

IPWG-11 Training Course Tokyo 15-18 July 2024

Satellite snowfall retrieval and machine learning: challenges, advancements, and future perspectives

Giulia Panegrossi National Research Council of Italy Institute of Atmospheric Sciences and Climate (CNR-ISAC) Rome, Italy

Contributors:

Daniele Casella, Paolo Sanò, Andrea Camplani (CNR-ISAC) J-F Rysman, J. Turk, A. Battaglia, M. Kulie, L. Milani, H. Meng, and many others PMM Science Team IPWG Snowfall FG

Introduction

Snow plays an important role in the Earth energy exchange processes, and is a fundamental element of the water cycle (higher latitudes!)

Mostly occurs in regions where ground-based measurements are scarce or absent (high latitudes)

Introduction

Snow plays an important role in the Earth energy exchange processes, and is a fundamental element of the water cycle (higher latitudes!)

Mostly occurs in regions where ground-based measurements are scarce or absent (high latitudes)

Need to rely on the use of satellitebased remote sensing measurements

Microwave (MW) wavelengths are directly responsive to snowfall microphysics

Active MW: cloud/precipitation spaceborne radars

Passive MW radiometers equipped with high frequency channels

Polar-orbiting satellites offer good coverage over the high latitudes

The GPM constellation and future European LEO MW missions

ESA/JAXA EarthCare (CPR with doppler capabilities) Since 2024

Credit: ESA

THE NASA/JAXA GPM CORE OBSERVATORY

GPM Microwave Imager (GMI): 13 precipitation sensing channels (10-183 GHz) with the highest spatial resolution available (5-30 km);

Dual-frequency Precipitation Radar (DPR) (Ku and Ka band)

MW radiometry and snowfall

Snowfall detection and quantification is one of the main challenges in precipitation retrieval from space

Spaceborne cloud and precipitation radars

	GPM DPR	GPM DPR	EarthCare CloudSat CPR		
	Ku	Ka	w		
Frequency	13.6 GHz	35.55 GHz	94.05 GHz		
Sensitivity	12-13 dBZ	16.32 dBZ	-28 dBZ		
Swath size	245 km	125 km*	1.5 km		
Horizontal Resolution	5	1.5 km			

GPM DPR (Ku/Ka-band)

- Valuable for global rainfall / medium-heavy snowfall
- Good coverage (large swath, 3D structure)(but up to 65°N/S)
- Low sensitivity (not suitable for light snowfall)

CloudSat (EarthCare launched in May 2024) CPR (W-band):

Considered reference for snowfall global climatology

- *high sensitivity, suitable for snowfall / light precipitation at high latitudes*
- Global coverage (82°N/S)
- Nadir looking (narrow swath)
- **Limitations:** Attenuation, saturation, ground clutter

Large fraction of *higher latitudes snowfall* is missed by GPM DPR(Ku Ka-band) (mostly due to sensitivity limits).

DPR vs. CPR	DPR-Ku	DPR – Ka MS
%missed snowfall events	92.5%	95.2%
% snowfall mass detected	28.08%	33.09%

(Casella et al., 2017, Atmos. Res.)

180° W 135° W 90° W 45° W 0° 45° E 90° E 135° E 180° E **C** (Skofronick-Jackson et al., 2019)

Current products show large discrepancies in snowfall climatologies (especially at higher latitudes)

Active vs. Passive Snowfall retrievals

Spaceborne radars do not provide the needed coverage for snowfall global monitoring ->

We need to rely on PMW radiometers: GPM constellation and future missions (JAXA AMSR3, EPS-SG, AWS (EPS-Sterna))

PMW radiometry and precipitation

Measured radiance (or brigthness temperature) in each MW channel depends on surface properties (T, emissivity), atmospheric moisture/temperature, 3-D distribution of hydrometeors, microphysics (absorption and scattering properties), radiometers viewing geometry

PMW radiometry and precipitation

- Higher frequency channels (>= 90 GHz) mostly respond to scattering by ice hydrometeors (snowflakes mostly at > 150 GHz) and emission by water vapour and cloud liquid water
- The lower the transimissivity -> the less affected by the background surface (except in very dry conditions).

PMW remote sensing of snowfall

Passive microwave (PMW) radiometers equipped with high frequency channels have sensitivity to snowfall microphysics and are used for snowfall retrieval

Snowfall retrieval is mostly based on the scattering signal of snowflakes on the upwelling radiation at high frequencies (> 150 GHz).

