	scanStatus.prStatus2	1-byte	In some cases, antenna sidelobes are directed to nadir
		integer	receive surface echo positions. When the main beam is
			off nadir, the timing of such nadir-surface clutter can
			contaminate the rain echo. In "PR STATUS2," a
			warning flag is set ON (1) when the nadir surface echo
			(at the nadir angle bin #25) exceeds a predetermined
			threshold. When the flag is ON, please be careful about
			the echoes at all angle bins around the same logical
			range bin number as the Bin-surface-peak at nadir
			(angle bin number 25).
		4.1	
Fractional Orbit	scanStatus.fracOrbitN	4-byte float	The orbit number and fractional part of the orbit at Scan
Fractional Orbit Number	scanStatus.fracOrbitN	4-byte float	The orbit number and fractional part of the orbit at Scan Time. The orbit number will be counted from the

	calculated as:	
	(Scan Time - Orbit Start Time) / (Orbit End Time - Or	rbit
	Start Time)	

Navigation (Vdata, record size 88 bytes, nscan records):

Name	Name in the TOOLKIT		Description
Spacecraft Geocentric Position [3]	navigate.scPosX navigate.scPosY navigate.scPosZ	3 X 4-byte float	The position (m) of the spacecraft in Geocentric Inertial Coordinates at the Scan mid-Time (i.e., time at the middle pixel/IFOV of the active scan period). The order of components is: x, y, and z. Geocentric Inertial Coordinates are also commonly known as Earth Centered Inertial coordinates. These coordinates will be True of Date (rather than Epoch 2000 which are also commonly used), as interpolated from the data in the Flight Dynamics Facility ephemeris files generated for TRMM.
Spacecraft Geocentric Velocity [3]	navigate.scVelX navigate.scVelY navigate.scVelZ	3 X 4-byte float	The velocity (ms -1) of the spacecraft in Geocentric Inertial Coordinates at the Scan mid-Time. The order of components is: x, y, and z.
Spacecraft Geodetic Latitude Spacecraft Geodetic	navigate.scLat	4-byte float4-byte float	The geodetic latitude (decimal degrees) of the spacecraft at the Scan mid-Time. The geodetic longitude (decimal degrees) of the
Longitude	navigate.scLon	4-Dyte moat	spacecraft at the Scan mid-Time. Range is -180 to 179.999999.
Spacecraft Geodetic Altitude	navigate.scAlt	4-byte float	The altitude (m) of the spacecraft above the Earth Ellipsoid at the Scan mid-Time.
Spacecraft Attitude [3]	navigate.scAttRoll navigate.scAttPitch navigate.scAttYaw	3 X 4-byte float	The satellite attitude Euler angles at the Scan mid- Time. The order of the components in the file is roll, pitch, and yaw. However, the angles are computed using a 3-2-1 Euler rotation sequence representing the rotation order yaw, pitch, and roll for the rotation from Orbital Coordinates to the spacecraft body coordinates. Orbital Coordinates represent an orthogonal triad in Geocentric Inertial Coordinates where the Z-axis is toward the geocentric nadir, the Y-axis is perpendicular to the spacecraft velocity opposite the orbit normal direction, and the X-axis is approximately in the velocity direction for a near circular orbit. Note this is geocentric, not geodetic, referenced, so that pitch and roll will have twice orbital frequency components due to the onboard control system following the oblate geodetic Earth horizon. Note also that the yaw value will show an orbital frequency component relative to the Earth fixed ground track due to the Earth rotation relative to inertial coordinates.
Sensor Orientation Matrix [3 X 3]	navigate.att1 navigate.att2 navigate.att3 navigate.att4 navigate.att5 navigate.att6 navigate.att7	3 X 3 X 4-byte float	The rotation matrix from the instrument coordinate frame to Geocentric Inertial Coordinates at the Scan mid-Time.

	navigate.att8 navigate.att9		
Greenwich Hour	navigate.greenHourAng	4-byte float	The rotation angle (degrees) from Geocentric Inertial
Angle			Coordinates to Earth Fixed Coordinates.

Rain Rate (SDS, array size ncell x nray x nscan, 2-bytes integer):

Name	Name in the TOOLKIT	Format	Description	
Rain Rate	rain(80,49)	2-byte	This is the estimate of rain rate at the radar range gates	
		integer	from 0 to 20 km. It ranges from 0.0 to 3000.0 mm/h and is	
			multiplied by 10 and stored as a 2-byte integer. A value	
			of -88.88 mm/hr (stored as -889) means ground clutter.	

Reliability (SDS, array size ncell x nray x nscan, 1-byte integer):

Name	Name in the TOOLKIT	Format	Description
Reliability	reliab(80,49)	1-byte	The Reliability is that for estimated rain rates at the
		integer	radar range gates from 0 to 20 km. It ranges from 0 to 255.
			If data are missing, the reliability will be set as
			10000000 in binary. The default value is 0 (measured
			signal below noise). Bit 0 is the least significant bit (i.e.,
			if bit i =1 and other bits =0, the unsigned integer value is
			2**i). The following meanings are assigned to each bit
			in the 8-bit integer if the bit $= 1$.
			• bit 0 rain
			• bit 1 rain certain
			• bit 2 bright band
			• bit 3 large attenuation
			• bit 4 weak return (Zm < 20 dBZ)
			• bit 5 estimated $Z < 0 dBZ$
			• bit 6 main-lobe clutter or below surface
			• bit 7 missing data

Corrected Z-factor (SDS, array size ncell x nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Corrected Z-factor		2-byte integer	This is the attenuation corrected Z-factor at the radar range gates from 0 to 20 km. It ranges from 0.1 to 80.0 dB of mm ⁶ m ⁻³ and is multiplied by 10 and stored as a 2-byte integer. A value of -88.88 dB (stored as -889) means ground clutter. A value of -77.77 dB (stored as -778) mans Z was less than 0 dBZ.

Attenuation Parameter Node (SDS, array size ncell2 x nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Attenuation	attenparmNode(5,49)	2-byte	The Attenuation Parameter Node gives the range bin
Parameter Node		integer	numbers of the nodes at which the values of Attenuation
			Parameter Alpha are given (see below). The values of
			Alpha between the nodes are linearly interpolated. This
			variable ranges from 0 and 79 and is unitless.

Attenuation Parameter Alpha (SDS, array size 2 x nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Attenuation	attenParmAlpha(5,49)	2-byte	The attenuation parameter Alpha (α) relates the

Parameter Alpha	inte	eger a	attenuation coefficient, k (dB/km) to the Z-factor: $k =$
i urumeter i inpitu	iiite		αZ^{β} . α is computed at ncell2 radar range gates for each
			ray. It ranges from 0.000100 to 0.002000 and is multiplied
		C	by 10 ⁶ and stored as a 2-byte integer.

Attenuation Parameter Beta (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Attenuation	attenParmBeta(49)	2-byte	The Attenuation Parameter Beta (β) relates the
Parameter Beta		integer	attenuation coefficient, k (dB/km) to the Z-factor: $k =$
			αZ^{β} . β is computed at ncell2 radar range gates for each
			ray. It ranges from 0.500 to 2.000 and is multiplied by 10^3
			and stored as a 2-byte integer.

Z-R Parameter Node (SDS, array size ncell2 x nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Z-R Parameter Node		•	The Z-R Parameter Node gives the range bin numbers of
		Ū.	the nodes at which the Z-R parameters "a" and "b" are given (see below). The values of a and b between the nodes are linearly interpolated. This variable ranges
			from 0 and 79 and is unitless.

Z-R Parameter a (SDS, array size ncell2 x nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Z-R Parameter a	ZRParmA(5,49)	2-byte	Parameter a for Z-R relationship (R=aZ ^b) is determined
		integer	from the rain type and the height relative to the freezing
			level, the non-uniformity parameter (ξ) and the
			correction factor (ϵ) for the surface reference technique.
			a is computed at 10 radar range gates for each ray. It
			ranges from 0.0050 to 0.2000 and is multiplied by 10^4 and
			stored as a 2-byte integer.

Z-R Parameter b (SDS, array size ncell2 x nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Z-R Parameter b	ZRParmB(5,49)	2-byte	Parameter b for Z-R relationship (R=aZ ^b) is determined
		integer	from the rain type and the height relative to the freezing
			level, the non-uniformity parameter (ξ) and the
			correction factor (ϵ) for the surface reference technique.
			b is computed at 10 radar range gates for each ray. It
			ranges from 0.500 to 1.000 and is multiplied by 10 ³ and
			stored as a 2-byte integer.

Maximum Z (SDS, array size nray x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Maximum Z	zmmax(49)	4-byte float	This is the maximum value of measured reflectivity at
			each IFOV. It ranges from 0.0 to 100.0 dBz.

Rain Flag (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Rain Flag	rainFlag(49)	2-byte	The Rain Flag indicates rain or no rain status and the
		integer	rain type assumed in rain rate retrieval. The default
			value is 0 (no rain). Bit 0 is the least significant bit (i.e.,

if hit $i-1$ and other hits -0 , the uncioned integer value is
if bit $i=1$ and other bits =0, the unsigned integer value is
2**i).
The following meanings are assigned to each bit in the
16-bit integer if the bit $= 1$.
• bit 0 rain possible
• bit 1 rain certain
• bit 2 zeta^beta > 0.5 [Path Integrated Attenuation
(PIA) larger than 3 dB]
• bit 3 large attenuation (PIA larger than 10 dB)
• bit 4 stratiform
• bit 5 convective
• bit 6 broad band exists
• bit 7 warm rain
• bit 8 rain bottom above 2 km
• bit 9 rain bottom above 4 km
• bit 10 not used
• bit 11 not used
• bit 12 not used
• bit 13 not used
• bit 14 data missing between rain top and bottom
• bit 15 not used

Range Bin Number (SDS, array size 6 x nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Name Range Bin Number		Format 2-byte integer	 This array gives the Range Bin Number of various quantities for each ray in every scan. The definitions are: top range bin number of the interval that is processed as meaningful data in 2A-25 bottom range bin number of the interval that is processed as
			 meaningful data in 2A-25 actual surface range bin number range bin number of the bright band if it exits range bin number at which the path-integrated Z-factor first exceeds the given threshold range bin number at which the measured Z-factor is
			maximum The Range Bin Numbers in this algorithm are different from the NASDA definition of Range Bin Number described in the ICS, Volume 3. The Range Bin Numbers in the algorithm range from 0 to 79 and have an interval of 250m. The earth ellipsoid is defined as range bin 79.

Averaged Rain Rate (SDS, array size 2 x nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Averaged Rain Rate	rainAve(2,49)	2-byte	There are two kinds of Average Rain Rate. The first one
		integer	is the average rain rate for each ray between the two
			predefined heights of 2 and 4 km. It ranges from 0.0 to
			3000.0 mm h ⁻¹ and is multiplied by 10 and stored as a
			2-byte integer. The second one is the integral of rain rate
			from rain top to rain bottom. It ranges from 0.0 to 3000

7

	mm km h ⁻¹ and is multiplied by 10 and stored as a 2-b
	integer.

Weight (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLK	T Format	Description
Weight	weightW(49)	2-byte integer	The Weight is the weighting function of an estimate of the path-integrated attenuation and its reliability. It ranges from 0.000 to 1.000 and is multiplied by 10^3 and stored as a 2-byte integer.

Method Flag (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Method Flag	method	2-byte	This flag indicates which method is used to derive the
		integer	rain rate. The default value is 0 (including no rain case).
			Bit 0 is the least significant bit (i.e., if bit i =1 and other
			bits =0, the unsigned integer value is 2^{**i}).
			Bits 0 and 1 contain the following values:
			0 - rain over ocean
			1 - rain over land
			2 - rain over coast
			3 - rain over other surface (inland lake, etc.)
			The following meanings are assigned to the other bits in
			the 16-bit integer if the bit $= 1$.
			• bit 2 constant-Z-near-surface method
			• bit 3 rain less than 5 bins
			• bit 4 not enough (<5) successive rain data
			• bit 5 positive slope near surface
			• bit 6 zeta >= 1.0
			• bit 7 quadratic weighting
			• bit 8 NUBF correction very large (> 2.0)
			• bit 9 No NUBF because NSD unreliable
			• bit 10 NUBF for Z-R below lower bound
			• bit 11 NUBF for PIA above upper bound
			• bit 12 NUBF for PIA below lower bound
			• bit 13 surface attenuation after NUBF correction > 60
			dB
			• bit 14 data missing between rain top and bottom
			• bit 15 not used

Epsilon (SDS, array size nray x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Epsilon	epsilon(49)	4-byte float	The Epsilon (ϵ) is the correction factor for the surface
			reference. It ranges from 0.0 to 100.0.

