

Status and Plan of Japanese Microwave Precipitation-related Missions

Misako KACHI and Takuji KUBOTA Earth Observation Research Center, Space Technology Directorate I Japan Aerospace Exploration Agency (JAXA)

Jun. 23, 2020 @ IPWG-10 Online Session

Japanese Earth Observation Satellite/Sensors

History of Passive Microwave Observations

3

- With experience of development and operation of MSR, JAXA developed 1st generation of AMSR (AMSR and AMSR-E) with large antenna size and C-band channels. AMSR-E continuous its science observation about 9.5-year, and its high capabilities enable to expand utilizations in operational and research areas.
- 2nd generation of AMSR (AMSR2) was launched in 2012 and succeeds AMSR-E observations to establish its data utilization in various areas.
- 3rd generation of AMSR (AMSR3) was recently approved as project to be launched in JFY2023.

- hourly global rainfall data
- 0.1x0.1deg. lat/lon
- Various version such as realtime for monitoring or long-term gaugeadjusted for climatological purposes

Multi-satellite Precipitation Product

distribution · website · CSV · netCDF · Binary · GeoTIFF · png

Extreme Heavy Rainfall and Drought by GSMaP <u>https://sharaku.eorc.jaxa.jp/GSMaP_CLM/</u>

- "JAXA Climate Rainfall Watch", which provides information about extreme heavy rainfall and drought over the world, is now available.
 - Easily monitor global extreme weather and climate by displaying accumulated rainfall in some temporal scale, indices related to Extreme heavy rainfall (percentiles) and Drought index (SPI).
 - Calculated based upon 20-yr statistics (Tashima et al. 2020, JSTARS, in revision)

Drought index in Dec. 2019

Monthly Rainfall by GSMaP in Dec. 2019

https://sharaku.eorc.jaxa.jp/GSMaP_CLM/

History of Active Microwave Observations

- JAXA has developed the spaceborne precipitation radars such as Precipitation Radar (PR) onboard Tropical Rainfall Measuring Mission (TRMM) launched in 1997 and Dualfrequency Precipitation Radar (DPR) aboard Global Precipitation Measurement (GPM) Mission Core Observatory launched in 2014.
- Both radars have been developed to observe three-dimensional structure of global

precipitation accurately, under the equal partnership with NASA.

Utilization of Precipitation Radar in NWP Assimilation of 3D information derived by GPM/DPR in JMA

- The Japan Meteorological Agency (JMA) started the DPR assimilation in the meso-NWP system on March 24, 2016.
- Assimilation of GPM/DPR improved the prediction of rainfall location in meso-scale, which is important for disaster prevention.
- The DPR 3-dimensional information which cannot be detected by microwave radiometer can be an essential factor for rainfall forecasting as well as disaster prevention.

Case study for heavy rainfall in July 2018, causing serious damage in western part of Japan.

without DPR

Ground observation

24h forecasts of precipitation (00UTC 7th July 2018)

provided by JMA

Japanese Earth Observation Satellite/Sensors

GOSAT-GW: Global Observation SATellite for Greenhouse gases and Water cycle

- GOSAT-GW will carry two instruments, AMSR3 and TANSO-3.
 - AMSR3, led by JAXA, will succeed AMSR series observations adding new high-frequency channels for solid precipitation retrievals and water vapor analysis in NWP.
 - TANSO-3, led by Japanese Ministry of Environment (MOE) and National Institute of Environment Studies (NIES), will improve observation capability of greenhouse gases from GOSAT-2/TANSO-2.
 - Target launch is JFY2023 (Apr. 2023 Mar. 2024)
- Mission targets of AMSR3
 - To produce long-term continuous data record
 - To enhance operational utilization of near-real time data
 - weather forecast including hurricane analysis
 - fishery in coastal area
 - navigational assistance on arctic shipping route
 - New geophysical parameter products