High frequency channels (> 90 GHz) are mostly sensitive to:

- snowfall scattering -> TB cooling
- supercooled liquid water (SLW) emission -> TB warming
- water vapour emission (mostly at frequencies > 150 GHz)
- background surface emissivity (depending on moisture conditions)

There is a complex interconnection between snowfall intensity, cloud properties, and environmental conditions (i.e., surface emissivity, atmospheric humidity) on PMW snowfall signature **This poses several challenges**

PMW Remote Sensing of Snowfall: Challenges

Challenge 1

The (mostly) weak scattering signal at high frequency is highly dependent on the complex microphyscal properties of snowflakes

Need for high-quality, global snowfall database to be used as a priori or training information in the PMW retrieval process Field campaigns (e.g., IMPACTS): For snow, density, size, shape and mass co-vary very widely even at the same altitude at same time in the same winter storm ... the presence of varying mixtures of shapes and degrees of riming means we cannot well constrain properties of ice particles based on environment and greatly complicates retrievals compared to rain

Strategy

1) Highly sophisticated single scattering models and cloud microphysics models are now available, but still large uncertainties in cloud-radiation model simulations

2) Use of observational datasets relating snowfall profiles with PMW measurements allows to associate PMW measurements to snowfall intensity

PMW Remote Sensing of Snowfall: Challenges

Challenge 2

Multi-channel PMW radiometer measurements respond to both snowfall and background surface (snow cover and sea ice) properties (especially in very dry conditions)

Sea ice and snow-covered land surface emissivity is extremely variable due to rapid changes of sea ice properties of snow cover extent, snow accumulation on the ground, and snowpack and sea ice physical properties.

Significant effects on the upwelling microwave signal in presence of snowfall (especially in dry conditions/high latitudes) which is difficult to interpret Need for better characterization of frozen surface (sea ice and snow cover) conditions

Strategy: Exploitation of low frequency MW channels for the characterization of the frozen surface (sea ice and snow cover) at the time of the overpass

GMI overpass at 12:26 UTC for Extreme Lake Effect Snow event on 9 January 2015 (Milani et al., 2020, Turk et al., 2021)

PMW Remote Sensing of Snowfall: Challenges

Challenge 3

The snowfall scattering signal tends to be masked by the water vapor and supercooled cloud liquid water (SLW) emission

> Effect depends on atmospheric moisture Need to characterize atmospheric moisture and SLW at the time of the overpass

Strategy: Exploitation of all WV sounding channels and 90 GHz channels combined with active sensors (radar/lidar) able to retrieve SLW (mostly at the cloud top)

> Dampening effect of water vapor at 166 GHz; effect of supercooled droplets emission at 89 GHz

Siberia snowfall event 30 April 2014

Panegrossi et al. 2017 Rem. Se

Why Machine learning for Snowfall retrieval?

Advantages

- Improve automation and discovery of new insights from complex data sets
- Increase our understanding of complex environmental systems
- Fast and accurate retrieval of environmental parameters

Limitations

- Training dataset: accessibility, representativeness, accuracy;
- Computational power and storage;
- Uncertainty and error inherent to remote sensing: difficult to handle and poorly understood

Increasing interest in using machine learning for snowfall retrieval. It allows:

- 1. Synergy and full exploitation of multiplatform, multi-satellite multichannel datasets
- 2. To handle underdetermined highly non-linear inverse and forward problems
- 3. To extract information from large amounts of heterogeneous data and exploit synergy between different sensor characteristics (multiplatform, multi-sensor approaches)

Examples of ML approaches:

- Shallow Neural Network: used for the detection/classification/estimate
- Random Forest: used for the detection/classification
- Gradient Boosting: used for the estimate
- Deep learning (convolutional NN):
 - pattern analysis
 - classification
 - o estimate

Training datasets: spaceborne cloud and precipitation radars

Training datasets for PMW precipitation retrieval algorithms based on ML are mostly built from nearly coincident measurements from active and passive microwave sesnors

> MW radiometers cover a large swath Indirect, complex link to surface precipitation

- Spaceborne radars provide vertical profiles of precipitation
- Consistency of precipitation measurements around the globe but limited coverage

Observational precipitation datasets built from coincident active/passive measurements

