Analysis of satellite monthly precipitation time series over East Africa
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Precipitation variability over East Africa (1/3)
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Annual precipitation from GPCC Climatology at 0.5°

East Africa (EA) is characterized by
complex topography and highly varying
climatic conditions, which reflect into a
marked geographic variability of
precipitation...
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Precipitation variability over East Africa (2/3)
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Eight areas (clusters) were identified by applying a
non-hierarchical k-mean cluster analysis to the
GPCC_CLIM data on the basis of the characteristics

of the precipitation annual cycle.

Meyer-Christoffer, A. et al. GPCC Climatology Version 2011 at 0.25°: Monthly Land-Surface Precipitation Climatology for Every Month and the Total Year from Rain-Gauges
built on GTS-based and Historic Data. doi: 10.5676/DWD_GPCC/CLIM_M_V2011 025 (2011).

Clusters

1, 3, 6 & 8 Southeastern Ethiopia, Somalia,
Kenya, Southern Uganda and Tanzania

2 Central Ethiopia (Rift Valley, W & E
Highlands escarpments), part of Uganda,
Kenya

4 Mountainous coastal Somalia (Gulf of
Aden), Central Uganda, Congo

5 Sudan, Western Ethiopian Highlands

7 Northern Sudan, coastal Eritrea



Precipitation variability over East Africa (3/3)

... and different precipitation seasonality.
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Meyer-Christoffer, A. et al. GPCC Climatology Version 2011 at 0.25°: Monthly Land-Surface Precipitation Climatology for Every Month and the Total Year from Rain-Gauges
built on GTS-based and Historic Data. doi: 10.5676/DWD_GPCC/CLIM_M_V2011 025 (2011).



Drought events and precipitation measurements

Areas Affected by Drought in Eastern Africa from 1982 to 2011
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The frequency and impacts of these extreme
events require a continuous monitoring of
precipitation as a key variable for the inclusion
of these phenomena in regional climatological
studies and their timely forecast.

Satellite precipitation products are particularly
necessary in EA to enhance the observational
capabilities of sparse rain-gauge networks.
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Precipitation measurements from satellite

Algorithm Spatial Time Input data Producer/reference
resolution resolution
3B42_daily v7 0.25° daily MW, GEO-IR, gauges NASA/GSFC
Huffman et al., 2007
CMORPH v1 0.25° daily MW, GEO-IR motion vectors, NOAA/CPC
bias corrected daily gauges Joyce et al., 2004
GSMaP_MVK v5.222.1 0.1° hourly MW, GEO-IR, EORC/JAXA
GEO-IR motion vectors Aonashi et al., 2009
Kubota et al., 2007
Ushio et al., 2009
TAMSAT — TARCAT v2 0.0375° monthly GEO-IR, climatological calibration University of Reading
with rain gauges Grimes et al., 1999
Maidment et al., 2014
PERSIANN 0.25° 6-hourly GEO-IR, PMW rainfall estimates to  UC Irvine
update model parameters Hsu et al., 1997
3B31v7 0.5° monthly TRMM TMI and PR NASA/GSFC, JAXA
Haddad et al., 1997
RFE v2 0.1° daily PMW, GEO-IR with GPI, GTS rain NOAA/CPC

gauges

Xie and Arkin, 1996

Monthly accumulated precipitation was calculated for each satellite product and for the time
period 2001-2009. All data sets were re-projected on a common grid at 0.5°,



Precipilation {mm)

Precigilatan mm) Pracipitation (mm)

Precipitalion (mim)

240

cluster 1

Precipitation (mm)

3
| cluster 2
0

Fak Mar Ap May

| cluster 7

Pracipitation (mm) Precipilaton (mm)

Precipilaton (mm}

~ Cluster 6

_ | cluster 8

Mean precipitation annual cycles (2001-2009) from satellite products at 0.5°

NE W'E WE HE SFE SIE

ph ]

N

N

L B |

L1 v
e b o L =E L -
T

Satellite products reproduce the
characteristics of the precipitation cycle of
each cluster: wet season duration,
identification of peak intensity months, and
presence of a prevailing wet season in case
of bi-modal cycles.

