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CloudSat-based  snowfall occuurrence
Edel et al., 2020

Credit: NASA GSFC

Credit: NASA GSFC

Introduction
Snow plays an important role in the Earth energy exchange processes, 
and is a fundamental element of the water cycle (higher latitudes!) 

Mostly occurs in regions where ground-based 
measurements are scarce or absent (high latitudes)



Credit: NASA GSFC

Need to rely on the use of satellite-
based remote sensing measurements

Microwave (MW) wavelengths are 
directly responsive to snowfall 
microphysics

Active MW: cloud/precipitation space-
borne radars

Passive MW radiometers equipped 
with high frequency channels 

Polar-orbiting satellites offer good 
coverage over the high latitudes

Introduction
Snow plays an important role in the Earth energy exchange processes, 
and is a fundamental element of the water cycle (higher latitudes!) 

Mostly occurs in regions where ground-based 
measurements are scarce or absent (high latitudes)
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The GPM constellation and future European LEO MW missions
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THE NASA/JAXA GPM CORE 
OBSERVATORY 

GPM Microwave Imager (GMI): 13 
precipitation sensing channels (10-
183 GHz) with the highest spatial
resolution available (5-30 km);

Dual-frequency Precipitation
Radar (DPR) (Ku and Ka band)

Skofronick-Jacskon et al., 2018
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Snowfall detection and quantification is one of the 
main challenges in precipitation retrieval from space

MW radiometry and snowfall

(Skofronick-Jackson et al., 2019)

(Casella et al., 2017, Atmos. Res.) 

Large fraction of 
higher latitudes 
snowfall is missed 
by GPM DPR(Ku 
Ka-band) (mostly 
due to sensitivity 
limits). 

DPR vs. CPR DPR-Ku DPR – Ka MS

%missed snowfall 
events

92.5% 95.2%

% snowfall mass 
detected

28.08% 33.09%
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GPM DPR (Ku/Ka-band)
• Valuable for global rainfall / medium-heavy snowfall
• Good coverage (large swath, 3D structure)(but up to 65°N/S) 
• Low sensitivity (not suitable for light snowfall)

CloudSat (EarthCare launched in May 2024) CPR (W-band):
Considered reference for snowfall global climatology 
• high sensitivity, suitable for snowfall / light precipitation at high latitudes
• Global coverage (82°N/S) 
• Nadir looking (narrow swath)
• Limitations: Attenuation, saturation, ground clutter

Spaceborne cloud and precipitation radars 
EarthCare

Current products show large discrepancies in snowfall climatologies (especially at higher latitudes)


		

		GPM DPR

		GPM DPR

		CloudSat CPR



		

		Ku

		Ka

		W



		Frequency

		13.6 GHz

		35.55 GHz

		94.05 GHz



		Sensitivity

		12-13 dBZ

		16.32 dBZ

		-28 dBZ



		Swath size

		245 km

		125 km* 

		1.5 km



		Horizontal Resolution

		5 km

		1.5 km









Active vs. Passive Snowfall retrievals

CloudSat CPR/Calipso observations

Spaceborne radars do not provide the 
needed coverage for snowfall global 
monitoring ->

We need to rely on PMW radiometers:
GPM constellation and future missions 
(JAXA AMSR3, EPS-SG, AWS (EPS-
Sterna))

Advanced Technnology Microwave Sounder (ATMS)



Percentage trasmission of surface emitted radiation through the Earth’s atmosphere along the vertical
direction, under clear-sky conditions. [Adapted from Ulaby et al, 1981]

Clear-sky Zenith Microwave Transmittance
Frequency range: 10-200 GHz

Snow cover and sea ice properties

Measured radiance (or brigthness temperature) in each MW channel depends on 
surface properties (T, emissivity), atmospheric moisture/temperature, 3-D 
distribution of hydrometeors, microphysics (absorption and scattering properties), 
radiometers viewing geometry

PMW radiometry and precipitation



Percentage trasmission of surface emitted radiation through the Earth’s atmosphere along the vertical
direction, under clear-sky conditions. [Adapted from Ulaby et al, 1981]

Clear-sky Zenith Microwave Transmittance
Frequency range: 10-200 GHz

• Higher frequency channels (>= 90 GHz) mostly respond to scattering by ice hydrometeors 
(snowflakes mostly at > 150 GHz) and emission by water vapour and cloud liquid water

• The lower the transimissivity -> the less affected by the background surface (except in very
dry conditions). 