GOSAT-GW Satellite Specifications

Orbit	Туре	Sun-synchronous, Sub-recurrent orbit		
	Altitude	666km, recurrent cycle 3days (same as GOSAT)		
	MLTAN	13:30 \pm 15min (same as GCOM-W)		
Mass		2.6 ton (Including propellant)		
Power		> 5.3 kW		
Design life		> 7 years		
Launch vehicle		H-IIA rocket		
Mission data downlink rate		Direct transmission with X-band: 400 Mbps Direct transmission with S-band: 1 Mbps (Only for AMSR3)		
Instrument		TANSO-3 (for GHG) AMSR3 (for Water Cycle)		

- Orbit specification of GOSAT-GW is decided to satisfy requirements from both AMSR3 and TANSO-3 missions.
- Ascending orbit will be during daytime (same as GCOM-W), orbit altitude is same as GOSAT, and local sun time is same as GCOM-W. Orbiting number of one recurrent day is 44 and smaller compared to that of GCOM-W (233), so there are some differences in observation frequency.

Orbit conditions	GCOM-W/AMSR2	GOSAT-GW/AMSR3		
Altitude	699.6 km	665.96 km		
Inclination angle	98.2 degrees	98.06 degrees		
Local sun time in Ascending node	13:30	13:30		
Swath width	1600 km	1530 km		
Recurrent day	16 days (233 orbits)	3 days (44 orbits)		

AMSR3 Observation Frequency

Unlike AMSR2, AMSR3 cannot cover global area within 2-day and small missing areas (white) are remained.

Observation frequency of AMSR3 is **NOT homogeneous** for every longitude and there are fixed areas less than 1 observation/day (blue).

Impact Evaluation of High-frequency Channels

- Impacts of new high-frequency channels were carefully evaluated during MDR, SRR and SDR to consider optional channels of 166H and 183+-3V in addition to nominal channels of 166V and 183+-7V.
- Final decision is to add 166V, 183+-3V and 183+-7V channels to AMSR3 for snowfall retrieval and water vapor analysis in NWP.
 GSMaP-GMI in Jan. 2015

12

Specification of AMSR3 Instrument

AMSR3 Sensor Characteristics

Sonsor typo	Conical scanning total power	Center frequency	Polari-	Band width	NFDT (1σ)	Beam width
sensor type	microwave radiometer	[GHz]	zation	[MHz]	NEDI (10)	(spatial resolution)
A 1	Off-set parabolic antenna	6.925	H/V	350	< 0.34 K	1.8 °
Antenna	(φ2.0m aperture)	7.3				(34km x 58km)
Swath width	> 1530km	10.25	H/V	500	< 0.34 K	1.2 °
Quantization	12 hit	(TBD)		(IBD)	(TBD)	(22km x 39km)
Incidence angle	55 deg. except 89GB.	10.65	H/V	100	< 0.70 K	1.2° (22km x 39km)
	166G,183G	18.7	H/V	200	< 0.70 K	0.65 °
X-polarization	< -20dB					(12km x 21km)
Beam efficiency	> 00%	23.8	H/V	400	< 0.60 K	0.75 °
	> 90 /8					(14km x 24km)
Range	2.7-340K	36.5	H/V	1000	< 0.70 K	0.35 °
Sampling	F 101					(7km x 11km)
interval	5-10KM	89.0 A/B	H/V	3000	< 1.20 K	
Data rate	87.4 kbps (average)					(3km x 5km)
Life time	7 years	165.5	V	4000	< 1.50 K	0.3 ° (IBD)
				<u> </u>	(TBD)	(6km × 10km)
* Red indicates differences from AMSR2		183.31 ± 7	V	2000 × 2	< 1.50 K	0.28 ° (TBD)
					(TBD)	(5km × 9km)
	183.31 ± 3	V	2000 × 2	< 1.50 K	0.28 ° (TBD)	
				(TBD)	(5km × 9km)	