Turk et al., 2021 doi: <u>10.3390/rs13122264</u>

- □ 2B-CSATGPM dataset (J. Turk, JPL):
- GPM (GMI-DPR)/CloudSat coincidences
- □ Updated to V7 GPROF, DPR and CMB

Limitations:

- Representativeness over large PMW radiometer IFOV
- CPR and DPR capabilities
- Sensitivity, attenuation, saturation
- Uncertainity of reference precipitation products
 - Z-S relationship uncertainties associated to snow microphysics
- Ground clutter (lower 1200-2000 m are missed) which affects surface snowfall detection/estimate

Other examples of CloudSat/GMI and CloudSat/ATMS coincidences

CloudSat/Calipso-GMI (extension of NASA 2B-CSATGPM)

	•
Period	10/03/2014 - 01/09/2016
Geographical area	65 °S–65° N, 180° W–180° E
Number of GMI orbits	6,502
Number of triple coincidences (GPM-CPR-ATMS)	5,801
Number of elements	5,870,903
Number of elements with snowfall	400,145
Number elements with snowfall and SLCT	289,905 70% of snowfall profiles
Horizontal resolution	1.2 km CPR ; 10 km GPM

Geographical distribution of GPM/CPR coincidences (*Panegrossi et al., 2017*)

CloudSat/Calipso-ATMS

Period	1/01/2015 - 1/09/2016
Geographical area	90°S-90° N, 180° W-180° E
Number of ATMS orbits	3,049
Number of elements	4,670,442
Number of snowfall elements	745,533
Number of snowfall elements with SLCT	^{456,391} 60% of snowfall profiles

SLALOM: First PMW snowfall retrieval algorithm based on ML using CloudSat / Calipso as reference

Machine Learning approach based on the GMI/CloudSat/Calipso coincidence observational dataset used for training (CPR 2C-SNOW product for snowfall with *liquid fraction* < 15% (*no mixed phase or liquid precip.*) (extended 2B-CSATGPM dataset developed by J. Turk)

Input: GMI L1c TBs (all channels) and auxiliary ECMWF analysis variables on atmospheric state (T2m, moisture profiles) *No auxiliary info on background surface conditions but exploitation of all GMI low frequency channels*

- Random forest modules for snowfall detection and supercooled liquid water detection;
- Multi-linear regression module: snow water path (SWP) estimates
- Gradient boosting module: Surface snowfall rate (SSR)

SLALOM is able to reproduce CloudSat CPR snowfall climatology

(*Rysman et al., 2018,2019*)

SLALOM: CloudSat-based PMW snowfall retrieval

SLALOM main limitations:

- SLALOM fully relies on the 2C-SNOW-PROFILE CPR product (V04);
- GMI/CPR observations mostly occur around 60°N/S;
- Overestimation lower snowfall rates (< 0.1 mm/h) (sensitivity issues) and underestimation of higher rates (not well represented in the training dataset)

SLALOM: CloudSat-based PMW snowfall retrieval

(in preparation for EUMETSAT H SAF EPS-SG day-1 precipitation product)

GMI/CloudSat co-located observations Siberia 30 April 2014

Predicted and observed SWP match very well, even in the weaker snowfall region (around 65°N)

SLALOM misses snowfall in moister conditions over ocean (scattering signal masked by WV emission)

SLALOM matches the SWP in drier conditions over snow-covered land

(*Rysman et al., 2018,2019*)

4-year SLALOM and GPM products validation over CONUS (Mroz et al., JHM, 2021)

Ground-based radar reference data

MRMS: Multi-radar-multi-sensor (Zhang, et al. 2011, Zhang, et al. 2016; Tang et al. 2020) https://blog.nssl.noaa.gov/mrms/

- Products: Cartesian gridded level II and III radar products over US and Canada
- **Resolution**: 1 X 1 km horizontal, 2 min time sampling

Variables considered:

- Instantaneous precipitation rate (S)
- Radar quality index (RQI)
- Phase precipitation flag
- Statistical analysis: 4 year dataset from Jan 2016 to March 2020

OTTARD OTTARD ATT DESERVOR ATT DESERVOR OTTARD ATT DESERVOR OTTARD OTTA

Satellite Snowfall products

SLALOM for GMI NASA GPM products (GMI and DPR): GPROF V05 for GMI (NASA GPM) DPR, Ku, Ka V06 (NASA GPM) CORRA (2B-CMB) V06 (NASA GPM) CloudSat CPR product 2C-SNOW-PROFILE (NASA)