Snow cover and sea ice properties

PMW radiometry and precipitation



PMW remote sensing of snowfall
Passive microwave (PMW) radiometers 
equipped with high frequency channels 
have sensitivity to snowfall 
microphysics and are used for snowfall 
retrieval

There is a complex interconnection 
between snowfall intensity, cloud 
properties, and environmental conditions 
(i.e., surface emissivity, atmospheric 
humidity) on PMW snowfall signature
This poses several challenges

High frequency channels (> 90 GHz) are mostly
sensitive to:
• snowfall scattering -> TB cooling
• supercooled liquid water (SLW) emission -> 

TB warming
• water vapour emission (mostly at frequencies 

> 150 GHz)
• background surface emissivity (depending on 

moisture conditions)
Snowfall retrieval is mostly based on the 
scattering signal of snowflakes on the 
upwelling radiation at high frequencies (> 
150 GHz). 
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PMW Remote Sensing of Snowfall: Challenges
Challenge 1

The (mostly) weak scattering signal at high 
frequency is highly dependent on the complex 
microphyscal properties of snowflakes 

Need for high-quality, global snowfall database to be 
used as a priori or training information in the PMW 
retrieval process 

Strategy
1) Highly sophisticated single scattering 
models and cloud microphysics models are 
now available, but still large uncertainties in 
cloud-radiation model simulations

2) Use of observational datasets 
relating snowfall profiles with PMW 
measurements allows to associate 
PMW measurements to snowfall 
intensity

Field campaigns (e.g., IMPACTS): For snow, density, 
size, shape and mass co-vary very widely even at the 
same altitude at same time in the same winter storm … 
the presence of varying mixtures of shapes and 
degrees of riming means we cannot well constrain 
properties of ice particles based on environment and 
greatly complicates retrievals compared to rain
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PMW Remote Sensing of Snowfall: Challenges

Sea ice and snow-covered land surface emissivity is 
extremely variable due to rapid changes of sea ice 
properties of snow cover extent, snow accumulation on 
the ground, and snowpack and sea ice physical 
properties. 

Significant effects on the upwelling microwave signal 
in presence of snowfall (especially in dry 
conditions/high latitudes) which is difficult to interpret
Need for better characterization of frozen surface (sea ice 
and snow cover) conditions

Strategy: Exploitation of low frequency MW 
channels for the characterization of the frozen 
surface (sea ice and snow cover) at the time of the 
overpass

Multi-channel PMW radiometer measurements respond
to both snowfall and background surface (snow cover 
and sea ice) properties (especially in very dry 
conditions)

Challenge 2

GMI overpass at 12:26 UTC for Extreme Lake Effect Snow event 
on 9 January 2015 (Milani et al., 2020, Turk et al., 2021)

Measured TBs
(including high-
frequency channels
in very dry 
conditions) are 
affected by snow 
cover (and sea ice) 
properties

Snowfall or 
Snow at the 
surface?
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Panegrossi et al. 2017 Rem. Sen

Siberia snowfall event 30 April 2014  

SLW SLW

2C-SNOW-Profile

GMI TBs

Dampening effect of water 
vapor at 166 GHz; 

effect of supercooled 
droplets emission at 89 GHz

Deep cloud; 
mostly scattering 
signal at >166 
GHz

The snowfall scattering signal tends to be 
masked by the water vapor and supercooled 
cloud liquid water (SLW)  emission

Challenge 3

Effect depends on atmospheric moisture 
Need to characterize atmospheric moisture and 
SLW at the time of the overpass

Strategy: Exploitation of all WV sounding 
channels and 90 GHz channels combined with 
active sensors (radar/lidar) able to retrieve
SLW (mostly at the cloud top)

Shallow/weak 
snow clouds with 
supercooled liquid 
water

PMW Remote Sensing of Snowfall: Challenges

GMI/CloudSat-Calipso co-located observations



Why Machine learning for Snowfall retrieval?