Zeta (SDS, array size nmeth x nray x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Zeta	zeta(2,49)	•	The Zeta (ζ) roughly represents the rain rate integrated along the ray using two different methods. It ranges from
			0.0 to 100.0 and is unitless.

Zeta_mn (SDS, array size nmeth x nray x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Zeta_mn	zeta_mn(2,49)	4-byte float	Zeta_mn (ζ mn) is the average of zeta (ζ) in the vicinity
			of each beam position (average over three scans and
			three IFOVs). It is calculated using two methods. It
			ranges from 0.0 to 100.0 and is unitless.

Zeta_sd (SDS, array size nmeth x nray x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Rain Oversample	zeta_sd(2,49)		Zeta_sd (ζ sd) is the standard deviation of zeta (ζ) in the
			vicinity of each beam position (using three scans and
			three IFOVs). It is calculated using two methods. It
			ranges from 0.0 to 100.0 and is unitless.

Xi (SDS, array size nmeth x nray x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Xi	xi(2,49)	4-byte float	The Xi is the normalized standard deviation defined as
			Zeta_sd/Zeta_mn. When Zeta_mn takes on small values
			(or zero) Xi is set to 99.0. It is calculated using two
			methods. Xi ranges from 0.0 to 99.0 and is unitless.

Thresholded PIZ Thickness (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Thresholded PIZ	thickThPIZ(49)	2-byte	This is the number of range bins (250m resolution)
Thickness		integer	between the highest range at which rain is certain and
			the range at which the Path-Integrated Z-factor (PIZ)
			first exceeds a threshold. This is a unitless quantity and
			it ranges from 0 to 79.

NUBF Correction Factor (SDS, array size 2 x nray x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
NUBF Correction	nubfCorrectFactor(2,49)	4-byte float	The Non-Uniform Beam Filling (NUBF) Correction
Factor			Factor is used as a correction to reflectivity and
			attenuation calculations. The two NUBF Correction
			Factors are given for the K-Z and Z-R relations. The
			ranges are 1.0 to 2.0 and .9 to 1.0, respectively. Both are
			unitless quantities.

Quality Flag (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Quality Flag	qualityFlag(49)	2-byte integer	This quality flag gives the overall error that affects the entire angle bin data, such as the error associated with the non-uniform beam filling effect and the surface reference reliability. It ranges from 0 to 255. If data are missing, the reliability will be set as 10000000 in binary. The default value is 0 (normal). Bit 0 is the least significant bit (i.e., if bit i =1 and other bits =0, the unsigned integer value is 2**i). The following meanings are assigned to each bit in the 16-bit integer if the bit = 1. • bit 0 unusual situation in rain average

9

• bit 1 mean of zeta too small for NSD (xi) calculation
• bit 2 NSD of zeta (xi) calculated from less than 6
points
• bit 3 mean of PIA too small for NSD (PIA)
calculation
• bit 4 NSD of PIA calculated from less than 6 points
• bit 5 epsilon not reliable (sigma0 marginally reliable)
• bit 6 2A21 input data not reliable
• bit 7 2A23 input data not reliable
• bit 8 range bin error
• bit 9 sidelobe clutter removal
• bit 10 not used
• bit 11 not used
• bit 12 not used
• bit 13 not used
• bit 14 data missing between rain top and bottom
• bit 15 not used

Near Surface Rain (SDS, array size nray x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Near Surface Rain	nearSurfRain(49)	4-byte float	Rainfall rate near the surface. The range is 0 to 3000
			mm/hr.

Near Surface Z (SDS, array size nray x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Near Surface Z	nearSurfZ(49)	4-byte float	Reflectivity near the surface. The range is 0.0 to 100.0
			dBZ.

PIA 2A25 (SDS, array size nray x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
PIA 2A25	pia2a25(49)	4-byte float	The Path Integrated Attenuation (PIA) estimated by
			2A25 The range is 0.0 to 50.0 dB.

Error Rain (SDS, array size nray x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Error Rain	errorRain(49)	4-byte float	The error in Near Surface Rain Rate. The range is 0 to
			3000 mm/hr.

Error Z (SDS, array size nray x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Error Z	errorZ(49)	4-byte float	The error in Near Surface Z. The range is 0.0 to 100.0
			dBZ.

Spare (SDS, array size 2 x nray x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Spare	spare(49)	4-byte float	Contents and ranges are not public.

TRMM Combined 2B-31 Swath Data [L2B_31_SWATHDATA]

The following parametersare used in describing the formats:

- nscan: the number of PR scans within one granule (9150, on average).
- nray: the number of rays within one PR scan line (49).
- ngeo: the number of geolocation data (2).
- Nradarrange: the number of radar range gates, up to about 20 km from the earth ellipsoid (80).

Scan Time (Vdata Table, record size 8 bytes, nscan records)

Name	Name in the TOOLKIT	Format	Description
Scan Time	scanTime	·	Scan Time is the center time of 1 scan (the time a center of the nadir beam transmitted pulse). It is expressed as the UTC seconds of the day.

Geolocation (SDS, array size ngeo x nray x nscan, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Geolocation	geolocation(2,49)	4-byte float	The earth location of the center of the IFOV at the
			altitude of the earth ellipsoid. The first dimension
			is latitude and
			longitude, in that order. The next dimensions are
			pixel and scan. Values are represented as floating
			point decimal degrees. Off earth is represented as
			less than or equal to -9999.9 Latitude is positive
			north, negative south. Longitude is positive east,
			negative west. A point on the 180th meridian is
			assigned to the western hemisphere.

Scan Status (Vdata Table, record size 15 bytes, nscan records):

The status of each scan is represented in terms of quality, platform and instrument control data, and fractional orbit number. All bytes in Scan Status are copied from the 1B-21 Scan Status including the Missing byte. 2B reset the Missing byte if it determines data is missing or there is no-rain.

Name	Name in the TOOLKIT	Format	Description
Missing	scanStatus.missing	1-byte integer	Missing indicates whether information is
			contained in the scan data. The values are:
			0: Scan data elements contain information
			1: Scan was missing in the telemetry data
			2: Scan data contains no elements with rain
Validity	scanStatus.validity	1-byte integer	Validity is a summary of status modes. If all status
			modes are routine, all bits in Validity = 0. Routine
			means that scan data has been measured in the
			normal operational situation as far as the status
			modes are concerned. Validity does not assess
			data or geolocation quality. Validity is broken into
			8 bit flags. Each bit = 0 if the status is routine but
			the bit $= 1$ if the status is not routine. Bit 0 is the
			least significant bit (i.e., if bit $i = 1$ and
			other bits = 0, the unsigned integer value is 2^{**i}).
			The non-routine situations follow:
			Bit Meaning if bit = 1
			0: Spare (always 0)

		1: Non-routine spacecraft orientation (2 or 3)
		2: Non-routine ACS mode (other than 4)
		3: Non-routine yaw update status (0 or 1)
		4: Non-routine instrument status (other than 1)
		5: Non-routine QAC (non-zero)
		6: Spare (always 0)
		7: Spare (always 0)
QAC	scanStatus.qac	1-byte integer The Quality and Accounting Capsule of the
Q.I.C	seunstatusique	Science packet as it appears in Level-0 data. If no
		QAC is given in Level-0, which means no
		-
		decoding errors occurred, QAC in this format has a
		value of zero.
Geolocation Quality	scanStatus.geoQuality	1-byte integer Geolocation quality is a summary of geolocation
		quality in the scan. A zero integer value indicates
		₱goodl geolocation. A non-zero value broken
		down into the following bit flags indicates:
		Bit Meaning if $bit = 1$
		0: latitude limit error
		1: geolocation discontinuity
		2: attitude change rate limit error
		3: attitude limit error
		4: satellite undergoing maneuvers
		5: using predictive orbit data
		6: geolocation calculation error
		7: not used
Data Quality	scanStatus.dataQuarity	1-byte integerData quality is a summary of data quality in the
		scan. Unless this is 0 (normal), the scan data is
		meaningless to higher processing. Bit 0 is the leas
		significant bit (i.e., if bit $i = 1$ and other bits = 0,
		the unsigned integer value is 2**i).
		Bit Meaning if bit = 1
		0: missing
		5: Geolocation Quality is not normal
		6: Validity is not normal
Comment Care a sect		
Current Spacecraft	scanStatus.scOrient	1-byte integerValue Meaning
Orientation		0: +x forward
		1: -x forward
		2: -y forward
		3: Inertial - CERES Calibration
		4: Unknown Orientation
Current ACS Mode	scanStatus.acsMode	1-byte integerValue Meaning
		0: Standby
		1: Sun Acquire
		2: Earth Acquire
		3: Yaw Acquire
		4: Nominal
		5: Yaw Maneuver
		6: Delta-H (Thruster)
		7: Delta-V (Thruster)
		8: CERES Calibration
Yaw Update Status	scanStatus.yawUpdateS	1-byte integer Value Meaning
raw Opuale Status	Scanstatus.yawOpuates	0: Inaccurate
		1: Indeterminate
	1	

		2: Accurate
PR Mode	scanStatus.prMode	1-byte integerValue Meaning 0: Other Mode 1: Observation Mode
PR Status 1	scanStatus.prStatus1	1-byte integer The flags listed here indicate warnings of PR conditions (noise level, echo power and echo position, and mode change). In data processing, use should be cautions with the following as a scan wit non-zero status includes questionable range bins or angle bins. 0: LOGAMP noise limit error 1: Noise level limit error (The meaning of this warning is the same as the System Noize Warning Flag) 2: Out of PR dynamic range (Surface echo is so strong that it exceeds the PR receiver dynamic range. Calibration with the saturated echo may be questionable.) 3: Not reach surface position (If Surface echo is out of range window, Bin Surface Peak and related data become uncertain.) 7: FCIF mode change
PR Status 2	scanStatus.prStatus2	1-byte integerIn some cases, antenna sidelobes are directed to nadir receive surface echo positions. When the main beam is off nadir, the timing of such nadir- surface clutter can contaminate the rain echo. In iPR STATUS2,î a warning flag is set ON (1) whe the nadir surface echo (at the nadir angle bin #25 exceeds a predetermined threshold. When the fla is ON, please be careful about the echoes at all angle bins around the same logical range bin number as the Bin-surface-peak at nadir (angle b number 25).
Fractional Orbit Number	scanStatus.fracOrbitN	4-byte float The orbit number and fractional part of the orbit a Scan Time. The orbit number will be counted fro the beginning of the mission. The fractional part is calculated as: (Scan Time - Orbit Start Time) / (Orbit End Time Orbit Start Time)

Navigation (Vdata, record size 88 bytes, nscan records):

Name	Name in the TOOLKIT	Format	Description
Spacecraft Geocentric	navigate.scPosX	3 X 4-byte	The position (m) of the spacecraft in Geocentric
Position [3]	navigate.scPosY	float	Inertial Coordinates at the Scan mid-Time (i.e.,
	navigate.scPosZ		time at the middle pixel/IFOV of the active scan
			period). The order of components is: x, y, and z.
			Geocentric Inertial Coordinates are also