List of AMSR3 Products

Standard Product	Research Product				
Brightness Temperature (6-183GHz) (L1B)	High-resolution Brightness Temperature (6-10GHz) (L1H)				
Resampled Brightness Temperature (L1R)					
Total Precipitable Water (over ocean & land)	High-resolution Sea Surface Temperature (20km				
Integrated Cloud Liguid Water Content	res.)				
(over ocean)	Sea Ice Motion Vector				
Precipitation (liquid & solid)	Land Surface Temperature				
Sea Surface Temperature	Vegetation Water Content				
(6GHz & 4-frequency)	Thin Ice Detection				
Sea Surface Wind Speed	Soil Moisture Content & Vegetation Water Content				
All Weather Sea Surface Wind Speed	by Land Data Assimilation (L4)				
Sea Ice Concentration	Climate Data Record (CDR) for each parameter				
High-resolution Sea Ice Concentration	(as of Dec. 2019)				
Soil Moisture Content					
Snow Depth (snow depth & SWE)					

* Red indicates differences from AMSR2

Precipitation and Cloud Profiling Radar developed and planned in JAXA

- JAXA has large heritage of the TRMM/PR and GPM/DPR, and the data record of spaceborne precipitation radars is more than 20 years.
- JAXA and NICT are developing Cloud Profiling Radar (CPR) with doppler capability, onboard the Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) jointly with ESA.

Cloud Profiling Radar with Doppler capability in EarthCARE mission

- The Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) jointly with ESA observes clouds, aerosols, and radiation on a global scale to improve the accuracy of climate change predictions.
 - ü planned to be launched in JFY2022.

thCARE

- JAXA and NICT are developing Cloud Profiling Radar (CPR) with doppler capability.
 ii It will be the world's first spaceborne W-band (94GHz) radar with doppler capability.
- The CPR will provide observations of not only cloud but also snowfall and light rainfall.

Next Generation Precipitation Radar discussed in JAXA (1)

- The JAXA has studied a feasibility of a next generation precipitation radar with Japanese science team and user community.
 - The JAXA has discussed with NASA in the Aerosol and Cloud, Convection and Precipitation (ACCP) study.
- Our targets for the next generation precipitation radar will be Wider swath, Higher sensitivity, and Doppler Capability.

Next Generation Precipitation Radar discussed in JAXA (2)

- As discussed with Japanese science team and user community, JAXA raised three mission objectives for the next generation precipitation radar as follows;
 - 1) Understanding of cloud-precipitation process,
 - 2) Collaboration with high-resolution weather and climate numerical models,
 - 3) Monitoring the extremes and its applications.
- Figure indicates the connection among the mission objectives, observation requirement and system requirement discussed in JAXA.

Concluding Remarks

- JAXA has long history and big heritage of satellite-based precipitation observation by both passive and active microwave sensors.
- Passive microwave sensor
 - Since 2002 to present, AMSR series with large-sized antenna and C-band frequency channels contributes largely to water cycle observations, including GSMaP merged rainfall products.
 - Future AMSR3 on board the GOSAT-GW will have additional high-frequency channels for snowfall retrievals to be launched in JFY 2023 (Apr. 2023 – Mar. 2024).
- Active microwave sensor
 - Since 1997 to present, TRMM/PR and GPM/DPR are only reliable references to passive microwave radiometers for precipitation observation. The CPR with doppler capability in the EarthCARE is planned to be launched in JFY2022.
 - Next generation of DPR and its targets were discussed with Japanese PMM science team and user community.
- Coordination Group for Meteorological Satellites (CGMS)-48 Working Group (WG)-II action proposed in May 2020
 - The CGMS WG-II requests "IPWG to review operational utilizations of spaceborne precipitation radar and to submit a report regarding the necessity of the precipitation radar, which can be a key factor to continue long-term spaceborne precipitation radar observations."
 - There are plans to write such a document with the IPWG community and that there will be a call for contribution soon.