Preparation for space-based cloud radar-assimilation

<u>Kozo OKAMOTO¹</u>, Masahiro HAYASHI¹, Masayuki NAKAGAWA¹, Gennosuke KIKUCHI², Takuji KUBOTA³

1: JMA/MRI, 2: Remote Sensing Technology Center of Japan, 3: JAXA/EORC

IPWG-11, Tokyo, 15-18 July 2024

Background and Objectives

- Cloud Profiling Radar (CPR)
 - CloudSat/CPR (28 Apr 2006)
 - Enhance our understanding of cloud process and improve NWP/climate models
- Assimilation of CPR
 - Limited studies
 - \Box \leftarrow Small coverage, Challenges in model simulation and data assimilation processings
 - Promising results at ECMWF (Fielding & Janisková 2020; Janisková & Fielding 2020)
 - Unique info that passive obs does not have: Vertically resolved cloud/precipitation
 - EarthCARE/CPR will provide more accurate and new obs
- Objectives of this study
 - Investigate feasibility of assimilation of EarthCARE/CPR Ze in JMA's global system
 - Synergy with all-sky radiances of geo/polar IR sounders
 - Start with CloudSat/CPR

- 1. Examination of CPR Ze simulation
- 2. Sensitivity to frozen particle optical properties
- 3. Single cycle assimilation

1. Examination of CPR Ze simulation

- 2. Sensitivity to frozen particle optical properties
- 3. Single cycle assimilation

Model, Simulator and Observation

Model: Global Spectral Model (GSM): JMA's operational model (as of Dec.2019)

- Horizontal spacing of 20km, 100 layers up to 0.01 hPa
- Convection scheme: Prognostic Arakawa-Schubert → Convective clouds
- Large-scale cloud: Smith scheme (Smith 1990, QJRMS) → Stratus clouds
- Hydrometeor: total cloud (water+ice), rain flux, snow flux

Simulator: RTTOV ver13.0

- Calculate attenuated reflectivity factor (Ze), and its Jacobian
- Hydrometer: cloud water, cloud ice, rain and snow (no graupel)
- Set the same fraction for all hydrometeors

Observations: CloudSat/CPR 2B-GEOPROF

- Create super-ob (~55 km based on 4DVar inner-loop scale) by averaging reliable pixels
 Select pixels over -30 dBZ and cloud mask>=6
 - □ Vertically thin to every other one layer (~500 m), instead of averaging

Quality Control (QC)

Reliability

- Both observed and simulated $Ze \ge -30 dBz$
- Cloud_mask ≥ 30
- Higher than 1km in altitude to avoid ground clutter
- Homogeneity
 - Standard Develation < 20 dBZ, cloud fraction > 50 % and effective pixel number > 5

- □ These statistics are calculated from effective pixels composing super-ob
- Consistency btw obs and sim
 - |Obs-Sim| < 24 dBZ

Example of obs and sim

 18 UTC 9 – 03 UTC 10 July, 2018
 Before QC

60 - 55 - 50 - 45

- 40 - 35

30

- 25 - 20

- 10

--5 --10 --15 --20 --25 --30 --35 --40 --45 --50 --60

Ze [dBZ]

Example of obs and sim

 18 UTC 9 – 03 UTC 10 July, 2018
 After QC

20 -

15

Number in Ze and temperature bins

- 10-31 July 2018
- Simulated samples are less variable and fewer in strong Ze
- $\blacksquare \rightarrow$ Positive Obs-Sim bias across a wide range of vertical layers

What caused underestimated sim or Obs-Sim>0

Simulate Ze from 2C-ICE cloud products of CloudSat+CALIPSO, instead of GSM cloud (one month in August 2016)

- 2C-ICE simulation improves the agreement with obs but still underestimates Ze for Ze>10dBz
 - \blacksquare \rightarrow RTTOV seems to underestimate Ze from clouds with large particle
- **GSM** simulation further underestimate Ze at higher altitude (>8 km)
 - \rightarrow GSM significantly underpredict high clouds (Okamoto et al. 2021)

- 1. Examination of CPR Ze simulation
- 2. <u>Sensitivity to frozen particle optical</u> properties
- 3. Single cycle assimilation

Test different particle shapes and PSDs in RTTOV hydrotable

- 12/20
- Extinction coefficients/SSA/asymmetry parameter/backscatter (reflectivity) are pre-calculated for hydrometeor, satellite, sensor, channel, temperature, and hydro water content
- Particle shapes from database of ARTS (Atmospheric Radiative Transfer Simulator; Eriksson2018)
- The default settings is defined based on Obs-Sim of SSMIS radiances at 19-183 GHz (Geer 2021, amt)

	snow		ice		Reference
Rt13 Default	ARTS large plate aggr Field2007	A.	ARTS large col aggr MGD(u=0,I=10 ⁴)		Geer (2021)
Block	ARTS block aggr Field2007	No.	ARTS large col aggr Field2007, Trop	₹.	Geer (2021)
Bullet	ARTS 6-bullet rosette Field2007	X	ARTS 6-bullet rosette MGD(u=0,I=10 ⁴)	╧	Sato & Okamoto (2023)
Column	ARTS column type1 Field2007		ARTS column type1 MGD(u=0,I=10 ⁴)	V	Sato & Okamoto (2023)

Number for obs - Sim

Calculated from global data from 18 – 19 July 2018

Number for obs & sim

Calculated from global data from 18 – 19 July 2018

- 1. Examination of CPR Ze simulation
- 2. Sensitivity to frozen particle optical properties

3. Single cycle assimilation

Data assimilation setting

- Assimilation system
 - Operational global DA system of JMA (as of Dec. 2019), and updated to RTTOV13
 - Hybrid-4DVar, Microwave all-sky radiance assimilation
- Obs Configuration
 - **CNTL**: Operational configuration, but replace Himawari-8/AHI clear-sky with all-sky
 - TEST: Add CloudSat/CPR Ze to CNTL

obs.error=24dBz (fixed, no inter-lev/horizontal correlation), 100km thinning

Single cycle assimilation: 00UTC 10 July 2018

Single cycle assimilation impact

Sensitivity of Ze w.r.t. humidity and cloud ice $\partial Ze/\partial X$

Jacobian for Ze obs

- 00 UTC 10 July, 2018 (75.5N,129.3E) 7 levels assimilated
- ∂Ze/∂T & ∂Ze/∂Q are much smaller (than radiance Jacobian)
- ∂Ze/∂C (C=cloud water, ice, fraction, rain & snow) are larger
- JMA's 4DVar does not directly analyze clouds
- ► → Propagate cloud-related obs information into analysis variables through a linearized model

Single obs assimilation impact

Assimilate single profile of Ze with Obs-Sim>0 (insufficient cloud) at 15 levels

Correct wind, pressure and humidity to slow down the moist belt passing eastward \rightarrow Keep slightly higher humidity around obs location (\rightarrow Slightly increase clouds)

Summary

- Started the assimilation study of CPR Ze in JMA's global system
- JMA's global model (GSM) and RTTOV underestimate CloudSat/CPR Ze (Obs-Sim>0)
 - Insufficient high clouds in GSM
 - Weak scattering in RTTOV \rightarrow Change PSD and shape of snow and ice
- Single cycle assimilation experiments showed analysis increments were reasonable in their direction but too small in magnitude
- Plan to continue these examinations and assimilation tests for EarthCARE/CPR