Spacecraft Geocentric Velocity [3] Spacecraft Geodetic Latitude Spacecraft Geodetic	navigate.scVelX navigate.scVelY navigate.scVelZ navigate.scLat navigate.scLon	3 X 4-byte float 4-byte float 4-byte float	commonly known as Earth Centered Inertial coordinates. These coordinates will be True of Date (rather than Epoch 2000 which are also commonly used), as interpolated from the data in the Flight Dynamics Facility ephemeris files generated for TRMM. The velocity (ms -1) of the spacecraft in Geocentric Inertial Coordinates at the Scan mid- Time. The order of components is: x, y, and z. The geodetic latitude (decimal degrees) of the spacecraft at the Scan mid-Time. The geodetic longitude (decimal degrees) of the
Longitude			spacecraft at the Scan mid-Time. Range is -180 to 179.999999.
Spacecraft Geodetic Altitude	navigate.scAlt	4-byte float	The altitude (m) of the spacecraft above the Earth Ellipsoid at the Scan mid-Time.
Spacecraft Attitude [3] Sensor Orientation	navigate.scAttRoll navigate.scAttPitch navigate.scAttYaw	3 X 4-byte float	The satellite attitude Euler angles at the Scan mid-Time. The order of the components in the file is roll, pitch, and yaw. However, the angles are computed using a 3-2-1 Euler rotation sequence representing the rotation order yaw, pitch, and roll for the rotation from Orbital Coordinates to the spacecraft body coordinates. Orbital Coordinates represent an orthogonal triad in Geocentric Inertial Coordinates where the Z-axis is toward the geocentric nadir, the Y-axis is perpendicular to the spacecraft velocity opposite the orbit normal direction, and the X-axis is approximately in the velocity direction for a near circular orbit. Note this is geocentric, not geodetic, referenced, so that pitch and roll will have twice orbital frequency components due to the onboard control system following the oblate geodetic Earth horizon. Note also that the yaw value will show an orbital frequency component relative to the Earth fixed ground track due to the Earth rotation relative to inertial coordinates. The rotation matrix from the instrument coordinate
Matrix [3 X 3]	navigate.att1 navigate.att2 navigate.att3 navigate.att4 navigate.att5 navigate.att6 navigate.att7 navigate.att8 navigate.att9	4-byte float	frame to Geocentric Inertial Coordinates at the Scan mid-Time.
Greenwich Hour Angle	navigate.greenHourAng	4-byte float	The rotation angle (degrees) from Geocentric Inertial Coordinates to Earth Fixed Coordinates.

D-hat (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
D-hat	dHat(49)	2-byte	D-hat is the correlation-corrected mass-weighted
		integer	mean drop diameter. It is multiplied by 100 and

stored as a two-byte integer. The accuracy is 0.01
"normalized"*mm. It ranges from 0.7 to 1.8
"normalized" mm (the value 0 indicates no rain or
bad data). The accuracy is 0.01 "normalized" mm.
The parameters Λ , μ and N_0 of the corresponding
drop size distribution $N(D)dD = N_0 D^{\mu}e^{-\Lambda D} dD$,
giving the number per cubic-meter of drops of
diameter between D and $D + dD$ mm, can be
obtained from dHat and the rain rate rHat using the
formulas:
$\mu = -4 + 1/(0.1521 dHat^{0.23} rHat^{0.074})$
$\Lambda = 1/(0.1521 \text{dHat}^{1.33} \text{rHat}^{0.23})$
$N0 = 55 \text{ rHat } \Lambda^{\mu+4} / (\Gamma(\mu+4))(1 - (1 + 0.53))$
Λ) ^{-μ-4})
Similarly, the rain rate rHat mm/hr can be
converted into a liquid water M (g/m ³) using the
formula:
$M = 0.02878 rHat/(1 - (1 + 0.53/\Lambda)^{-\mu-4})$
The average value of dHat is around 1.1
"normalized" mm, a unit which comes from the
fact that dHat is related to the true mass-weighted
mean drop diameter D^* mm by the formula
dHat = D^* rHat ^{-0.155} (with rHat in mm/hr).

Sigma-D-hat (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Sigma-D-hat	sigmaDhat(49)	2-byte	Sigma-D-hat is the RMS uncertainty in D-Hat. It
		integer	ranges from 0.00 to 2.00 "normalized"* mm and is
			multiplied by 100 and stored as a two-byte integer.
			The accuracy is 0.01 "normalized" mm.

Epsilon (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Epsilon	epsilon	2-byte	Epsilon is the correction made to the input path-
		integer	integrated attenuation estimate. It ranges from -
			50.0 to 50.0 dB and is multiplied by 10 and stored
			as a two-bye integer. The accuracy is 0.1 dB.

Sigma-epsilon (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Sigma-epsilon	sigmaEpsilon	2-byte integer	Sigma-epsilon is the RMS uncertainty in the correction made to the input path-integrated attenuation estimate. It ranges from 0.0 to 50.0 dB and is multiplied by 10 and stored as a two-byte integer. The accuracy is 0.1dB.

R-hat (SDS, array size Nradarrange x nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
R-hat	rHat(80,49)	2-byte	R-hat is the instantaneous rain rate at the radar
		integer	range gates. It ranges from 0.0 to 500.0 mm/hr and
			is multiplied by 10 and stored as a two-byte integer
			The accuracy is 0.1 mm/hr.

Sigma-R-hat (SDS, array size Nradarrange x nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Sigma-R-hat	sigmaRHat(80,49)	2-byte	Sigma-R-hat is the RMS uncertainty in the R-hat
		integer	estimated at the radar range gates. It is multiplied
			by 10 and stored as a two-byte integer. It ranges
			from -125 to 125 mm/hr (the negative sign
			indicating estimates based on a "rain-possible"
			detection by the radar rather than the "rain-certain
			associated with positive values). The values -125
			and 125 are reserved for cases where the RMS
			uncertainty could not be accurately estimated. The
			accuracy is 0.5 mm/hr.

PIA (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
PIA	pia(49)	2-byte	PIA is the PR + TMI estimate of the path-
		integer	integrated one-way radar attenuation. It ranges
			from 0.0 to 50.0 dB and is
			multiplied by 10 and stored as a two-byte integer.
			The accuracy is 0.1 dB. Z-R

Sigma-PIA (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Sigma-PIA	sigmaPIA(49)	2-byte	Sigma-PIA is the RMS uncertainty in PIA. It
		integer	ranges from 0.0 to 50.0 dB and is multiplied by 10
			and stored as an integer. The accuracy is 0.1 dB.

TMI-PIA (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
TMI-PIA	tmiPIA(49)	2-byte	TMI-PIA is the TMI-based estimate of the one-way
		integer	path-integrated radar attenuation. It ranges from 0.0
			to 50.0 dB and is multiplied by 10 and stored as a
			two-byte integer. The accuracy is 0.1 dB

Sigma-TMI-PIA (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Sigma-TMI-PIA	sigmaTMIpia(49)	integer	Sigma-TMI-PIA is the RMS uncertainty in the TMI-PIA. It ranges from 0.0 to 50.0 dB and is multiplied by 10 and stored as a two-byte integer. The accuracy is 0.1 dB.

RR-Surf (SDS, array size nray x nscan, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
RR-Surf	rrSurf(49)	2-byte	The RR-Surf is the surface rainrate. It ranges from
		integer	0.0 to 500.0 mm/hr and is multiplied by 10 and
			stored as a two-byte integer. The accuracy is 0.1
			mm/hr.

Name	Name in the TOOLKIT	Format	Description
Sigma-RR-Surf	sigmaRRsurf(49)	2-byte	The Sigma-RR-Surf is the RMS uncertainty in
		integer	RR-Surf. It is multiplied by 10 and stored as a
			two-byte integer. It ranges from -125 to 125 mm/hr
			(the negative sign indicating
			estimates based on a "rain-possible" detection by
			the radar rather than the "rain-certain" associated
			with positive values). The values -125 and 125 are
			reserved for cases where the RMS uncertainty
			could not be accurately estimated. The accuracy is
			0.5mm/hr.

Sigma-RR-Surf (SDS, array size nray x nscan, 2-byte integer):

* "normalized units" are defined as follows: If a variable X, expressed in grams, is correlated with the rain rate R and a variable Y is defined where $Y = X * R^{0.37}R$, then the unit of Y is called "normalized grams".

TMI Emission 3A-11 Planetary Grid [L3A_11_PLANETGRID]

The following parameters are used in describing the formats:

- nlat: the number of 5° grid intervals of latitude from 40° N to 40° S (16).
- nlon: the number of 5° grid intervals of longitude from 180° W to 180° E (72).

Monthly Rainfall (SDS, array size nlat x nlon, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Monthly Rainfall	monthRain(16,72)	2-byte	The Monthly Rainfall is the surface rainfall over oceans
·		integer	in 5° x 5° boxes from 40°N to 40°S. It ranges from 0.0 to
			3000.0 mm and is multiplied by 10 and stored as a 2-byte
			integer. Data on land areas are assigned the value -9999.

Number of Samples (SDS, array size nlat x nlon, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Number of Samples	noOfSamples(16,72)	2-byte	The Number of Samples is that over oceans in $5^{\circ} \ge 5^{\circ}$
		integer	boxes for one month. Ranges are TBD . Data on land
			areas are assigned the value -9999.

Chi Square Fit (SDS, array size nlat x nlon, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Chi Square Fit	chiSqFit(16,72)	2-byte	The Chi Square Fit indicates how well the histogram of
		integer	brightness temperatures fits the lognormal distribution
			function in 5° x 5° boxes for one month. It ranges from 1 to
			5000. Data on land areas are assigned the value -9999.

Freezing Level (SDS, array size nlat x nlon, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Freezing Level	freezLevel (16,72)	2-byte	The Freezing Level is the estimated height of 0°C
		integer	isotherm over oceans in $5^{\circ} \ge 5^{\circ}$ boxes for one month. It
			ranges from 0.00 to 6.00 km and is multiplied by 100 and
			stored as a 2-byte integer. Data on land areas are
			assigned the value -9999.

T_0 (SDS, array size nlat x nlon, 2-byte integer):

,	, <u>,</u>	Ŭ,	
Name	Name in the TOOLKIT	Format	Description
T_0	T0(16,72)	2-byte	The T_0 is the mean of non-raining brightness
		integer	temperatures over oceans in 5° x 5° boxes for one month.
			It ranges from 160.0 to 180.0 K and is multiplied by 10
			and stored as a 2-byte integer. Data on land areas are
			assigned the value -9999.

r_0 (SDS, array size nlat x nlon, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
r_0	r0(16,72)	2-byte	The r_0 is the logarithmic mean rain rate over oceans in
		integer	5° x 5° boxes for one month. It ranges from 0.00 to 15.00
			mm/h
			and is multiplied by 100 and stored as a 2-byte integer.
			Data on land areas are assigned the value -9999.

Sigma_r (SDS, array size nlat x nlon, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Sigma_r	0 () /	2-byte integer	The Sigma_r(σ_r) is the standard deviation of logarithmic rain rates over oceans in 5° x 5° boxes for one month. It ranges from 0.00 to 1.00 mm/h and is multiplied by 100 and stored as a 2-byte integer. Data on land areas are assigned the value -9999.

Probability of Rain (SDS, array size nlat x nlon, 2-byte integer):

		- , -	
Name	Name in the TOOLKIT	Format	Description
Probability of Rain	probRain(16,72)	2-byte	The Probability of Rain is that over oceans in $5^{\circ} \ge 5^{\circ}$
		integer	boxes for one month. It ranges from 0.000 to 1.000 and is
			multiplied by 1000 and stored as a 2-byte integer. Data
			on land areas are assigned the value -9999.

Quality Indicator 1 (SDS, array size nlat x nlon, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Quality Indicator 1	qInd1(16,72)	2-byte	TBD.
		integer	

Quality Indicator 2 (SDS, array size nlat x nlon, 2-byte integer):

		, ,	
Name	Name in the TOOLKIT	Format	Description
Quality Indicator 2	qInd2(16,72)	2-byte	TBD.
		integer	

Quality Indicator 3 (SDS, array size nlat x nlon, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Quality Indicator 3	qInd3(16,72)	2-byte	TBD.
		integer	

Spare (SDS, array size nlat x nlon, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Spare	spare(16,72)	2-byte	TBD.
		integer	

PR Rainfall 3A-25 Planetary Grid 1 [L3A_25_GRID]

The following parameters are used in describing the formats:

- nlat: the number of 5° grid intervals of latitude from 40° N to 40° S (16).
- nlon: the number of 5° grid intervals of longitude from 180°W to 180°E (72).
- nh1: the number of fixed heights above the earth ellipsoid, at 2, 4, 6, 10, and 15 km plus one for path-average (6).
- nh2: the number of fixed heights above the earth ellipsoid, at 2, 4, and 6 km (3).
- ncat2: the second number of categories for histograms (30). Note that the number of thresholds is one greater than the number of categories. Thresholds are given below for several variables, others

are

TBD.