Snowfall event 14 March 2017 20:02 UTC

(Mroz et al., JHM, 2021)

4-year SLALOM and GPM products validation over CONUS (Mroz et al., JHM, 2021)

over all surface types (2016-2020) Score GMI **GMI CPR 2C-**S **SLALOM GPROF SNOW** POD (%) 57.3 28.1 70.0 26.3 FAR (%) 39.6 25.5 68.3 HSS (%) 58.7 31.3 CSI (%) 47.6 23.7 56.4

4-year analysis of snowfall retrieval

In SLALOM the exploitation of low frequency channels allows to better constrain the snowfall retrieval (based on high frequency channels) over all surfaces

> (sfc classes are based of GPROF surface classification)

a										
		Surface type	HSS (%)		POD	(%)	FAR (%)		no. of MRMS pixels	
			SLALOM	GPROF	SLALOM	GPROF	SLALOM	GPROF	"no-snow"	"snow"
C- W	Sea	Ocean	46.1	18.9	49.5	22.7	24.8	39.5	66219	30940
0.0	ice	Sea-Ice	54.4	15.2	59.0	12.3	37.6	48.6	93201	15158
5 5		Maximum Vegetation	57.1	31.3	49.1	21.3	18.9	9.1	799283	113169
).0) 0		High Vegetation	54.6	31.3	45.1	21.0	19.2	11.2	1381112	154952
3.3		Moderate Vegetation	56.2	28.8	45.8	18.8	16.1	7.5	473357	51387
5.4	_	Low Vegetation	60.6	32.3	50.2	21.7	16.5	16.5	24855	2007
		Minimal Vegetation	63.4	24.4	53.0	16.9	12.4	30.3	8109	857
Sn	wc	Maximum Snow	58.0	14.0	68.5	26.8	41.7	77.8	309380	38151
CO/	ver	Moderate Snow	58.8	30.5	63.0	33.1	33.1	52.3	1641016	291043
		Low Snow	60.5	28.2	63.9	29.6	30.9	51.7	1404417	258627
		Minimal Snow	61.2	37.3	61.0	33.9	24.0	32.4	3448465	798754
		Standing Water and Rivers	53.8	30.5	45.1	21.5	17.1	13.7	203484	33633
bos	on	Water/Land Coast Boundary	49.4	19.0	45.9	14.1	20.7	12.9	731055	225411
beu		Water/Ice Boundary	54.1	12.3	54.0	8.4	27.1	11.1	80445	20491

(Mroz et al., JHM, 2021)

4-year SLALOM and GPM products validation over CONUS

(Mroz et al., JHM, 2021)

Black horizontal lines show the limit on the satellite product that optimizes precipitation detection matching with MRMS

Score	GMI SLALOM	GMI GPROF	CPR 2C- SNOW
POD (%)	57.3	28.1	70.0
FAR (%)	26.3	39.6	25.5
HSS (%)	58.7	31.3	68.3
ME (mm/h)	-0.38	-0.54	-0.21
RMSE (mm/h)	0.74	1.08	0.68
MB %	48.5	48.4	73.0
CC	0.43	0.39	0.45

PESCA: Passive microwave Empirical cold Surface Classification Algorithm (for ATMS and GMI in preparation for EPS-SG MWS and MWI)

(Camplani et al., JHM, 2021)

The microwave signal related to snowfall is strongly influenced by the different surface conditions (e.g., wet or dry snow cover, snow depth, sea ice concentration and type, etc.). The use of surface classification climatological datasets results inadequate for the extreme variability of the frozen surface conditions.