Increasing interest in using machine learning for snowfall retrieval. 
It allows:
1. Synergy and full exploitation of multiplatform, multi-satellite 

multichannel datasets

2. To handle underdetermined highly non-linear inverse and forward 
problems

3. To extract information from large amounts of heterogeneous data 
and exploit synergy between different sensor characteristics (multi-
platform, multi-sensor approaches)

Advantages
• Improve automation and discovery of new 

insights from complex data sets
• Increase our understanding of complex 

environmental systems 
• Fast and accurate retrieval of environmental 

parameters 

Credit: EUMETSAT

Limitations
• Training dataset: accessibility, representativeness, 

accuracy;
• Computational power and storage;
• Uncertainty and error inherent to remote sensing:  

difficult to handle and poorly understood

Examples of ML approaches:
• Shallow Neural Network:  used for the 

detection/classification/estimate
• Random Forest: used for the 

detection/classification
• Gradient Boosting: used for the 

estimate
• Deep learning (convolutional NN):

○ pattern analysis
○ classification
○ estimate



Training datasets: spaceborne cloud 
and precipitation radars

 2B-CSATGPM dataset (J. Turk, JPL):
 GPM (GMI-DPR)/CloudSat

coincidences
 Updated to V7 GPROF, DPR and CMB

Limitations: 
• Representativeness over large 

PMW radiometer IFOV

• CPR and DPR capabilities
• Sensitivity, attenuation, saturation

• Uncertainity of reference
precipitation products

• Z-S relationship uncertainties 
associated to snow 
microphysics

• Ground clutter (lower 1200-2000 
m are missed) which affects 
surface snowfall 
detection/estimate

Credit: J-F Rysman

Training datasets for PMW 
precipitation retrieval algorithms

based on ML are mostly built from 
nearly coincident measurements from 
active and passive microwave sesnors

• Spaceborne radars provide vertical profiles of 
precipitation

• Consistency of precipitation measurements around
the globe but limited coverage

Observational precipitation datasets built from 
coincident active/passive measurements

MW radiometers cover a large swath
Indirect, complex link to surface precipitation 

Turk et al., 2021 doi: 10.3390/rs13122264

https://doi.org/10.3390/rs13122264


Other examples of CloudSat/GMI and CloudSat/ATMS coincidences
CloudSat/Calipso-GMI (extension of NASA 2B-CSATGPM)

CloudSat/Calipso-ATMS

Geographical distribution of GPM/CPR coincidences
(Panegrossi et al., 2017)

• ATMS (cross-track) and GMI (conical 
scanning) are the two most advanced 
spaceborne radiometers in space

• They are equipped with low and high 
frequency channels for background 
surface characterization and for snowfall 
retrieval

• Used in preparation for  EPS-SG mission 
(MWS and MWI)

Real or due 
to 
attenuation?
Battaglia and 
Panegrossi 
(2020) 

CPR 2C-SNOW +Calipso

70% of snowfall profiles

60% of snowfall profiles


		Period

		10/03/2014 – 01/09/2016



		Geographical area

		65 °S–65° N, 180° W–180° E



		Number of GMI orbits

		6,502



		Number of triple coincidences 

(GPM-CPR-ATMS)

		5,801



		Number of elements

		5,870,903



		Number of elements with snowfall

		400,145



		Number elements with snowfall and SLCT 

		289,905



		Horizontal resolution

		1.2 km CPR ; 10 km GPM








		Period

		1/01/2015 – 1/09/2016



		Geographical area

		90°S–90° N, 180° W–180° E



		Number of ATMS orbits

		3,049



		Number of elements

		4,670,442



		Number of snowfall elements

		745,533



		Number of snowfall elements with SLCT 

		456,391









SLALOM: First  PMW snowfall retrieval algorithm based 
on ML using CloudSat / Calipso as reference

19

Machine Learning approach based on the GMI/CloudSat/Calipso coincidence observational dataset used for training (CPR 2C-
SNOW product for snowfall with liquid fraction < 15% (no mixed phase or liquid precip.) (extended 2B-CSATGPM dataset
developed by J. Turk)
Input: GMI L1c TBs (all channels) and auxiliary ECMWF analysis variables on atmospheric state (T2m, moisture profiles)
No auxiliary info on background surface conditions but exploitation of all GMI low frequency channels
• Random forest modules for snowfall detection and supercooled liquid water detection;
• Multi-linear regression module: snow water path (SWP) estimates
• Gradient boosting module: Surface snowfall rate (SSR)