Reflectivity (dBZ) (bhz): 0.01, 12., 14., 16., 18., 20., 22., 24., 26., 28., 30., 32., 34., 36., 38., 40., 42., 44., 46., 48., 50., 52., 54., 56., 58., 60., 62., 64., 66., 68., 70.

Bright Band Height (km) (bhbb):

0.01, 0.25, 0.5, 0.75, 1., 1.25, 1.5, 1.75, 2., 2.25, 2.5, 2.75, 3., 3.25, 3.5, 3.75, 4., 4.25, 4.5, 4.75, 5., 5.25, 5.5, 5.75, 6., 6.25, 6.5, 6.75, 7., 7.5, 20.

Storm Height (km) (bhstorm): 0.01, 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10., 10.5, 11., 11.5, 12., 12.5, 13., 14., 15., 16., 20.

Snow Depth (km) (bhdepth):

0.01, 0.5, 0.75, 1., 1.25, 1.5, 1.75, 2., 2.25, 2.5, 2.75, 3., 3.25, 3.5, 3.75, 4., 4.25, 4.5, 4.75, 5., 5.25, 5.5, 5.75, 6., 6.25, 6.5, 6.75, 7., 7.25, 7.5, 20.

Zpzm (km) (bhzpzm): 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 22., 24., 26., 28., 30., 32., 34., 36., 38., 50.

All PIA (dB) (bhpia): 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10., 100.

NUBF or Non-Uniform Beam Filling Factor (unitless) (bhnubf): 1., 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55, 1.6, 1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95, 2., 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0

Xi or Horizontal Non-Uniformity Parameter (unitless) (bhxi): 0., 0.2, 0.4, 0.6, 0.8, 1., 1.2, 1.4, 1.6, 1.8, 2., 2.2, 2.4, 2.6, 2.8, 3., 3.2, 3.4, 3.6, 3.8, 4., 4.2, 4.4, 4.6, 4.8, 5., 10., 20., 30., 50., 10000.

Epsilon conditioned on use of SRT (unitless) (bhepsilon): 0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1., 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2., 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0

3A25 - 1

• nang: the number of fixed incidence angles, at 0° , 5° , 10° and 15° (4).

Rain Rate Mean 1 (SDS, array size nlat x nlon x nh1, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Rain Rate Mean 1	grid1.rainMean1(16,72,6)	4-byte float	Rain Rate Mean 1 gives means of nonzero rain rates
			over $5^{\circ} \ge 5^{\circ}$ boxes for one month. The rain rates are
			determined in 2A-25 and evaluated for the path-average
			and at the fixed heights of 2, 4, 6, 10 and 15 km. It ranges
			from 0.0 to 3000.0 mm/h.

Rain Rates Dev. 1 (SDS, array size nlat x nlon x nh1, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Rain Rates Dev. 1	grid1.rainDev1(16,72,6)		These are standard deviations of nonzero rain rates over 5° x 5° boxes for one month. The rain rates are determined in 2A-25 and evaluated for path-average and at the fixed heights of 2.4.6.10 and 15 km. It represented that the fixed heights of 2.4.6.10 and 15 km.
			at the fixed heights of 2, 4, 6, 10 and 15 km. It ranges from 0.0 to 3000.0 mm/h.

Conv. Rain Rate Mean 1 (SDS, array size nlat x nlon x nh1, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Conv. Rain Rate	grid1.convRainMean1	4-byte float	Conv. Rain Rate Mean 1 gives means of nonzero rain
Mean 1	(16,72,6)		rates for convective rain over 5° x 5° boxes for one
			month. The rain rates are determined in 2A-25 and
			evaluated for path-average and at the fixed heights of 2,
			4, 6, 10 and 15 km. It ranges from 0.0 to 3000.0 mm/h.

Conv. Rain Rates Dev. 1 (SDS, array size nlat x nlon x nh1, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Conv. Rain Rates	grid1.convRainDev1	4-byte float	Conv. Rain Rates Dev. 1 gives standard deviations of
Dev. 1	(16,72,6)		nonzero rain rates for convective rain over 5° x 5° boxes
			for one month. The rain rates are determined in 2A-25
			and evaluated for path-average and at the fixed heights
			of 2, 4, 6, 10 and 15 km. It ranges from 0.0 to 3000.0
			mm/h.

Strat. Rain Rate Mean 1 (SDS, array size nlat x nlon x nh1, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Strat. Rain Rate	grid1.stratRainDev1(16,7	4-byte float	Strat. Rain Rate Mean 1 gives means of nonzero rain
Mean 1	2,6)		rates for stratiform rain over 5° x 5° boxes for one month.
			The rain rates are determined in 2A-25 and evaluated for
			path-average and at the fixed heights of 2, 4, 6, 10 and 15
			km. It ranges from 0.0 to 3000.0 mm/h.

Strat. Rain Rates Dev. 1 (SDS, array size nlat x nlon x nh1, 4-byte float):	Strat. Rain Rates Dev. 1	(SDS, array	v size nlat x nlon x	x nh1, 4-byte float):
---	--------------------------	-------------	----------------------	-----------------------

Name	Name in the TOOLKIT	Format	Description
Strat. Rain Rates	grid1.stratRainDev1(16,7	4-byte float	Strat. Rain Rates Dev. 1 gives standard deviations of
Dev. 1	2,6)		nonzero rain rates for stratiform rain over 5° x 5° boxes
			for one month. The rain rates are determined in 2A-25
			and evaluated for path-average and at the fixed heights
			of 2, 4, 6, 10 and 15 km. It ranges from 0.0 to 3000.0
			mm/h.

Zm Mean 1 (SDS, array size nlat x nlon x nh1, 4-byte float):

Em Wean 1 (505, and 552 mar x mon x min, 4 byte noar).				
Name	Name in the TOOLKIT	Format	Description	
Zm Mean 1	grid1.zmMean1(16,72,6)	4-byte float	The Zm Mean 1 gives means of measured radar	
			reflectivity at the fixed heights of 2, 4, 6, 10 and 15 km	
			and for path-average over $5^{\circ} \times 5^{\circ}$ boxes for one month	
			using data from 1C-21. It ranges from 0 to 100 dBZ.	

Zm Dev.1 (SDS, array size nlat x nlon x nh1, 4-byte float):

Name	Name in the TOOLKIT	Format	Description	
Zm Dev.1	grid1.zmDev1(16,72,6)	4-byte float	The Zm Dev. 1 gives standard deviations of measured	
			radar reflectivity at the fixed heights of 2, 4, 6, 10 and 15	
			km and for path-average over 5° x 5° boxes for one month	
			using data from	
			1C-21. It ranges from 0 to 100 dBZ.	

Conv. Zm Mean 1 (SDS, array size nlat x nlon x nh1, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Conv. Zm Mean 1	grid1.convZmMean1 (16,72,6)		Conv. Zm Mean 1 gives the monthly means of measured radar reflectivity for convective rain at a horizontal resolution of 5° x 5°. The path-averaged mean and means at the fixed heights of 2, 4, 6, 10 and 15 km are calculated using data from 1C-21. It ranges from 0 to 100 dBZ.

Conv. Zm Dev. 1 (SDS, array size nlat x nlon x nh1, 4-byte float):

		,	5
Name	Name in the TOOLKIT	Format	Description
Conv. Zm Dev. 1	grid1.convZmDev1(16,72,	4-byte float	Conv. Zm Dev. 1 gives the monthly standard deviations
	6)		of measured radar reflectivity for convective rain at a
			horizontal resolution of 5° x 5°. The path-averaged
			standard deviation and
			those at the fixed heights of 2, 4, 6, 10 and 15 km are
			calculated using data from 1C-21. It ranges from 0 to 100
			dBZ.

Strat. Zm Mean 1 (SDS, array size nlat x nlon x nh1, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Strat. Zm Mean 1		4-byte float	Strat. Zm Mean 1 gives the monthly means of measured
	2,6)		radar reflectivity for stratiform rain at a horizontal resolution of 5° x 5°. The path-averaged mean and means
			at the fixed heights of 2, 4, 6, 10 and 15 km are calculated using data from 1C-21. It ranges from 0 to 100 dBZ.

	Strat. Zin Dev. 1 (SDS, array size mat x mon x min, +-byte noar).				
Name	Name in the TOOLKIT	Format	Description		
Strat. Zm Dev. 1	grid1.stratZmDev1(16,72,	4-byte float	Strat. Zm Dev. 1 gives the monthly standard deviations		
	6)		of measured radar reflectivity for stratiform rain at a		
			horizontal resolution of 5° x 5°. The path-averaged		
			standard deviation and those at the fixed heights of 2, 4,		
			6, 10 and 15 km are calculated using data from 1C-21. It		
			ranges from 0 to 100 dBZ.		

Strat. Zm Dev. 1 (SDS, array size nlat x nlon x nh1, 4-byte float):

Zt Mean 1 (SDS, array size nlat x nlon x nh1, 4-byte float):

Le Weah T (5D5, array size mat x mon x min, + byte noat).				
Name	Name in the TOOLKIT	Format	Description	
Zt Mean 1	grid1.ztMean1(16,72,6)		The Zt Mean 1 gives means of corrected radar reflectivity factors at the fixed heights of 2, 4, 6, 10 and 15 km and for path-average over 5° x 5° boxes for one month using data from 2A-25. It ranges from 0.1 to 80 dBZ.	

Zt Dev 1 (SDS, array size nlat x nlon x nh1, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Zt Dev 1	grid1.ztDev1(16,72,6)		The Zt Dev. 1 gives standard deviations of corrected radar reflectivity factors at the fixed heights of 2, 4, 6, 10 and 15 km and for path-average over 5° x 5° boxes for one month using data from 2A-25. It ranges from 0.0 to 80 dBZ.

Conv. Zt Mean 1 (SDS, array size nlat x nlon x nh1, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Conv. Zt Mean 1	grid1.convZtMean1 (16,72,6)	4-byte float	Conv. Zt Mean 1 gives the monthly means of corrected radar reflectivity for convective rain at a horizontal resolution of 5° x 5° . The path-averaged mean and means at the fixed heights of 2, 4, 6, 10 and 15 km are calculated using data from 2A-25. It ranges from 0.1 to 80 dBZ.

Conv. Zt Dev 1 (SDS, array size nlat x nlon x nh1, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Conv. Zt Dev 1	grid1.convZtDev1	4-byte float	Conv. Zt Dev. 1 gives the monthly standard deviations of
	(16,72,6)		corrected radar reflectivity for convective rain at a
			horizontal resolution of 5° x 5°. The path-averaged
			standard deviation and those at the fixed heights of 2, 4,
			6, 10 and 15 km are calculated using data from 2A-25. It
			ranges from 0.0 to 80 dBZ.

Strat. Zt Mean 1 (SDS, array size nlat x nlon x nh1, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Strat. Zt Mean 1	grid1.stratZtMean1 (16,72,6)		Strat. Zt Mean 1 gives the monthly means of measured radar reflectivity for stratiform rain at a horizontal resolution of 5° x 5°. The path-averaged mean and means at the fixed heights of 2, 4, 6, 10 and 15 km are calculated using data from 2A-25. It ranges from 0.1 to 80 dBZ.

Strat. Zt Dev 1 (SDS, array size nlat x nlon x nh1, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Strat. Zt Dev 1	grid1.stratZtDev1	4-byte float	Strat. Zt Dev. 1 gives the monthly standard deviations of
	(16,72,6)		corrected radar reflectivity for stratiform rain at a
			horizontal resolution of 5° x 5°. The path-averaged
			standard deviation and those at the fixed heights of 2, 4,
			6, 10 and 15 km are calculated using data from 2A-25. It
			ranges from 0.0 to 80.0 dBZ.