TAMSAT
GSMaP
3B42
PERSIANN
RFE
CMORPH
3B31
GPCC_CLIM




Precipitation intensity distribution of satellite products at 0.5°

TAMSAT
Cluster 1 Cluster 2 Cluster 5 . Cluster 6 . GSMAP

N 11 “ “ | SE;%AN
T a0 t * N

40 da il 40 | 40
s\, % ir RFE

2,11 3 - g, 1 £,
2. Z, % £ ge— £ CMORPH
g \ g N R | g |l 3831
s s A\ g ~ g
3 - g YA g2 | § 1\ \ GPCC_FD
[ra % [ra . @ w w
A\ t,\ 10 - *\‘( ] —
10 i NN 'l 10 R 10
\\w - 5 V‘l\\é—\, '\-&;{3; =\ ™
i =" - Bl - .
] : H-n-a a . i - H-mm i =
,e83n88888888s  _ogsr38888888; ,e83:88888888s  _o0pe88888888s
TeMEREEEEEE S feNBg8888888 "CNRRSEEEEEE S “ENSRE855558
Rainfall intervals (mm) Rainfall intervals (mm) Rainfall intarvals {mm) Rainfall intervals (mm)
Cluster 3 Cluster 4 Cluster 7 Cluster B
€0 0y 100 ®
50 28 I B0 % |
& 40 Fw F | F X \
§ g 18 5 § 15 #\L /1.|
40 - \
E 2 E 0 E ' E 10 fd' Ny R
| RANWA
B ok
10 - 5 “ ( 5 \:__*}
Hi_..?,,. - & =,

o Wﬁ—#m o 0 hﬁ*'ﬂﬂ—w—nmnmmm 0 \'u-E Ftem
-28328388888¢3s ce83088888388s co6328888§883
reRRessEESge YizuEseREEEE e Lo NBPEEEEEEE S

FFFFF & - T - & - - -1
Rainfall intervals (mmj) Rainfall intervals (mmj Raintall intarvals {rmm) Faintall intarvals {rmm)

» Consistency among the intensity precipitation distributions of the various satellite products.

» All bi-modal clusters exhibit precipitation distributions with 2 peaks at 25-50 and 100-150 mm; the mono-modal cluster 5
has a occurrence peak in the range 100-300 mm, whereas in cluster 7 (arid region with very scarce precipitation) most of
the occurrences concentrate in the first 4 bins (< 50 mm).

« Satellite products generally overestimate the occurrences with monthly precipitation < 10 mm with respect to GPCC_FD.

Schneider, U. et al. GPCC Full Data Reanalysis Version 6.0 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data.
doi:10.5676/DWD_GPCC/FD_M_V6_050 (2011)



Satellite precipitation estimate variability (1/2)
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Seasonal six-member ensemble
means (2001-2009)

A first assessment of the differences
among the satellite products was
obtained by analysing the standard
deviations from the ensemble of the six
monthly satellite products (Tian and
Peters-Lidard, 2010).

This method is instrumental to identify
situations that reveal particularly
problematic for the precipitation
retrieval from satellite.



Satellite precipitation estimate variability (2/2)
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Comparisons between satellite products and GPCC_FD v6 at 0.5° (1/2)

Key points to be considered:

» GPCC_FD is the most accurate in situ precipitation data set of GPCC, nevertheless the local
poor density (Somalia, Eritrea, and Djibouti) of rain stations has to be considered.

» This affects the quality of the GPCC_FD and of the satellite products that make use of rain
gauge measurements.

« Satellite products exploiting rain gauge measurements (3B42 in particular) are expected to
better agree with GPCC_FD data set. For these products comparisons with GPCC can not
be interpreted as a completely independent validation.

Statistical parameters:

Zm: _ precip, N | 1
BIAS = _ RMSE = II'EZ(SGI _ precip.—gpce  [d.)

> gpce_ fd, \

] > (sat _precip,—gpce fd.)’
MAE = — ) |sat _precip,—gpce [d, ERE —1—
N Z*:| | > (gpee_ fd,—gpee_ fdy

EFF skill score of satellite estimates accuracy vs GPCC_FD

e 1 bestscore

» 0 satellite estimates are as accurate as the rain gauge
mean value

» <0 rain gauge mean value is a better estimate than
satellite estimates




Comparisons between satellite products and GPCC_FD v6 at 0.5° (2/2)
BIAS Root-mean-square error
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1. TRMM-3B42 best performance satellite product in all clusters with MAE values in the range 5-25
mm/month and best Efficiency Score (EFF=0.7 for all clusters) values.