PESCA:

- Empirically-based algorithm for frozen background surface characterization (different types of sea ice and snow cover)
- Use of low-frequency (<= 90 GHz) channels common to most radiometers;
- Applicable to both cross-track and conically scanning spaceborne microwave radiometers at the time of overpass (for TPW < 10 kg/m²)

PESCA Snow Cover categories

T2m (K)

GMI **ATMS** Thin Thin 100 80 60 40 Š 20 Sno % 0 Deep Dry Deep Dry 80 60 40 20 0 Perennial Perennial 80 60 40 sno 20 0 **AutoSnow Total Occurrences Polar Winter** 10³ 10² 10² #

100

80

60

40 snowcov

20

n

80

60

40

20 S %

0

80

60

40 Snowo

20 % 0

100

80

60 40

20 % Ω

snov

%

(Camplani et al., JHM, 2021)

PESCA: Snowfall vs. background surface

Low-frequency channels combinations are used in PESCA to identify different types of sea ice and snow cover with distinct radiative properties

GPROF V05 surface classification

GPROF

Sea Ice

Coast Stand. Water

classification based on climatological and daily snow cover product

PESCA classification at the time of the GPM overpass.

Snow Depth from NOAA NOHRSC SNOw Data Assimilation System (SNODAS) https://nsidc.org/d ata/g02158

Turk et al., JHM, 2021

SLALOM-CT (Snowfall retrieval Algorithm fOr gpM – Cross Track)

Goal: achieve snowfall global coverage (polar regions) exploiting all current and future *operational sounders* (ATMS, MWS, AWS)

Sanò, et al., 2022 Doi: 10.3390/rs14061467

SLALOM-CT: ATMS-CPR Coincidence dataset

Period 16		/01/2014 — 31/08/2016		
Geographical area	82°	32°S–82°N, 180°W–180°E		
Number of database points		6.5 M		
Number of database points with snowfall		1.1 M		
IFOV size	1	5.8 x 15.8 (nadir) 30 x 68.4 (scan edge)		
INPUT Variables		Data source		
ATMS BTs				
ATMS Scan angle		NOAA		
Temperature @ 2m	or			
vapor	61	ECMWF		
Freezing level Height				
Temperature profile				
Relative humidity profile				
Absolute number prome				
REFERENCE Variables		Data source		
Supercooled Water		DARDAR (raDAR/liDAR) LATMOS- Reading Univ.		
Snowfall Rate		2C-SNOW-PROFILE (CPR product)		
Snow Water Path		2C-SNOW-PROFILE (CPR)	product)	

One year (2015) for training, two years (2014 and **2016) for test**

Pol.

QV

QV

QH

QH

QH

QH

QH

QH

QH

QV

QH

QH

QH

QH

QH

QH

16

183.311±1.0

Sanò et al., 2022 doi:10.3390/rs14061467

SLALOM-CT Intercomparison of Machine Learning techniques

	RandomForest	RobustBoost	AdaBoost	ShallowNN	VGG	ResNet
HSS	0.62	0.61	0.61	0.66	0.68	0.64
CSI	0.67	0.66	0.66	0.69	0.70	0.67
POD	0.80	0.79	0.79	0.83	0.83	0.80
FAR	0.20	0.20	0.20	0.19	0.18	0.19

	RandomForest	GradientBoosting	ShallowNN	VGG	ResNet
RMSE [kg/m ²]	0.078	0.090	0.050	0.055	0.072
R ²	0.667	0.553	0.861	0.834	0.714
ME [kg/m ²]	-3.66E-03	-1.08E-02	-1.59E-05	-5.61E-05	-1.2E-03
Corr	0.86	0.83	0.93	0.92	0.87
N ₀	4 10 ⁶	10 ⁴	3 10 ⁴	7 10 ⁴	4 10 ⁶

Event forecast	Event observed			
	Yes	No		
Yes	a	b		
No	c	d		

Heidke	Skill Score:
<i>исс</i> –	2(<i>ad</i> - <i>bc</i>)
HSS =	$\overline{[(a+c)(c+d)+(a+b)(b+d)]}$

Perfect: HSS =1 No Skill: HSS=0

> Sanò, et al., 2022 https://doi.org/10.3390/rs14061467

SLALOM-CT: surface characterization at the time of the overpass

• Exploitation of low-frequency channels in SLALOM-CT:

- Low sensitivity of results to the background surface variability
- Very good detection capabilities
- Very accurate estimates (compared to CPR)

Surface*	SNOW	OCEAN	LAND	
RMSE [mm/h]	0.10	0.09	0.10	
ME [mm/h]	0.002	-0.002	-0.01	
Corr	0.80	0.84	0.79	
POD	0.76	0.86	0.80 0.22	
FAR	0.22	0.15		
HSS	0.63	0.68	0.71	

Verification using indipendent two-year (2015-2016) CPR (2C-SNOW-PROFILE v5) dataset as reference