PIA srt Mean (SDS, array size nlat x nlon x nang, 4-byte float):

I III bit inteam ()	SDD, anay Size mat x mo	II A Hung, I	oyto nout).
Name	Name in the TOOLKIT	Format	Description
PIA srt Mean	grid1.piaSrtMean	4-byte float	PIA srt Mean gives the monthly means of SRT (surface
	(16,72,4)		reference technique) path-integrated attenuation
			calculated at four fixed incidence angles. It has a
			horizontal resolution of 5° x 5°. It has units of dB and a
			range from 0 dB to 100 dB.

PIA srt Dev. (SDS, array size nlat x nlon x nang, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
PIA srt Dev.	grid1.piaSrtDev(16,72,4)	4-byte float	PIA srt Dev. gives the monthly standard deviation of
			SRT path-integrated attenuation calculated at four fixed
			incidence angles. It has a horizontal resolution of 5° x 5°.
			It has units of dB and a range from 0 dB to 100 dB.

PIA hb Mean (SDS, array size nlat x nlon x nang, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
PIA hb Mean	grid1.piaHbMean(16,72,4	4-byte float	PIA hb Mean gives the monthly means of HB path-
)		integrated attenuation calculated at four fixed incidence
			angles. It has a horizontal resolution of 5° x 5°. It has
			units of dB and a range from 0 dB to 100 dB.

PIA hb Dev. (SDS, array size nlat x nlon x nang, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
PIA hb Dev.	grid1.piaHbDev(16,72,4)	4-byte float	PIA hb Dev. gives the monthly standard deviation of HB
			path-integrated attenuation calculated at four fixed
			incidence angles. It has a horizontal resolution of 5° x 5°.
			It has units of and a range from 0 dB to 100 dB.

PIA 0th Mean (SDS, array size nlat x nlon x nang, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
PIA 0th Mean	grid1.pia0Mean(16,72,4)	4-byte float	PIA 0th Mean gives the monthly means of the 0th-order
			path-integrated attenuation calculated at four fixed
			incidence angles. It has a horizontal resolution of 5° x 5°.
			It has units of and a range from 0 dB to 100 dB.

5

PIA 0th Dev. (SDS, array size nlat x nlon x nang, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
PIA 0th Dev.	grid1.pia0Dev(16,72,4)	-	PIA 0th Dev. gives the monthly standard deviation of the
			Oth-order path-integrated attenuation calculated at four
			fixed incidence angles. It has a horizontal resolution of
			5° x 5° . It has units of dB and a range from 0 dB to 100
			dB.

Storm Height Mean (SDS, array size nlat x nlon x 3, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Storm Height Mean	grid1.stormHtMean(16,72	4-byte float	Storm Height Mean is the mean of the storm height for
	,3)		conditions of stratiform rain, convective rain and
			unconditional rain. It has units of meters and ranges from
			0.0 to 20,000.

Storm Height Dev. (SDS, array size nlat x nlon x 3, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Storm Height Dev.	grid1.stormHtDev(16,72,3)		Storm Height Dev. is the standard deviation of the storm height for conditions of stratiform rain, convective rain and unconditional rain. It has units of meters and ranges from 0.0 to 20,000.

Xi Mean (SDS, array size nlat x nlon, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Xi Mean	grid1.xiMean(16,72)		Xi Mean gives the monthly means of the horizontal non-uniformity parameter of the rain field within a ray at a horizontal resolution of $5^{\circ} \times 5^{\circ}$. It has no units and ranges from 0.0 to 99.0.

Xi Dev. (SDS, array size nlat x nlon, 4-byte float):

111 2 C (8 2 8 , 111					
Name	Name in the TOOLKIT	Format	Description		
Xi Dev.	grid1.xiMean(16,72)	4-byte float	Xi Dev. gives the monthly standard deviation of the		
			horizontal non-uniformity parameter of the rain field		
			within a ray at a horizontal resolution of 5° x 5°. It has no		
			units and ranges from 0.0 to 99.0.		

NUBF Correction Factor Mean (SDS, array size nlat x nlon, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
NUBF Correction	grid1.nubfCorFacMean	4-byte float	The NUBF (Non-Uniform Beam Filling) Correction
Factor Mean	(16,72)		Factor Mean gives the monthly mean of NUBF
			correction for Z-factor and Rain Rate at a horizontal
			resolution of $5^{\circ} \times 5^{\circ}$. It has no units and a range of 0 to 2.0.

NUBF Correction Factor Dev. (SDS, array size nlat x nlon, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
NUBF Correction	grid1.nubfCorFacDev(16,	4-byte float	The NUBF (Non-Uniform Beam Filling) Correction
Factor Dev.	72)		Factor Dev. gives the monthly standard deviation of the
			NUBF correction for Z-factor and Rain Rate at a
			horizontal resolution of 5° x 5°. It has no units and ranges
			from 0 to 2.0.

BB Height Mean (SDS, array size nlat x nlon, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
BB Height Mean	grid1.bbHtMean(16,72)	4-byte float	BB Height Mean gives the monthly means of the bright
			band height at a horizontal resolution of
			5° x 5° . It has units of meters and ranges from 0 to 20,000.

BB Height Dev. (SDS, array size nlat x nlon, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
BB Height Dev.	grid1.bbHtDev(16,72)		BB Height Dev. gives the monthly deviation of the bright
			band height at a horizontal resolution of $5^{\circ} \ge 5^{\circ}$. It has
			units of meters and ranges from 0 to 20,000.

epsilonMean1 (SDS, array size nlat x nlon, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
epsilonMean1	grid1.epsilonMean1(16,72	4-byte float	Mean of epsilon conditioned on use of SRT in 2A21 at a
)		horizontal resolution of 5° x 5°. It ranges from 0.0 to 3.0
			(unitless).

epsilonDev1 (SDS, array size nlat x nlon, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
epsilonDev1	grid1.epsilonDev1(16,72)	4-byte float	Standard deviation of epsilon conditioned on use of SRT
			in 2A21 at a horizontal resolution of 5° x 5°. It ranges
			from 0.0 to 3.0 (unitless).

surfRainMean1 (SDS, array size nlat x nlon, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
surfRainMean1	grid1.surfRainMean1(16,7	4-byte float	Mean of near-surface rain rate at a horizontal resolution
	2)		of 5° x 5°. It ranges from 0.0 to 3000.0 mm/h.

surfRainDev1 (SDS, array size nlat x nlon, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
surfRainDev1	grid1.surfRainDev1(16,72	4-byte float	Standard deviation of near-surface rain rate at a
)		horizontal resolution of 5° x 5°. It ranges from 0.0 to
			3000.0 mm/h.

bbZmaxMean1 (SDS, array size nlat x nlon, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
bbZmaxMean1	grid1.bbZmaxMean1(16,7	4-byte float	Mean of maximum reflectivity in bright band at a
	2)		horizontal resolution of 5° x 5°. It ranges from 0.0 to 100.0
			dBZ.

bbZmaxDev1 (SDS, array size nlat x nlon, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
bbZmaxDev1	grid1.bbZmaxDev1(16,72	4-byte float	Standard Deviation of maximum reflectivity in bright
)		band at a horizontal resolution of 5° x 5°. It ranges from
			0.0 to 100.0 dBZ.

bbwidthMean1 (SDS, array size nlat x nlon, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
bbwidthMean1	grid1.bbwidthMean1(16,7	4-byte float	Mean of width of bright band at a horizontal resolution of
	2)		5° x 5°. It ranges from 0.0 to 20,000.0 m.

bbwidthDev1 (SDS, array size nlat x nlon, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
bbwidthDev1	grid1.bbwidthDev1(16,72)	4-byte float	Standard deviation of width of bright band at a horizontal
			resolution of 5° x 5° . It ranges from 0.0 to 20,000.0 m.

sdepthMean1 (SDS, array size nlat x nlon, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
sdepthMean1	grid1.sdepthMean1(16,72	4-byte float	Mean of snow depth at a horizontal resolution of 5° x 5°.
)		It ranges from 0.0 to 20,000.0 m.

sdepthDev1 (SDS, array size nlat x nlon, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
sdepthDev1	grid1.sdepthDev1(16,72)	4-byte float	Standard deviation of snow depth at a horizontal
			resolution of 5° x 5° . It ranges from 0.0 to 20,000.0 m.

surfRainAllMean1 (SDS, array size nlat x nlon, 4-byte float):

			, ·•• 110
Name	Name in the TOOLKIT	Format	Description
surfRainAllMean1	grid1.surfRainAllMean1 (16,72)	~	Mean of near-surface rain rate using rain certain and rain possible at a horizontal resolution of 5° x 5° . It ranges
	(10,72)		from 0.0 to 3,000.0 mm/h.

surfRainAllDev1 (SDS, array size nlat x nlon, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
surfRainAllDev1	grid1.surfRainAllDev1 (16,72)		Standard deviation of near-surface rain rate using rain certain and rain possible at a horizontal resolution of 5°
			x 5°. It ranges from 0.0 to 3,000.0 mm/h.

Total Pixel Number 1 (SDS, array size nlat x nlon, 4-byte integer):

Name	Name in the TOOLKIT	Format	Description
Total Pixel Number	grid1.ttlPix1(16,72)	4-byte float	The Total Pixel Number 1 is the number of total pixels
1			over $5^{\circ} \ge 5^{\circ}$ boxes for one month. The range is 0 to
			2,000,000.

Bright Band Pixel Number 1 (SDS, array size nlat x nlon, 4-byte integer):

Name	Name in the TOOLKIT	Format	Description
Bright Band Pixel	grid1.bbPix1(16,72)	4-byte float	The number of bright band counts over each 5 x 5 degree
Number 1			box for one month. The range is 0 to 2,000,000.

Rain Pixel Number 1 (SDS, array size nlat x nlon x nh1, 4-byte integer):

Name	Name in the TOOLKIT	Format	Description
Rain Pixel Number 1	grid1.rainPix1(16,72,6)		The Rain Pixel Number 1 is the number of nonzero rain rate pixels at the fixed heights of 2, 4, 6, 10 and 15 km and for path-average over $5^{\circ} \times 5^{\circ}$ boxes for one month. The range is 0 to 2,000,000.

Conv. Rain Pixel Number 1(SDS, array size nlat x nlon x nh1, 4-byte integer):

Name	Name in the TOOLKIT	Format	Description
Conv. Rain Pixel	grid1.convRainPix1(16,72	4-byte float	The Convective Rain Pixel Number 1 is the number of
Number 1	,6)		nonzero rain rate pixels for convective rain at the fixed
			heights of 2, 4, 6, 10 and 15 km and for path-average over
			5° x 5° boxes for one month. The range is 0 to 2,000,000.

Strat. Rain Pixel Number 1(SDS, array size nlat x nlon x nh1, 4-byte integer):

Name	Name in the TOOLKIT	Format	Description
Strat. Rain Pixel	grid1.stratRainPix1(16,72	4-byte float	The Stratiform Rain Pixel Number 1 is the number of
Number 1	,6)		nonzero rain rate pixels for stratiform rain at the fixed
			heights of 2, 4, 6, 10 and 15 km and for path-average over
			5° x 5° boxes for one month. The range is 0 to 2,000,000.

Total Angle Pixel Number 1 (SDS, array size nlat x nlon x nang, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Total Angle Pixel	grid1.ttlAnglePix1(16,72,	4-byte float	Total Angle Pixel Number 1 is the total number of pixels
Number 1	4)		over each 5° x 5° latitude-longitude grid box for a month.
			This parameter is accumulated at four different angles,
			i.e., 0° , 5° , 10° and 15° . The range is 0 to 30,000.