Global snowfall Occurrence 05/2014 - 05/2016 SLALOMCPR

(Rysman et al., 2018,2019)
SLALOM is able to reproduce CloudSat CPR snowfall climatology



SLALOM: CloudSat-based PMW snowfall retrieval
(in preparation for EUMETSAT H SAF EPS-SG day-1 precipitation product)

20
(Rysman et al., 2018,2019)

UnconditionedConditioned (SSR > 0 mm/h)Mean SSR (mm/h) between May 2014 and May 
2017

SLALOM main limitations:
• SLALOM fully relies on the 2C-SNOW-PROFILE CPR product (V04); 
• GMI/CPR observations mostly occur around 60°N/S; 
• Overestimation lower snowfall rates (< 0.1 mm/h) (sensitivity issues) and 

underestimation of higher rates (not well represented in the training 
dataset)
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SLALOM
CPR

Dry 
conditions 
w/ SCLW 
over snow 
covered land

Moist
conditions 
w/ SCLW
over water

Predicted and observed SWP match very well, even in the 
weaker snowfall region (around 65°N)

SLALOM misses snowfall in moister conditions over ocean 
(scattering signal masked by WV emission)

SLALOM matches the SWP in drier conditions over snow-
covered land

SLALOM: CloudSat-based PMW snowfall retrieval
(in preparation for EUMETSAT H SAF EPS-SG day-1 precipitation product)

(Rysman et al., 2018,2019)

GMI/CloudSat co-located observations Siberia 30 April 2014  



4-year SLALOM and GPM products validation over CONUS 

MRMS: Multi-radar-multi-sensor (Zhang, et al. 2011, Zhang, et 
al. 2016; Tang et al. 2020) https://blog.nssl.noaa.gov/mrms/ 

• Products: Cartesian gridded level II and III radar 
products over  US and Canada 

• Resolution: 1 x 1 km horizontal, 2 min time sampling 
Variables considered: 

• Instantaneous precipitation rate (S)
• Radar quality index (RQI)
• Phase precipitation flag

• Statistical analysis:  4 year dataset from Jan 2016 to 
March 2020 

SLALOM for GMI 
NASA GPM products (GMI and DPR):
GPROF V05 for GMI (NASA GPM)
DPR, Ku, Ka V06 (NASA GPM)
CORRA (2B-CMB) V06 (NASA GPM)
CloudSat CPR product
2C-SNOW-PROFILE (NASA)

Snowfall event 14 March 2017 20:02 UTC

Satellite Snowfall productsGround-based radar reference data

(Mroz et al., JHM, 2021)

(Mroz et al., JHM, 2021)



(sfc classes are based on 
GPROF surface 
classification)

Snow 
cover

Sea
ice

In SLALOM the exploitation of 
low frequency channels allows
to better constrain the 
snowfall retrieval (based on 
high frequency channels) 
over all surfaces

(Mroz et al., JHM, 2021)

Score GMI 
SLALOM

GMI 
GPROF

CPR 2C-
SNOW

POD (%) 57.3 28.1 70.0

FAR (%) 26.3 39.6 25.5

HSS (%) 58.7 31.3 68.3

CSI (%) 47.6 23.7 56.4

4-year analysis of snowfall retrieval 
over all surface types (2016-2020)

4-year SLALOM and GPM products validation over CONUS 
(Mroz et al., JHM, 2021)



(2016-2020)

Black horizontal lines show the limit on the satellite product that optimizes precipitation detection matching with MRMS 

(Mroz et al., JHM, 2021)

Score GMI 
SLALOM

GMI 
GPROF

CPR 2C-
SNOW

POD (%) 57.3 28.1 70.0

FAR (%) 26.3 39.6 25.5

HSS (%) 58.7 31.3 68.3

ME (mm/h) -0.38 -0.54 -0.21

RMSE 
(mm/h)

0.74 1.08 0.68

MB % 48.5 48.4 73.0

CC 0.43 0.39 0.45

In SLALOM the exploitation of low frequency channels allows
to better constrain the snowfall retrieval over all surfaces

• Negative ME for all GPM products (underestimation)
• GMI products produce < 50% of total precip. 
• Moderate CC (high degree of uncertainty for all products)
• SLALOM and 2C-SNOW are the least biased