SLALOM approach for ATMS and GMI

(in preparation for EUMETSAT H SAF EPS-SG MWS and MWI)

Turk et al., Rem. Sens., 2021, Doi: 10.1175/JHM-D-20-0296.1

Extreme event in central Arctic Ocean on April 15-16 2020

- Between 13-19 April 2020 three Atmospheric Rivers (AR) reached the Arctic (based on the approach by Guan & Waliser (2019)).
- The AR event on April 15 had his origin in the Atlantic moved northward, across central Europe and Svalbard and hit the Polarstern on the 15 April at 19 UTC and lasted until 16 April 20 UTC.
- Intense snowfall was associated to this AR event mainly concentrated in the frontal area
- The Polarstern is hit by the intense snowfall

Extreme event in central Arctic Ocean on April 15-16 2020

ERA5 TPW and SLALOM-CT SLW detection and Surface Snowfall Rate

ML-based algorithms High IAtidude sNow Detection and rEtrieval algorithm for ATMS **(HANDEL)** (Camplani et al., 2024, AMT)

Motivations

- **Snowfall retrieval at the high latitudes** is more challenging due to • cold/dry conditions:
 - extremely variable background surface
 - impact of supercooled water layer on snowfall signature
- development of the day-1 precipitation products for the European MetOp-SG mission at CNR-ISAC within the EUMETSAT HSAF program
- **Exploits PESCA classification and ML** techniques to retrieve frozen surface emissivity at the time of the overpass
- Estimates TB-clear-sky (Tb_{sim}) and uses multichannel TB_{obs}-Tb_{sim} as input

HANDEL working limits: T2m < 280 K TPW < 10 mm

ATMS/Cloudsat CPR coincidence dataset

Period	2014-2016			
Area	82°S-82°N 180°W-180°E			
Total Observation	6 F M			
Number	0.5 101			
Snowfall Observation	1.1 M			
Number				
Possilution (km)	15.8 × 15.8 (nadir)			
Resolution (km)	30×68.4 (scan edge)			

SLALOM-CT vs. HANDEL

SLALOM-CT	HANDEL-ATMS
Snow retrievaL ALgorithm fOr	 High IAtitude sNow Detection and
gpM - Cross Track	rEtrieval aLgorithm for ATMS
 supercooled droplets detection	high-latitude environmental
module	conditions - dry and cold
 Shallow/Convolutional Neural Networks 	atmosphere, snowpack over the ground, supercooled water layer
 ANN Input dataset: ATMS TBs, PESCA output, environmental 	 In/over the clouds Shallow Neural Networks
single level parameters,	 ANN Input dataset: ATMS TBs,
temperature/humidity profile PCs	ΔTB _{obs-sim} , PESCA output

ML-based algorithms High lAtidude sNow Detection and rEtrieval aLgorithm for ATMS (HANDEL) (Camplani et al., 2024, AMT)

SLALOM-CT performs a snowfall retrieval on a global scale

HANDEL-ATMS is focused on high-latitude conditions

	RMSE	bias	R ² (-)	POD	FAR	HSS
SWP $\left(\frac{kg}{m^2}\right)$	0.047	0.001	0.72	0.85	0.15	0.70
SSR $\left(\frac{mm}{h}\right)$	0.079	0.002	0.61	0.84	0.16	0.69

	PC	D	FAR		
	SLALOM	HANDEL	SLALOM	HANDEL	
	СТ	ATMS	СТ	ATMS	
T2m<280 K TPW<10 mm	0.82	0.84	0.19	0.16	
T2m<250 K TPW<5 mm	0.64	0.68	0.27	0.23	
T2m<240 K TPW<3 mm	0.45	0.54	0.33	0.28	

NOAA Snowfall Rate Product t hroughMachine Learning Yongzhen Fan (CISESS/ESSIC/University of Maryland), H. Meng (NOAA)

- The NOAA snowfall rate (SFR) product is retrieved from passive microwave observations
 - Sensors: ATMS, AMSU-A/MHS, GMI, SSMIS
 - Satellites: NOAA-21, NOAA-20, S-NPP, NOAA-19, MetOp-C, MetOp-B, GPM, DMSP-F16, DMSP-F17, and DMSP-F18
- □ SFR has been produced operationally since 2012
 - University of Maryland: <u>https://sfr.umd.edu</u>
 - NASA SPoRT: <u>https://weather.msfc.nasa.gov/sport/jpsspg/snowfall.ht</u> <u>ml</u>