Rain Angle Pixel Number 1 (SDS, array size nlat x nlon x nang, 2-byte integer):

U			
Name	Name in the TOOLKIT	Format	Description
Rain Angle Pixel	grid1.rainAnglePix1(16,7	4-byte float	Rain Angle Pixel Number 1 is the total number of non-
Number 1	2,4)		zero rain rate pixels over each 5° x 5° latitude-longitude
			grid box for a month. This parameter is accumulated at
			four different angles, i.e., 0°, 5°, 10° and 15°. The range
			is 0 to 30,000.

wrainPix1 (SDS, array size nlat x nlon, 4-byte integer):

Name	Name in the TOOLKIT	Format	Description
wrainPix1	grid1.wrainPix1(16,72)	-	Warm rain counts at a horizontal resolution of $5^{\circ} \ge 5^{\circ}$. It ranges from 0 to 2,000,000.

surfRainPix1 (SDS, array size nlat x nlon, 4-byte integer):

Name	Name in the TOOLKIT	Format	Description
surfRainPix1	grid1.surfRainPix1(16,72)	4-byte float	Near-surface rain counts at a horizontal resolution of 5°
			x 5°. It ranges from 0 to 2,000,000.

epsilonPix1 (SDS, array size nlat x nlon, 4-byte integer):

Name	Name in the TOOLKIT	Format	Description
epsilonPix1	grid1.epsilonPix1(16,72)	4-byte float	Counts for epsilon when SRT value of PIA is used at a
			horizontal resolution of $5^{\circ} \ge 5^{\circ}$. It ranges from 0 to
			2,000,000.

surfRainAllPix1 (SDS, array size nlat x nlon, 4-byte integer):

Name	Name in the TOOLKIT	Format	Description
surfRainAllPix1	grid1.surfRainAllPix1(16,	4-byte float	Number of counts of non-zero near-surface rain rate
	72)		using rain certain and rain possible at a horizontal
			resolution of $5^{\circ} \ge 5^{\circ}$. It ranges from 0 to 2,000,000.

Storm Height Hist. (SDS, array size nlat x nlon x ncat2, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Storm Height Hist.	grid1.stormHH(16,72,30)		These are histograms of the 'effective' storm heights for
		U	30 categories over a 5° x 5° box for one month. It ranges from 0 to 32,767.

Conv. Storm Height Hist. (SDS, array size nlat x nlon x ncat2, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Conv. Storm Height	grid1.convStormHH	2-byte	These are histograms of the 'effective' storm heights for
Hist.	(16,72,30)	integer	convective rain for 30 categories over a 5° x 5°box for
			one month. It ranges from 0 to 32,767.

Strat. Storm Height Hist. (SDS, array size nlat x nlon x ncat2, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Strat. Storm Height	grid1.stratStormHH	2-byte	These are histograms of the 'effective' storm heights for
Hist.	(16,72,30)	integer	stratiform rain for 30 categories over a 5° x 5°box for one
			month. It ranges from 0 to 32,767.

BB Height Hist. (SDS, array size nlat x nlon x ncat2, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description	
BB Height Hist.	grid1.BBHH(16,72,30)	2-byte	These are histograms of the bright-band heights for 30	
		integer	categories over a 5° x 5° box for one month, given that	
			the bright band is detected. It ranges from 0 to 32,767.	

Snow-ice Layer Hist. (SDS, array size nlat x nlon x ncat2, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Snow-ice Layer Hist.	grid1.snowIceLH(16,72,3	2-byte	These are histograms of the depth of snow-ice layer for
	0)	integer	30 categories over a 5° x 5°box for one month. The depth
			of snow-ice layer is defined as the difference between
			effective storm height and estimated height of 0°C
			isotherm. It ranges from 0 to 32,767.

Zm Hist. (SDS, array size nlat x nlon x ncat2 x nh1, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Zm Hist.	grid1.zmH(16,72,30,6)	2-byte	The Zm Histograms are histograms of measured
		integer	reflectivities of rain pixels at five heights (2, 4, 6, 10 and
			15 km) and path-average for 20 categories over a 5° x
			5°box for one month. It ranges from 0 to 32,767.

Conv. Zm Hist. (SDS, array size nlat x nlon x ncat2 x nh1, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Conv. Zm Hist.	grid1.convZmH(16,72,30,	2-byte	The Convective Zm Histograms are histograms of
	6)	0	measured reflectivities of convective rain pixels at five
			heights (2, 4, 6, 10 and 15 km) and path-average for 20
			categories over a 5° x 5°box for one month. It ranges from
			0 to 32,767.

Strat. Zm Hist. (SDS, array size nlat x nlon x ncat2 x nh1, 2-byte integer):

Name in the TOOLKIT	Format	Description
	integer	The Stratiform Zm Histograms are histograms of measured reflectivities of stratiform rain pixels at five heights (2, 4, 6, 10 and 15 km) and path-average for 20 categories over a 5° x 5°box for one month. It ranges from 0 to 32,767.
5	rid1.stratZmH(16,72,30,	rid1.stratZmH(16,72,30, 2-byte) integer

Zt Hist. (SDS, array size nlat x nlon x ncat2 x nh1, 2-byte integer):

,,,,,,,					
Name	Name in the TOOLKIT	Format	Description		
Zt Hist.	grid1.ztH(16,72,30,6)	2-byte	The Zt Histograms are histograms of corrected		
		integer	reflectivity factors for rain pixels at five heights (2, 4, 6,		
			10 and 15 km) and path-average for 20 categories over a		
			5° x 5° box for one month. It ranges from 0 to 32,767.		

Conv. Zt Hist. (SDS, array size nlat x nlon x ncat2 x nh1, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Conv. Zt Hist.	grid1.convZtH(16,72,30,6)	2-byte integer	The Convective Zt Histograms are histograms of corrected reflectivity factors for convective rain pixels at five heights (2, 4, 6, 10 and 15 km) and path-average for 20 categories over a 5° x 5°box for one month. It
			ranges from 0 to 32,767.

Strat. Zt Hist. (SDS, array size nlat x nlon x ncat2 x nh1, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Strat. Zt Hist.	grid1.stratZtH(16,72,30,6)	2-byte integer	The Stratiform Zt Histograms are histograms of corrected reflectivity factors for stratiform rain pixels at five heights (2, 4, 6, 10 and 15 km) and path-average for 20 categories over a 5° x 5°box for one month. It ranges from 0 to 32,767.

Rain Rate Hist. (SDS, array size nlat x nlon x ncat2 x nh1, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Rain Rate Hist.	0	integer	These are histograms of nonzero rain rate pixels at five heights $(2, 4, 6, 10 \text{ and } 15 \text{ km})$ and path-average for 20 categories over a 5° x 5°box for one month. It ranges from 0 to 32,767.

Conv. Rain Rate Hist. (SDS, array size nlat x nlon x ncat2 x nh1, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Conv. Rain Rate	grid1.convRainH(16,72,3	2-byte	These are histograms of nonzero rain rate pixels for
Hist.	0,6)	integer	convective rain at five heights (2, 4, 6, 10 and 15 km)
			and path-average for 20 categories over a 5° x 5°box for
			one month. It ranges from 0 to 32,767

Strat. Rain Rate Hist. (SDS, array size nlat x nlon x ncat2 x nh1, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Strat. Rain Rate Hist.	grid1.stratRainH(16,72,30	2-byte	These are histograms of nonzero rain rate pixels for
	,6)	integer	stratiform rain at five heights (2, 4, 6, 10 and 15 km) and
			path-average for 20 categories over a 5° x 5°box for one
			month. It ranges from 0 to 32,767

PIA srt Hist. (SDS, array size nlat x nlon x ncat2 x nang, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
PIA srt Hist.	grid1.piaSrtH(16,72,30,4)	2-byte integer	PIA srt Hist. gives histograms of path-attenuation as determined by the surface reference technique (SRT) at 4 incidence angles (0, 5, 10 and 15°) for 30 categories over a 5° x 5°box for one month. It ranges from 0 to 32,767.

PIA hb Hist. (SDS, array size nlat x nlon x ncat2 x nang, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
PIA hb Hist.	grid1.piaHbH(16,72,30,4)	2-byte	These are histograms of path-attenuation using an
		integer	estimate derived from measured reflectivity (Z m) and
			a k-Z relationship at 4 incidence angles (0, 5, 10 and
			15°) for 30 categories over a 5° x 5°box for one month. It
			ranges from 0 to 32,767.

PIA 0th Hist. (SDS, array size nlat x nlon x ncat2 x nang, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
PIA 0th Hist.	grid1.pia0H(16,72,30,4)	2-byte	PIA 0th Hist. is the histogram of the 0th order path-
		U	integrated attenuation with a horizontal resolution of 5°
			x 5°. This histogram is calculated for 30 categories at 4
			different incident angles $(0^{\circ}, 5^{\circ}, 10^{\circ} \text{ and } 15^{\circ})$. It ranges
			from 0 to 32,767

Zm Gradient Hist. (SDS, array size nlat x nlon x ncat2 x nh2, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Zm Gradient Hist.	grid1.zmGradH(16,72,30,	2-byte	These are histograms of the vertical gradient in
	3)	integer	measured reflectivity at 3 levels for 30 categories over a
			5° x 5° box for one month. It ranges from 0 to 32,767.

Xi Hist. (SDS, array size nlat x nlon x ncat2, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
Xi Hist.	8	integer	The Xi Histograms is the histogram of non-uniformity parameter determined in 2A-25 for 30 categories over a 5° x 5° box for one month. It ranges from 0 to 32,767.

NUBF Hist. (SDS, array size nlat x nlon x ncat2, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
NUBF Hist.	grid1.grid1.nubfH(16,72,3 0)	integer	NUBF(Non-Uniform Beam Filling) Hist. gives the histogram of the NUBF correction for Z-factor and rain rate of 30 different categories over 5° x 5° grid boxes. It ranges from 0 to 32,767.

ZPZM Hist. (SDS, array size nlat x nlon x ncat2, 2-byte integer):

Name in the TOOLKIT	Format	Description
	integer	ZPZM Hist. is the histogram of the difference between the reflectivity at two heights: (Bright Band - Epsilon) and (Bright Band + Epsilon). This histogram is calculated for 30 different categories at each grid box of 5° x 5°. It ranges from 0 to 32,767.
	rid1.zpzmH(16,72,30)	rid1.zpzmH(16,72,30) 2-byte integer

bbZmaxH (SDS, array size nlat x nlon x ncat2, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
bbZmaxH	grid1.bbZmaxH(16,72,30)	2-byte	Histogram of maximum Zt in bright band at a horizontal
		integer	resolution of 5° x 5° . It ranges from 0 to 32,000.

epsilonH (SDS, array size nlat x nlon x ncat2, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
epsilonH	grid1.epsilonH(16,72,30)	2-byte integer	Histogram of epsilon conditioned on use of SRT in 2A25 at a horizontal resolution of $5^{\circ} \times 5^{\circ}$. It ranges from 0 to 32,000.

surfRainH (SDS, array size nlat x nlon x ncat2, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
surfRainH	grid1.surfRainH(16,72,30)	2-byte	Histogram of near-surface rain rate at a horizontal
		integer	resolution of $5^{\circ} \ge 5^{\circ}$. It ranges from 0 to 32,000.

surfRainAllH (SDS, array size nlat x nlon x ncat2, 2-byte integer):

Name	Name in the TOOLKIT	Format	Description
surfRainAllH	grid1.surfRainAllH	2-byte	Histogram of near-surface rain rate using rain certain and
	(16,72,30)	integer	rain possible at a horizontal resolution of 5° x 5°. It
			ranges from 0 to 32,000.

RR Corr. Coef. (SDS, array size nlat x nlon x 3, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
RR Corr. Coef.	grid1.rainCCoef(16,72,3)		These are correlation coefficients of nonzero rain rates between 3 heights (i.e., correlation coefficient of rain rates at 2 km vs 4 km, 2 km vs 6 km, and 4 km vs 6 km) for a 5° x 5° box for one month. They are calculated under convective condition, stratiform condition or both. It ranges from -1.000 to 1.000.

Conv. RR Corr. Coef. (SDS, array size nlat x nlon x 3, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Conv. RR Corr. Coef.	grid1.convRainCCoef	4-byte float	These are correlation coefficients of nonzero rain rates
	(16,72,3)		for convective rain between 3 heights (i.e., correlation
			coefficient of rain rates at 2 km vs 4 km , 2 km vs 6 km ,
			and 4 km vs 6 km) for a 5° x 5° box for one month. It
			ranges from -1.000 to 1.000.

