IPWG7 Research Activity Working Group

Chair: Shoichi Shige

Rapporteur: Benjamin Johnson

Attendees: Rémy Roca, Wei-Kuo Tao, Shruti Upadhyaya, Sarah Ringerud, Svetla Veleva, Robert Joyce, Bob Kuligowski, Axel Andersson, Huan Meng, Giulia Panegrossi, Rebekah Esmaili, Woosub Roh, Toshi Inoue, Benjamin Johnson, Shoichi Shige

Research Working Group Recommendations (1/4)

Community-Related Recommendations

- Strive to increase connections between application/validation and research with respect to spatial and temporal scale interactions; including both ancillary and "direct" observations, simulations, and retrieval algorithms, for both ground and space-based paradigms.
- Recommend that CGMS subgroups and parallel group share reports at IPWG *and vice-versa*, to identify connections and deficiencies in inter-group activities (e.g., ITOVS, ICWG, snowfall workshop, etc.).

Research Working Group Recommendations (2/4)

Observation Related Recommendations

- Encourage use of scatterometers (and other active observations) to improve total-scene retrievals with a goal of increasing observational accuracy of the entire spectrum of precipitation type, intensity, distribution, and location in order to quantify how the weather and climate are changing regionally and globally.
- Ensure over-ocean precipitation processes are consistently observed, encourage communication and interaction with broader research community, taking advantage of specialized knowledge

(Most of our CGMS recommendations are observationally related)

Research Working Group Recommendations (3/4)

Retrieval Related Recommendations

- Improve understanding of 4-D precipitation *processes*, rather than independent 1-D individual pixel retrievals
- Support activities that promote physically consistent physical basis between ground, aircraft, and satellite based simulations and retrievals
- Encourage multi-parameter column retrievals (versus surface-only precipitation), maximizing information content available from remote sensing platforms
- Exploit visible and IR observations (or VIS/IR based-retrievals) to identify precipitation processes to guide microwave-based retrievals
- Reduce PSD-related uncertainties by exploiting process knowledge within aerosol, cloud, and precipitation interactions (e.g., 4-D scale, lifecycle, regional characteristics), and quantify impact on retrieved precipitation parameters

Research Working Group Recommendations (4/4)

Product/User Related Recommendations

- Identify and encourage data availability and communicate with community to improve understanding of how to access and utilize various datasets.
- Encourage interaction, training, and communication with user and peripheral communities with a mind toward developing user-need based products (e.g., Hydrology, aerosol, cloud, operations, etc.)
- Investigate and quantify influence of consistency, accuracy, and uncertainty between individual sensor (e.g., level 2) products on merged (e.g., level 3) products
- Encourage precipitation products to be more applicable toward climate applications, or at least quantify uncertainties under the assumption that products may be used in climate applications.
- Preserve long term data records from heritage satellites, e.g., TRMM for Climate Data Record / FCDR (observations and retrieval) type applications, and encourage understanding the variability of the instruments themselves, improved accessibility.
 - 1. Reprocessing existing datasets using updated database(s) reflecting improved knowledge.

Research Working Group Action Items

- Action: Coordinate similar community research focus groups, e.g., hydrometeor physical properties and scattering properties simulations (Who? TBD)
- Action: Study impacts of unplanned loss of observations (e.g., loss of instrument or satellite) on precipitation data products at all levels (Who? TBD)
- Action: Compile the "successes" of precipitation remote sensing over time, highlighting our progress. Recommend development of a systematic metric to gauge progress of algorithms (e.g., skill improvement), and attempt to quantify how user communities have benefited from these improvements. (Who? TBD)
 - 1. redesign systematic assessment / intercomparison of precipitation retrievals (scales/types? climate, instantaneous, assimilation, regional assessments) à Inquire about GEWEX assessment program (Rémy)
 - 2. Feedback loop into algorithm development

Research WG CGMS Recommendations (IPWG7)

- IPWG recognizes the need for improved global measurement of precipitation for both weather and climate monitoring, recommends continued multi-national cooperation in ensuring comprehensive observation and precipitation datasets are available to the community with transparency and efficiency.
- IPWG recognizes that active microwave observations of precipitation strongly enhances the value of CGMS passive assets, and recommends CGMS members take responsibility for sustaining these capabilities.
- Recommend an operational constellation of conically-scanning microwave platforms to guarantee sustained support for the current level of capability.
- IPWG recognizes the value in constellation-based (e.g., A-Train) active and passive multi-parameter observations in improving precipitation process understanding and its role in the climate system, recommends continued science-driven international cooperation and collaboration in preparation for future missions.
- Ensure continuity of geostationary coverage and data access over the current METEOSAT-7 coverage area.
- Recommend CGMS subgroups and parallel group reports are shared at respective subgroup meetings, to identify connections and deficiencies in communication (e.g., ITOVS, ICWG, snowfall workshop, etc.).