4-year SLALOM and GPM products validation over CONUS 



PESCA: 
• Empirically-based algorithm for frozen

background surface characterization (different 
types of sea ice and snow cover) 

• Use of low-frequency (<= 90 GHz) channels
common to most radiometers;

• Applicable to both cross-track and conically
scanning  spaceborne microwave radiometers 
at the time of overpass (for TPW < 10 kg/m2)

PESCA: Passive microwave Empirical cold Surface Classification 
Algorithm (for ATMS and GMI in preparation for EPS-SG MWS and MWI)

(Camplani et al., JHM, 2021)

The microwave signal related to snowfall is strongly influenced by the different surface
conditions (e.g., wet or dry snow cover, snow depth, sea ice concentration and type, etc.).
The use of surface classification climatological datasets results inadequate for the extreme
variability of the frozen surface conditions.

Siberia 30 April 2014
ATMS-based GMI-based



T2m (K)

PD
F

(Camplani et al., JHM, 2021)

PESCA Snow Cover categories



Extreme Lake Effect Snow event on 
(Milani et al., JHM, 2020)

Low-frequency channels
combinations are used in 
PESCA to identify different 
types of sea ice and snow 
cover with distinct radiative 
properties

GPROF 
classification based 
on climatological 
and daily snow 
cover product

Turk et al., JHM, 2021

Snow Depth from 
NOAA NOHRSC  
SNOw Data 
Assimilation 
System 
(SNODAS) 
https://nsidc.org/d
ata/g02158

PESCA 
classification at 
the time of the 
GPM overpass. 

PESCA: Snowfall vs. background surface

GMI 9 January 2015 at 12:26 UTC

https://nsidc.org/data/g02158
https://nsidc.org/data/g02158


SLALOM-CT (Snowfall retrievaL ALgorithm fOr gpM – Cross Track) 

• Random Forest
• Gradient Boosting
• Shallow Neural Network

• Convolutinal Neural
Network (VGG, ResNet)

Pixel Based

Image Based

Intercopmarison of different ML approaches

In preparation for EPS-SG MWS 
global day-1 precipitation product

Goal: achieve snowfall global coverage (polar regions) exploiting all
current and future operational sounders (ATMS, MWS, AWS)

SLALOM-CT for ATMS 

Sanò, et al., 2022 Doi: 10.3390/rs14061467



SLALOM-CT: ATMS-CPR Coincidence dataset

Period 16/01/2014 – 31/08/2016

Geographical area 82°S–82°N, 180°W–180°E

Number of database 
points 6.5 M

Number of database 
points with snowfall 1.1 M

IFOV size 15.8 x 15.8 (nadir) 30 x 
68.4 (scan edge)

INPUT Variables Data source
ATMS BTs

NOAA
ATMS Scan angle

Temperature @ 2m

ECMWF

Total column integrated water 
vapor

Freezing level Height
Temperature profile

Relative humidity profile
Absolute humidity profile

REFERENCE Variables Data source

Supercooled Water DARDAR (raDAR/liDAR) LATMOS-
Reading Univ.

Snowfall Rate 2C-SNOW-PROFILE (CPR product)
Snow Water Path 2C-SNOW-PROFILE (CPR product)

Sanò et al., 2022 doi:10.3390/rs14061467

CPR swath 
(nadir looking)

ATMS IFOVs

Input 
N

Central Freq
GHz

Pol.

1 23.800 QV

2 31.400 QV

3 50.300 QH

4 51.760 QH

5 52.800 QH

6 53.596 ±
0.115

QH

7 54.400 QH

8 54.94 QH

9 55.5 QH
10 89.5 QV
11 165.5 QH
12 183.311±7.0 QH
13 183.311±4.5 QH
14 183.311±3.0 QH
15 183.311±1.8 QH
16 183.311±1.0 QH

ATMS channels

Pixel 
Based

Image 
Based

Features Central 
Pixel

7x7 Matrix

Target Central 
Pixel

Central 
Pixel

One year (2015) for training, two years (2014 and 
2016) for test

http://www.cloudsat.cira.colostate.edu/data-products/level-2c/2c-snow-profile
http://www.cloudsat.cira.colostate.edu/data-products/level-2c/2c-snow-profile