2. RFE and TAMSAT exhibit similar performances in terms of MAE, RMSE, and EFF (>=0.5), with lower BIAS
values for TAMSAT.

3. GSMaP results similar to those of CMORPH (MAE, RMSE, and EFF) with differences for cluster 5.
GSMaP’s BIAS values are more variable.

4. PERSIANN and 3B31 show very low EFF, even negative.



Comparisons between satellite products and GPCC_FD v6: the terrain elevation (1/3)

The complex orography can be an issue for the precipitation retrieval from satellite:

* IR-based retrievals can have problems to identify warm orographic rainfall

 MW-based retrievals rely on ice scattering over land, which can be moderate in case of warm orographic rain
» The presence of snow or ice on the ground is a further difficulty for the MW-based retrieval

Monthly mean precipitation as a function of elevation.

» Generally precipitation intensity increases with elevation (H > 250-500 m) with a trend which depends on clusters.
Satellite products give similar results over grid cells with H < 250-500 m.

Larger differences among satellite products are detected for H > 250-500 m.
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Comparisons between satellite products and GPCC_FD v6: the terrain elevation (2/3)
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Monthly mean precipitation as a function of elevation.

e For H>1000-1500 m the precipitation increase with elevation becomes weaker (clusters 1, 2, 3, 4, 5, 8).

* Over high-elevated grid cells 3B31, 3B42, and CMORPH exhibit the highest precipitation intensity values.

» Cluster 7: scarce dependence between precipitation and elevation, but only 16 grid cells out of 96 have H > 500 m.



Comparisons between satellite products and GPCC_FD v6: the terrain elevation (3/3)
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Monthly mean anomalies with respect to GPCC_CLIM data set Satellite precipitation datasets

150 | can be used to construct
short-term climatologies
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Monthly mean anomalies with respect to GPCC_CLIM data set
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Conclusions

The different precipitation annual cycles characteristics of the region are identified by
using the climatological data set GPCC_CLIM.

The satellite data sets correctly reproduce the annual cycle identified by means of
climatological data in terms of wet season duration, prevailing wet season (for bi-modal
cycles), and intensity peak months.

Insights on the satellite precipitation estimate variability can be obtained from the analysis
of the standard deviation of the six satellite product ensemble. The greater standard
deviation values are associated with mountainous areas and more intense precipitation.

Performances of satellite products were quantified by comparisons with GPCC_FD data set.
As expected and due to the use of GPCC data, 3B42 is the best performance satellite
product with MAE in the range 5-25 mm/month and best EFF = 0.7 for all clusters.

CMORPH and RFE make also use of rain gauge estimates for precipitation bias correction,
but their agreement with GPCC_FD data is not as good as that of 3B42. Nevertheless both
products have positive EFF.



RFE and TAMSAT give similar results in terms of MAE, RMSE, and EFF (> 0.5) and
lower BIAS for TAMSAT. The TAMSAT dry BIAS is recognized in Maidment et al. (2014)
and attributed to the approach used in algorithm calibration, more oriented to
drought monitoring and low intensity precipitation retrieval.

TAMSAT is based on IR T; from Meteosat with a calibration methodology exploiting
historic rain gauge data across large climatically homogeneous regions. This
calibration methodology represents a valid alternative to the use of local satellite-
contemporaneous rain gauges, especially in EA with sparse gauge network.

GSMaP statistical scores are similar to those of CMORPH with BIAS values more
variable for GSMaP and better EFF score for CMORPH (cluster 5, 6, and 7). GSMaP
exploits a morphing approach of PMW rainfall similarly to CMORPH, but unlike
CMORPH it does not include the bias correction by means of rain gauge data.

Orography represents an issue for the precipitation estimate from satellite, this is
evident from the analysis of the six member ensemble standard deviation and the
increase of the RMSE as a function of the terrain elevation.
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