Strat. RR Corr. Coef. (SDS, array size nlat x nlon x 3, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Strat. RR Corr. Coef.	grid1.stratRainCCoef	4-byte float	These are correlation coefficients of nonzero rain rates
	(16,72,3)		for stratiform rain between 3 heights (i.e., correlation
			coefficient of rain rates at 2 km vs 4 km , 2 km vs 6 km ,
			and 4 km vs 6 km) for a 5° x 5°box for one month. It
			ranges from -1.000 to 1.000.

Hgt. and Zm Corr. Coef. (SDS, array size nlat x nlon, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Hgt. and Zm Corr.	grid1.stormHtZmCCoef	4-byte float	This is the correlation coefficient between the storm
Coef.	(16,72)		height and the maximum measured reflectivity factor
			along the path for a 5° x 5°box for one month. It ranges
			from -1.000 to 1.000.

PIAs Corr. Coef. (SDS, array size nlat x nlon x nang x 3, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
PIAs Corr. Coef.	grid1.piaCCoef(16,72,4,3)		This is the correlation coefficient of three path- integrated attenuations (SRT, HB, and 0th order PIAs) at angles of 0°, 5°, 10° and 15° for a 5° x 5°box for one month. It ranges from -1.000 to 1.000.

Xi and Zm Corr. Coef. (SDS, array size nlat x nlon, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Xi and Zm Corr. Coef.	grid1.xiZmCCoef(16,72)		This is the correlation coefficient between the non- uniformity and the maximum measured reflectivity factor along the path for a 5° x 5°box for one month. It ranges from -1.000 to 1.000.

PR Rainfall 3A-25 Planetary Grid 2 [L3A_25_GRID]

The following parameters are used in describing the formats:

• nlath: the number of 0.5° grid intervals of latitude from 37° N to 37° S (148).

• nlonh: the number of 0.5° grid intervals of longitude 180° W to 180° E (720).

• nh3: the number of fixed heights above the earth ellipsoid, at 2, 4, and 6 km plus one for path-average (4).

Rain Rate Mean 2 (SDS, array size nlath x nlonh x nh3, 4-byte float):

Name	Name in the TOOLKIT	Format	Description	
Rain Rate Mean 2	grid2.rainMean2(148,720,	4-byte float	Rain Rate Mean 2 gives means of nonzero rain rates	
	4)		over $0.5^{\circ} \ge 0.5^{\circ}$ boxes for one month. The rain rates are	
			determined in 2A-25 and evaluated for the path-average	
			and at the fixed heights of 2, 4, and 6 km. It ranges from	
			0.0 to 3000.0 mm/h.	

Rain Rates Dev. 2 (SDS, array size nlath x nlonh x nh3, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Rain Rates Dev. 2	grid2.rainDev2(148,720,4	4-byte float	Rain Rate Dev. 2 gives standard deviations of nonzero
)		rain
			rates over 0.5° x 0.5° boxes for one month. The rain
			rates are
			determined in 2A-25 and evaluated at the fixed heights
			of 2, 4, and 6 km. It ranges from 0 to 3000.0 mm/h.

Conv. Rain Rate Mean 2 (SDS, array size nlath x nlonh x nh3, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Conv. Rain Rate	grid2.convRainMean2	4-byte float	Conv. Rain Rate Mean 2 gives means of nonzero rain
Mean 2	(148,720,4)		rates for convective rain over 0.5° x 0.5° boxes for one
			month. The rain rates are determined in 2A-25 and
			evaluated at the fixed heights of 2, 4, and 6 km. It ranges
			from 0 to 3000.0 mm/h.

Conv. Rain Rates Dev. 2 (SDS, array size nlath x nlonh x nh3, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Conv. Rain Rates	grid2.convRainDev2	4-byte float	Conv. Rain Rate Dev. 2 gives standard deviations of
Dev. 2	(148,720,4)		nonzero rain rates for convective rain over 0.5° x 0.5°
			boxes for one month. The rain rates are determined in
			2A-25 and evaluated at the fixed heights of 2, 4, and 6
			km. It ranges from 0 to 3000.0 mm/h.

Strat. Rain Rate Mean 2 (SDS, array size nlath x nlonh x nh3, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Strat. Rain Rate	grid2.stratRainDev2	4-byte float	Strat. Rain Rate Mean 2 gives means of nonzero rain
Mean 2	(148,720,4)		rates for stratiform rain over 0.5° x 0.5° boxes for one
			month. The rain rates are determined in 2A-25 and
			evaluated at the fixed heights of 2, 4, and 6 km. It ranges
			from 0 to 3000.0 mm/h.

Strat. Rain Rates Dev. 2 (SDS, array size nlath x nlonh x nh3, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Strat. Rain Rates	grid2.stratRainDev1	4-byte float	Strat/ Rain Rate Dev. 2 gives standard deviations of
Dev. 2	(148,720,4)		nonzero rain rates for stratiform rain over 0.5° x 0.5°
			boxes for one month. The rain rates are determined in
			2A-25 and evaluated at the fixed heights of 2, 4, and 6
			km. It ranges from 0 to 3000.0 mm/h.

Zm Mean 2 (SDS, array size nlath x nlonh x nh3, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Zm Mean 2	grid2.zmMean2(148,720,	4-byte float	Zm Mean 2 gives the monthly means of the measured
	4)		reflectivity at 3 fixed height levels (2, 4 and 6 km) over
			$0.5^{\circ} \ge 0.5^{\circ}$ grid boxes. It ranges from -20 to 80 dBZ.

Conv. Zm Mean 2 (SDS, array size nlath x nlonh x nh3, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Conv. Zm Mean 2	grid2.convZmMean2 (148,720,4)		Conv. Zm Mean 2 gives the monthly means of the measured reflectivity of convective rain at 3 fixed height levels (2, 4, and 6 km) over 0.5° x 0.5° grid boxes. It ranges from -20 to 80 dBZ.

Strat. Zm Mean 2 (SDS, array size nlath x nlonh x nh3, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Strat. Zm Mean 2	grid2.stratZmMean2	4-byte float	Strat. Zm Means gives the monthly means of the
	(148,720,4)		measured reflectivity of stratiform rain at 3 fixed heights
			(2, 4, and 6 km) over 0.5° x 0.5° grid boxes. It ranges from
			-20 to 80 dBZ.

Zt Mean 2 (SDS, array size nlath x nlonh x nh3, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Zt Mean 2	grid2.ztMean2(148,720,4)	4-byte float	Zt Mean 2 gives the monthly means of the corrected
			reflectivity at 3 fixed heights (2, 4, and 6 km) over 0.5°
			x 0.5°
			grid boxes. It ranges from 0.1 to 80 dBZ.

Conv. Zt Mean 2 (SDS, array size nlath x nlonh x nh3, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Conv. Zt Mean 2	grid2.convZtMean2 (148,720,4)		Conv. Zm Mean 2 gives the monthly means of the corrected reflectivity of convective rain at 3 fixed height levels $(2, 4, \text{ and } 6 \text{ km})$ over $0.5^{\circ} \text{ x } 0.5^{\circ}$ grid boxes. It
			ranges from 0.1 to 80 dBZ.

Strat. Zt Mean 2 (SDS, array size nlath x nlonh x nh3, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Strat. Zt Mean 2	grid2.stratZtMean2 (148,720,4)		Strat. Zm Means gives the monthly means of the corrected reflectivity of stratiform rain at 3 fixed heights (2, 4, and 6 km) over 0.5° x 0.5° grid boxes. It ranges from 0.1 to 80 dBZ.

Storm Height Mean (SDS, array nlath x nlonh x 3, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Storm Height Mean	grid2.stormHeightMean	4-byte float	Storm Height Mean gives the monthly means of the
	(148,720,3)		storm height, unconditioned and conditioned for
			stratiform and convective rain over 0.5° x 0.5° grid boxes.
			It has units of meters and ranges from 0 to 20,000.

BB Height Mean (SDS, array nlath x nlonh, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
BB Height Mean	grid2.bbHeightMean	4-byte float	BB Height Mean gives the monthly means of bright-
	(148,720)		band height over grid boxes of 0.5° x 0.5°. It has units of
			meters and ranges from 0 to 20,000.

surfRainMean2 (SDS, array size nlath x nlonh, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
surfRainMean2	grid2.surfRainMean2	4-byte float	Mean of near-surface rain rate at a horizontal resolution
	(148,720)		of 0.5° x 0.5°. It ranges from 0.0 to 3000.0 mm/h.

surfRainDev2 (SDS, array size nlath x nlonh, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
surfRainDev2	grid2.surfRainDev2(148,7	4-byte float	Standard Deviation of near-surface rain rate at a
	20)		horizontal resolution of 0.5° x 0.5°. It ranges from 0.0 to
			3000.0 mm/h.

bbZmaxMean2 (SDS, array size nlath x nlonh, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
bbZmaxMean2	grid2.bbZmaxMean2 (148,720)	•	Mean of maximum reflectivity in bright band at a horizontal resolution of $0.5^{\circ} \ge 0.5^{\circ}$. It ranges from 0.0 to 100.0 dBZ.

bbZmaxDev2 (SDS, array size nlath x nlonh, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
bbZmaxDev2	grid2.bbZmaxDev2(148,7 20)		Mean of maximum reflectivity in bright band at a horizontal resolution of 0.5° x 0.5°. It ranges from 0.0 to 100.0 dBZ.

sdepthMean2 (SDS, array size nlath x nlonh, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
sdepthMean2	grid2.sdepthMean2(148,7	4-byte float	Mean of snow depth at a horizontal resolution of 0.5° x
	20)		0.5°. It ranges from 0.0 to 20,000.0 m.

sdepthDev2 (SDS, array size nlath x nlonh, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
sdepthDev2	grid2.sdepthDev2(148,720	4-byte float	Standard deviation of snow depth at a horizontal
)		resolution of 0.5° x 0.5° . It ranges from 0.0 to 20,000.0 m.

stormHeightDev2 (SDS, array size nlath x nlonh x 3, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
stormHeightDev2	grid2.stormHeightDev2	4-byte float	Standard deviation of storm height at a horizontal
	(148,720,3)		resolution of 0.5° x 0.5°. It ranges from 0.0 to 20,000.0 m.

bbHeightDev2 (SDS, array size nlath x nlonh, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
bbHeightDev2	grid2.bbHeightDev2	4-byte float	Standard deviation of bright band height at a horizontal
	(148,720)		resolution of 0.5° x 0.5° . It ranges from 0.0 to 20,000.0 m.

surfRainAllMean2 (SDS, array size nlath x nlonh, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
surfRainAllMean2	grid2.surfRainAllMean2	4-byte float	Mean of near-surface rain rate using rain certain and rain
	(148,720)		possible at a horizontal resolution of 0.5° x 0.5°. It ranges
			from 0.0 to 3,000.0 mm/h.

surfRainAllDev2 (SDS, array size nlath x nlonh, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
surfRainAllDev2	grid2.surfRainAllDev2	4-byte float	Standard deviation of near-surface rain rate using rain
	(148,720)		certain and rain possible at a horizontal resolution of 0.5°
			x 0.5°. It ranges from 0.0 to 3,000.0 mm/h.

Total Pixel Number 2 (SDS, array size nlath x nlonh, 4-byte integer):

Name	Name in the TOOLKIT	Format	Description
Total Pixel Number	grid2.ttlPix2(148,720)	4-byte float	The Total Pixel Number 2 is the number of total pixels
2			over $0.5^{\circ} \ge 0.5^{\circ}$ boxes for one month. The range is 0 to
			2,000,000.