SLALOM-CT Intercomparison of Machine Learning techniques

RandomForest GradientBoosting ShallowNN VGG ResNet

RMSE [kg/m2] 0.078 0.090 0.050 0.055 0.072
R2 0.667 0.553 0.861 0.834 0.714

ME [kg/m2] -3.66E-03 -1.08E-02 -1.59E-05 -5.61E-05 -1.2E-03
Corr 0.86 0.83 0.93 0.92 0.87
N0 4 106 104 3 104 7 104 4 106

RandomForest RobustBoost AdaBoost ShallowNN VGG ResNet
HSS 0.62 0.61 0.61 0.66 0.68 0.64
CSI 0.67 0.66 0.66 0.69 0.70 0.67
POD 0.80 0.79 0.79 0.83 0.83 0.80
FAR 0.20 0.20 0.20 0.19 0.18 0.19

Sanò, et al., 2022 
https://doi.org/10.3390/rs14061467

Snowfall detection

Snowfall estimate

𝑅𝑅2 = 1 − 𝑀𝑀𝑀𝑀𝑀𝑀
𝑉𝑉𝑉𝑉𝑉𝑉

Perfect: R2 =1
Baseline: R2 =0

Heidke Skill Score:
𝐻𝐻𝐻𝐻𝐻𝐻 = 2(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)

𝑎𝑎+𝑐𝑐 𝑐𝑐+𝑑𝑑 +(𝑎𝑎+𝑏𝑏)(𝑏𝑏+𝑑𝑑)

Perfect: HSS =1
No Skill: HSS=0



SLALOM-CT: surface characterization at the time of the overpass
• Exploitation of low-frequency channels in SLALOM-CT:

• Low sensitivity of results to the background surface variability
• Very good detection capabilities
• Very accurate estimates (compared to CPR)

R
M

SE
%

Surface* SNOW OCEAN LAND

RMSE 
[mm/h] 0.10 0.09 0.10

ME [mm/h] 0.002 -0.002 -0.01

Corr 0.80 0.84 0.79
POD 0.76 0.86 0.80
FAR 0.22 0.15 0.22
HSS 0.63 0.68 0.71

Verification using indipendent two-year (2015-
2016) CPR (2C-SNOW-PROFILE v5) dataset 
as reference

Sanò et al., 2022 doi:10.3390/rs14061467



Snowfall event over Quebec and Ontario on 24 November 2014 

SLALOM approach for ATMS and GMI 
(in preparation for EUMETSAT H SAF EPS-SG MWS and MWI)

Use of low frequency channels for background 
surface characteization at the time of the overpass

Turk et al., Rem. Sens., 2021, Doi: 10.1175/JHM-D-20-0296.1

https://doi.org/10.1175/JHM-D-20-0296.1


Extreme event in central Arctic Ocean on April 15-16 2020

• Between 13-19 April 2020 three Atmospheric Rivers (AR) reached the Arctic (based on the approach by Guan & Waliser
(2019)). 

• The AR event on April 15 had his origin in the Atlantic moved northward, across central Europe and Svalbard and hit the 
Polarstern on the 15 April at 19 UTC and lasted until 16 April 20 UTC. 

• Intense snowfall was associated to this AR event mainly concentrated in the frontal area
• The Polarstern is hit by the intense snowfall 



ERA5 TPW and SLALOM-CT SLW detection and Surface Snowfall Rate

Extreme event in central Arctic Ocean on April 15-16 2020



ML-based algorithms High lAtidude sNow Detection and rEtrieval aLgorithm for ATMS
(HANDEL) (Camplani et al., 2024, AMT)

• Snowfall retrieval at the high latitudes is more challenging due to 
cold/dry conditions:
• extremely variable background surface 
• impact of supercooled water layer on snowfall signature 

• development of the day-1 precipitation products for the European 
MetOp-SG mission at CNR-ISAC within the EUMETSAT HSAF program

Motivations
• Exploits PESCA classification and ML 

techniques to retrieve frozen surface 
emissivity at the time of the overpass 

• Estimates TB-clear-sky (Tbsim) and  uses multi-
channel TBobs-Tbsim as input

SLALOM-CT vs. HANDEL

ATMS/Cloudsat CPR coincidence dataset

HANDEL working limiits: T2m < 280 K TPW < 10 mm



HANDEL ATMSML-based algorithms High lAtidude sNow Detection and rEtrieval aLgorithm for ATMS
(HANDEL) (Camplani et al., 2024, AMT)