□ Algorithm

- Snowfall Detection (SD) machine learning (ML) model
- Snowfall Rate estimation physically-based model enhanced with ML

Snowfall regime Classification using ML Veljko Petković, Lisa Milani (University of Maryland)

- Different snowfall regimes often appear radiometrically similar, preventing the retrieval to converge.
- Non-linear relationships between Brightness Temperatures (TBs) at different frequencies, or combination of frequencies
- Machine learning techniques can enable finding the "hidden" relationships and help with the PMW classification of snowfall regimes, taking advantage of the entire range of information carried by the PMW channels
 SNN results

- □ Models trained:
 - □ Fully Connected NN,
 - □ XGBoost

A Neuro-Bayesian Algorithm for PMW Retrieval of Precipitation using CloudSat/GPM Coincidences

Reyhaneh Rahimi and Ardeshir Ebtehaj (Univ. of Minnesota)

Two Step PMW Retrieval

- Detection of occurrence and phase
 - k-nearest neighbor (kNN)
 - Random forests and XGboost decision trees (DT)
 - Deep learning neural networks (DNN)
- Estimation of rates
- NeuroBayesian algorithm
 - Xgboost

Explainable AI through partial dependence plots

Data

GMI-CPR, and GMI-DPR coincidences (2014–2016) -Brightness Temperatures (TB) from GMI - Snowfall from CPR + DPR for high SR - Rainfall from DPR +ERA5 (LWP, IWP, TPW, T2m, CAPE) and 5 Surface types

	metric	мі	Surface Type				
	metric		ocean	land	coast	snow cover	sea ice
	rmse $[mm hr^{-1}]$	NeuroB	4.9	4.6	5.9	1.1	0.75
rain		XGB	5.1	4.8	3.4	1.2	0.81
raili	wsd [mm.hr ⁻¹]	NeuroB	0.09	0.13	0.18	0.07	0.05
		XGB	0.1	0.13	0.08	0.07	0.06
8	rmco	NeuroB	0.20	0.25	0.45	0.14	0.2
SHOW	inise	XGB	0.23	0.28	0.17	0.12	0.16
SHOW	wed	NeuroB	0.01	0.03	0.04	0.02	0.01
	vvsu	XGB	0.03	0.05	0.01	0.03	0.03

For rain, NeuroB has slightly better performance except coast For snow, NeuroB has better performance over ocean and land Towards Interpretable Artificial Intelligence in the Atmospheric Sciences Fraser King (University of Michigan), C. Pettersen, et al.

- The application of ML in the Atmospheric Sciences has surged in popularity but are often considered *black boxes*:
- □ Towards interpretability:
 - □ biases or errors in the models are difficult to identify;
 - Explanatory techniques (e.g., LIME, SHAP) can help explain some NN behavior.

IPWG Snowfall FG

- Established under the IPWG in November 2022
- Purpose:

- to provide a forum for members to share their research results and foster collaborations for the advancement of satellite snowfall study;
- to facilitate the transition of satellite snowfall products from research to operations;
- Solicited members: invitation email sent to IPWG members to join the FG -> we have 58 members
- Interested people are invited to sign up, please contact the Co-Chairs
- A dedicated Snowfall FG web page is available URL <u>https://ipwg-snowfall-fg.umd.edu</u>.
 - **Home:** Snowfall FG description and objectives
 - **Telecons:** link to all presentations
 - **Products**: link to web site of snowfall products
 - Data: information and link to snowfall-related datasets (including ground-based dataset)
 - Contacts

Acknowledgements

EUMETSAT H SAF (Satellite Application Facility on Support to Operational Hydrology and Water Management)

EUMETSAT H SAF: established in 2005 – Current phase: CDOP-4 (2022-2027) <u>http://h-saf.eumetsat.int/</u>

The **Raincast Study** is funded with ESA contract Nr. 4000125959/18/NL/NA Raincast (CCN2, 2023-2024) aims at sharpening concepts for future precipitation satellite missions specifically focusing at better understanding processes associated to high latitude precipitation. Raincast project perfectly fits with the goals of Earth Observation science for society <u>https://eo4society.esa.int/</u>