Bright Band Pixel Number 2 (SDS, array size nlath x nlonh, 4-byte integer):

Name	Name in the TOOLKIT	Format	Description
Bright Band Pixel	grid2.bbPixNum2(148,720	4-byte float	The number of bright band counts over each $0.5^{\circ} \ge 0.5^{\circ}$
Number 2)		box for one month. The range is 0 to 2,000,000.

wrainPix2 (SDS, array size nlath x nlonh, 4-byte integer):

Name	Name in the TOOLKIT	Format	Description
wrainPix2	grid2.wrainPix2(148,720)	4-byte float	Warm rain counts at a horizontal resolution of 0.5° x 0.5°.
			It ranges from 0 to 2,000,000,000.

surfRainPix2 (SDS, array size nlath x nlonh, 4-byte integer):

Name	Name in the TOOLKIT	Format	Description
surfRainPix2	grid2.surfRainPix2(148,72	4-byte float	Near-surface rain counts at a horizontal resolution of 0.5°
	0)		x 0.5°. It ranges from 0 to 2,000,000,000.

surfRainAllPix2 (SDS, array size nlath x nlonh, 4-byte integer):

Name	Name in the TOOLKIT	Format	Description
surfRainAllPix2	grid2.surfRainAllPix2	4-byte float	Near-surface rain counts using rain certain and rain
	(148,720)		possible at a horizontal resolution of 0.5° x 0.5°. It ranges
			from 0 to 2,000,000,000.

Rain Pixel Number 2 (SDS, array size nlath x nlonh x nh3, 4-byte integer):

Name	Name in the TOOLKIT	Format	Description
Rain Pixel Number 2	grid2.rainPix2(148,720,4)	4-byte float	The Rain Pixel Number 2 is the monthly number of
			nonzero rain rate pixels for path-averaged rainfall and
			rainfall at the fixed heights of 2, 4, and 6 km over 0.5° x
			0.5° boxes. The range is 0 to 2,000,000.

Conv. Rain Pixel Number 2 (SDS, array size nlath x nlonh x nh3, 4-byte integer):

Name	Name in the TOOLKIT	Format	Description
Conv. Rain Pixel	grid2.convRainPix2	4-byte float	The Convective Rain Pixel Number 2 is the number of
Number 2	(148,720,4)		nonzero rain rate pixels for convective rain at the fixed
			heights of 2, 4, and 6 km over 0.5° x 0.5° boxes for one
			month. The range is 0 to 2,000,000.

Strat. Rain Pixel Number 2 (SDS, array size nlath x nlonh x nh3, 4-byte integer):

Name	Name in the TOOLKIT	Format	Description
Strat. Rain Pixel	grid2.stratRainPix2	4-byte float	The Stratiform Rain Pixel Number 2 is the number of
Number 2	(148,720,4)		nonzero rain rate pixels for stratiform rain at the fixed
			heights of 2, 4, and 6 km over $0.5^{\circ} \ge 0.5^{\circ}$ boxes for one
			month. The range is 0 to 2,000,000.

PR Surface Rain 3A-26 Planetary Grid [L3A_26_GRID]

The following parameters are used in describing the formats:

• nlat: the number of 5° grid intervals of latitude from 40° N to 40° S (16).

• nlon: the number of 5° grid intervals of longitude from 180° W to 180° E (72).

• nh3: the number of fixed heights above the earth ellipsoid, at 2, 4, and 6 km plus one for path-average (4).

• ncat3: the number of categories for probability distribution functions (25).

Rain rate thresholds (mm/hr) are:

12., 14., 16., 18., 20., 22., 24., 26., 28., 30., 32., 34., 36., 38., 40., 42., 44., 46., 48., 50., 52., 54., 56., 58., 60.

• nthrsh: the number of thresholds used for probability distribution functions (6).

Q-thresholds for Zero order: 0.1, 0.2, 0.3, 0.5, 0.75, 50.

Q-thresholds for HB: 0.1, 0.2, 0.3, 0.5, 0.75, 0.9999

pia-thresholds for SRT: 1.5, 1., 0.8, 0.6, 0.4, 0.1

Total Counts (SDS, array size nlat x nlon, 4-byte integer):

Name	Name in the TOOLKIT	Format	Description
Total Counts	ttlCount(16,72)	4-byte	This is the total number of counts (measurements) per
		integer	month at each 5° x 5° box. Ranges are 0 to 2,147,483,647.

Rain Counts (SDS, array size nlat x nlon x nh3, 4-byte integer):

Name	Name in the TOOLKIT	Format	Description
Rain Counts	rainCount(16,72,4)	4-byte	Total number of rain counts per month at each 5° x
		integer	5°box. This is computed at 2 km, 4 km, 6 km, and for the
			path-average. Ranges are 0 to 2,147,483,647.

Zero Order pDf (SDS, array size nlat x nlon x ncat3 x nh3 x nthrsh, 4-byte integer):

Name	Name in the TOOLKIT	Format	Description
Zero Order pDf	zeroOrderpDf	4-byte	Probability distribution function (cumulative) in counts
	(16,72,25,4,6)	integer	of the zeroth order rain rate estimate at each 5° x 5°box.
			The pDf is computed at 2 km, 4 km, , and for the path
			average. Ranges are 0 to 2,147,483,647.

HB pDf (SDS, array size nlat x nlon x ncat3 x nh3 x nthrsh, 4-byte integer):

ame Name in t	the TOOLKIT	Format	Description
B pDf hbpDf(16,		4-byte integer	Probability distribution function (cumulative) in counts of the Hitschfield-Bordan (HB) rain rate estimate at each 5° x 5°box. The pDf is computed at 2 km, 4 km, 6 km, and for the path average. Ranges are 0 to 2 147 483 647
		integer	each 5° x 5°box. The pDf is comp

pDf2A25 (SDS, array size nlat x nlon x ncat3 x nh3 x nthrsh, 4-byte integer):

Name	Name in the TOOLKIT	Format	Description
pDf2A25	1	4-byte integer	Probability distribution function (cumulative) in counts of the Surface Reference Technique (SRT) rain rate estimate at each 5° x 5°box. The pDf is computed at 2 km, 4 km, 6 km, and for the path average. Ranges are 0 to 2,147,483,647.

Zero Order Fit (SDS array size nlat x nlon x nh3 x 3 x nthrsh, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Zero Order Fit	zeroOrderFit (16,72,4,3,6)		The mean, variance and probability of rain parameters for the log-normal model obtained from the zeroth order
	(10,72,1,3,0)		pDf. Fitting parameters are given at 2 km, 4 km, 6 km, and for the path average. In addition, 5 thresholds are used. Ranges are TBD .

HB Fit (SDS array size nlat x nlon x nh3 x 3 x nthrsh, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
HB Fit	hbFit(16,72,4,3,6)		The 3 fitting parameters for the log-normal model obtained from the HB pDf. Fitting parameters are given at 2 km, 4 km, 6 km, and for the path average. In addition, 5 thresholds are used . Ranges are TBD .

fit2A25 (SDS array size nlat x nlon x nh3 x 3 x nthrsh, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
fit2A25	fit2A25(16,72,4,3,6)		The 3 fitting parameters for the log-normal model obtained from the SRT pDf. Fitting parameters are given at 2 km 4 km, 6 km, and for the path average and 5 thresholds. Ranges are TBD .

Reliability 0th Order Fit (SDS array size nlat x nlon x nh3 x nthrsh, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Reliability 0th Order	reliabOrderFit(16,72,4,6)	4-byte float	Reliability parameter for the 0th order fit. Units and
Fit			ranges are TBD .

Reliability HB Fit (SDS array size nlat x nlon x nh3 x nthrsh, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Reliability HB Fit	reliabHBfit(16,72,4,6)	4-byte float	Reliability parameter for the HB fit. Units and ranges are
			TBD.

Reliability 2A25 Fit (SDS array size nlat x nlon x nh3 x nthrsh, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Reliability 2A25 Fit	reliab2A25fit(16,72,4,6)	4-byte float	Reliability parameter for the SRT fit. Units and ranges
			are TBD .

2

Name	Name in the TOOLKIT	Format	Description
rainMeanTH	rainMeanTH (16,72,4)	4-byte float	The mean monthly unconditioned rain rate (mm/h) as
			determined from the threshold method (in particular, it is
			determined from the fitting parameters for the '0th-order
			method' using a single 'Q' threshold for each height
			level). Range is 0.0 to 3000.0 mm/h.

rainMeanTH (SDS, array size nlat x nlon x nh3, 4-byte float):

TMI and PR Combined 3B-31 Planetary Grid [L3B_31_GRID]

The following parameters are used in describing the formats:

- nlat: the number of 5° grid intervals of latitude from 40° N to 40° S (16).
- nlon: the number of 5° grid intervals of longitude 180°W to 180°E (72).
- nlayer: the number of profiling layers (14).

Surface Rainfall (SDS, array size nlat x nlon, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Surface Rainfall	surfRainfall(16,72)	4-byte float	The Surface Rainfall is the surface rain accumulation in
			5° x 5° boxes. It ranges from 0.0 to 3000.0 mm.

Surface Adjustment Ratio (SDS, array size nlat x nlon, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Surface Adjustment	surfAdjRatio(16,72)	4-byte float	The ratio of 2B31 to 2A12 surface rainfall, calculated
Ratio			from the swath overlap region for each 5° x 5°box.

Cloud Water (SDS, array size nlat x nlon x nlayer, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Cloud Water	cloudWater(16,72,14)	4-byte float	The cloud water is that at each vertical layer in each 5°
			x 5° box for one month. It ranges from 0.0 to 1000.0 g m^{-3} .

Rain Water (SDS, array size nlat x nlon x nlayer, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Rain Water	rainWater(16,72,14)	4-byte float	The rain water is that at each vertical layer in each 5° x
			5° box for one month. It ranges from 0.0 to 1000.0 g m ⁻³ .

Cloud Ice (SDS, array size nlat x nlon x nlayer, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Cloud Ice	cloudIce(16,72,14)	4-byte float	The cloud ice is that at each vertical layer in each 5° x
			5° box for one month. It ranges from 0.0 to 1000.0 g m ⁻³ .

Graupel (SDS, array size nlat x nlon x nlayer, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Graupel	graupel(16,72,14)	4-byte float	The graupel is that at each vertical layer in each 5° x
			5° box for one month. It ranges from 0.0 to 1000.0 g m ⁻³ .

Profile Adjustment Ratio (SDS, array size nlat x nlon x nlayer, 4-byte float):

	Name	Name in the TOOLKIT	Format	Description
	Profile Adjustment	profAdjRatio(16,72,14)	4-byte float	The ratio of 2B31 to 2A12 rainfall for each vertical layer.
	Ratio			The ratio is calculated from the swath overlap region for each 5° x 5° box.
L				

TMI and Others GPI Calibration 3B-42 Planetary Grid [L3B_42_PLANETGRID]

The following parameters are used in describing the formats:

- nlat: the number of 1° grid intervals of latitude from 40° N to 40° S (80).
- nlon: the number of 1° grid intervals of longitude 180° W to 180° E (360).

Precipitation (SDS, array size nlat x nlon, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Precipitation	precipitate(80,360)	2	This is the adjusted GPI precipitation estimate at each 1° x 1° box for 5 days. It ranges from 0.0 to 3.5 mm/hr.

Relative Error (SDS, array size nlat x nlon, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Relative Error	relError(16,72)	4-byte float	This is the adjusted GPI relative error estimate at each
			1° x 1° box for 5 days. It ranges from 0.0 to 3.5 mm/hr.

TMI and Others Data Sources 3B-43 Planetary Grid [L3B_43_PLANETGRID]

The following parameters are used in describing the formats:

- nlat: the number of 1° grid intervals of latitude from 40° N to 40° S (80).
- nlon: the number of 1° grid intervals of longitude 180° W to 180° E (360).

Precipitation (SDS, array size nlat x nlon, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Precipitation	precipitate(80,360)	4-byte float	This is the satellite/gauge precipitation estimate at each
			1° x 1° box for one month. It ranges from 0.0 to 3.5 mm/hr.

Relative Error (SDS, array size nlat x nlon, 4-byte float):

Name	Name in the TOOLKIT	Format	Description
Relative Error	relError(16,72)	4-byte float	This is the satellite/gauge relative error estimate at each
			1° x 1° box for one month. It ranges from 0.0 to 3.5 mm/hr.