NOAA Snowfall Rate Product t hroughMachine Learning
Yongzhen Fan (CISESS/ESSIC/University of Maryland), H. Meng (NOAA)

 The NOAA snowfall rate (SFR) product is retrieved from 
passive microwave observations

• Sensors: ATMS, AMSU-A/MHS, GMI, SSMIS
• Satellites: NOAA-21, NOAA-20, S-NPP, NOAA-19, 

MetOp-C, MetOp-B, GPM, DMSP-F16, DMSP-F17, 
and DMSP-F18

 SFR has been produced operationally since 2012
• University of Maryland: https://sfr.umd.edu
• NASA SPoRT: 

https://weather.msfc.nasa.gov/sport/jpsspg/snowfall.ht
ml

 Algorithm
• Snowfall Detection (SD) – machine learning (ML) 

model
• Snowfall Rate estimation – physically-based model 

enhanced with ML

NOAA-21 First Light Snowfall Rate 
(11/21/2022)

https://sfr.umd.edu/
https://weather.msfc.nasa.gov/sport/jpsspg/snowfall.html
https://weather.msfc.nasa.gov/sport/jpsspg/snowfall.html


Snowfall regime Classification  using ML
Veljko Petković, Lisa Milani (University of Maryland)

 Different snowfall regimes often appear radiometrically similar, 
preventing the retrieval to converge.

 Non-linear relationships between Brightness Temperatures 
(TBs) at different frequencies, or combination of frequencies

Machine learning techniques can enable finding the “hidden” 
relationships and help with the PMW classification of snowfall 
regimes, taking advantage of the entire range of information 
carried by the PMW channels

 Models trained: 

 Fully Connected NN, 

 XGBoost

SNN results



A Neuro-Bayesian Algorithm for PMW Retrieval of Precipitation using CloudSat/GPM 
Coincidences

Reyhaneh Rahimi and Ardeshir Ebtehaj (Univ. of Minnesota)
Data
GMI-CPR, and GMI-DPR coincidences (2014–2016) -

Brightness Temperatures (TB) from GMI 
- Snowfall from CPR + DPR for high SR 
- Rainfall from DPR 
+ERA5 (LWP, IWP, TPW, T2m, CAPE) and 5 Surface 
types

Two Step PMW Retrieval
• Detection of occurrence and phase

- k-nearest neighbor (kNN)
- Random forests and XGboost decision trees (DT)
- Deep learning neural networks (DNN)

• Estimation of rates
- NeuroBayesian algorithm

- Xgboost
Explainable AI through partial dependence plots

For rain, NeuroB has slightly better performance except coast 
For snow, NeuroB has better performance over ocean and land

orbit #3080 on September 13, 2014 over Greenland 



Towards Interpretable Artificial Intelligence in the Atmospheric Sciences
Fraser King (University of Michigan), C. Pettersen, et al.

 The application of ML in the Atmospheric Sciences has 
surged in popularity but are often considered black boxes:

 Towards interpretability: 

 biases or errors in the models are difficult to identify;

 Explanatory techniques (e.g., LIME, SHAP) can help explain 
some NN behavior. 

• SHAP: SHapley Additive exPlanations: 
explainability techniques used to explain how 
machine learning models make decisions



IPWG Snowfall FG

● Established under the IPWG in November 2022
● Purpose:

○ to provide a forum for members to share their research results and foster collaborations for the 
advancement of satellite snowfall study;

○ to facilitate the transition of satellite snowfall products from research to operations;
● Solicited members: invitation email sent to IPWG members to join the FG -> we have 58 members
● Interested people are invited to sign up, please contact the Co-Chairs
● A dedicated Snowfall FG web page is available URL https://ipwg-snowfall-fg.umd.edu. 

○ Home: Snowfall FG description and objectives

○ Telecons: link to all presentations

○ Products:  link to web site of snowfall products

○ Data: information and link to snowfall-related datasets (including ground-based dataset)

○ Contacts

https://ipwg-snowfall-fg.umd.edu/


EUMETSAT H SAF: established in 2005 – Current phase: CDOP-4 (2022-2027) 
http://h-saf.eumetsat.int/

EUMETSAT H SAF (Satellite Application 
Facility on Support to Operational Hydrology 
and Water Management)
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