NASA PMM Science Team

in particular Joe Turk (NASA JPL), Lisa Milani (NASA GSFC), Mark Kulie (NOAA NESDIS) J.F. Rysman (CNRS, France), Alessandro Battaglia (PoliTo, Italy, Univ. of Leicester, UK)

Contact Giulia Panegrossi g.panegrossi@isac.cnr.it

European Space Agency

Some References

- Battaglia A., G. Panegrossi, What Can We Learn from the CloudSat Radiometric Mode Observations of Snowfall over the Ice-Free Ocean?, Remote Sens., 12, 3285; doi:10.3390/rs12203285, 2020.
- Camplani, A., D. Casella, P. Sanò, G. Panegrossi, The Passive microwave Empirical frozen Surface Classification Algorithm (PESCA): application to GMI and ATMS, J. of Hydrometeorol., <u>https://doi.org/10.1175/JHM-D-20-0260.1</u>, 2021
- Casella, D., Panegrossi G., Dietrich S., Marra A.C., Sanò P., M. S. Kulie, B. T. Johnson, Evaluation of the GPM-DPR snowfall detection capability: comparison with CloudSat, Atmos. Res., 197, 64-75, doi:10.1016/j.atmosres.2017.06.018, 2017
- Milani L., M. S. Kulie, D. Casella P. Kirstetter, G. Panegrossi, V. Petkovic, S. E. Ringerud1, J-F Rysman, P. Sanò, N.-Y. Wang, Y. You, G. Skofronick-Jackson, Extreme Lake-Effect Snow from a GPM Microwave Imager Perspective: Observational Analysis and Precipitation Retrieval Evaluation, J. of Atmos. and Ocean. Tech., <u>https://doi.org/10.1175/JTECH-D-20-0064.1</u>, 2020.
- Mroz K., M. Montopoli, G. Panegrossi, L. Baldini, P. Kirtsetter, Quality assessment of spaceborne active and passive microwave snowfall products over the continental United States, J. of Hydrometeorology, https://doi.org/10.1175/JHM-D-20-0222.1, 2021
- Panegrossi G., J-F. Rysman, D. Casella, A. C. Marra, P. Sanò, and M. S. Kulie, CloudSat-based assessment of GPM Microwave Imager snowfall observation capabilities, Rem. Sensing, 9(12), 1263; doi: 10.3390/rs9121263, 2017.
- Panegrossi, G., D. Casella, P. Sanò, A. Camplani, A. Battaglia, Recent Advances and Challenges in Snowfall detection and Estimation, pp. 333-376, Chapter 12 in In: Precipitation Science (ISBN: 978-0-12-822973-6), Ed. Silas Michaelides, Eds. Elsevier, Nov. 2021
- Rysman J.-F., G. Panegrossi, P. Sanò, A. C. Marra, S. Dietrich, L. Milani, M. S. Kulie, D. Casella, A. Camplani, C. Claud, L. Edel, Retrieving surface snowfall with GPM Microwave Imager: A new module for SLALOM algorithm, Geophys. Res. Let., doi :10.1029/2019GL084576, 2019
- Rysman, J.-F., G. Panegrossi, A. C. Marra, S. Dietrich, L. Milani, M. Kulie, SLALOM: An all-surface snow water path retrieval algorithm for the GPM Microwave Imgaer, Remote Sens. 10(8), 1278; <u>https://doi.org/10.3390/rs10081278</u>, 2018.
- Turk, J. F., S. E Ringerud, A. Camplani, D. Casella, R. J Chase, A. Ebtehaj, J. Gong, M. Kulie, G. Liu, L. Milani, G. Panegrossi, R. Padulles, J.-F. Rysman, P. Sanò, S. Vahedizade, N. Wood, Applications of a CloudSat-TRMM and CloudSat-GPM Satellite Coincidence Dataset, 13, 2264. https://doi.org/10.3390/rs13122264, 2021
- Turk J., Ringerud, S., You Y., Camplani A., Casella D., Panegrossi G., Sanò P., Ebtehaj A., Guilloteau C., Utsumi N., Prigent C., Peters-Lidard C., Adapting Passive Microwave-Based Precipitation Algorithms to Variable Microwave Land Surface Emissivity to Improve Precipitation Estimation from the GPM Constellation, J. of Hydrometeorol., <u>https://doi.org/10.1175/JHM-D-20-0296.1</u>, 2021