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Overview and Objectives

 The objective of this research is to estimate surface rain rates using observations performed 
by the Temporal Experiment for Storms and Tropical Systems (TEMPEST) Space Test 
Program-Houston 8 (STP-H8). 

 A machine learning based surface rainfall estimation system is developed from TEMPEST-D 
Brightness Temperature (TB) observations.

 The machine learning algorithms employ a combination of Random Forest (RF) classification 
and regression techniques. 

 Rain rate products from the Global Precipitation Measurement (GPM) Microwave Imager 
(GMI) and Advanced Microwave Scanning Radiometer 2 (AMSR2) are used as reference data 
in the machine learning algorithms.
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Temporal Experiment for Storms and Tropical 
systems – Demonstration (TEMPEST-D) Mission

 TEMPEST-D mission [1] is a NASA Earth Venture Technology Demonstration mission to 
demonstrate the technology necessary to perform high temporal-resolution observations 
of clouds, convection and water vapor profiles from small satellites.

 TEMPEST-D is a collaboration among CSU, NASA/JPL and Blue Canyon Technologies.

 TEMPEST-D is a 6U CubeSat with a cross-track scanning millimeter-wave radiometer 
observing the Earth at 87, 164, 174, 178 and 181 GHz.

 Spatial resolution varies from 25 km at 87 GHz to 12.5 km at 
164-181 GHz.

 Originally planned for a 3-month technology demonstration, 
TEMPEST-D performed well-calibrated and highly stable 
global atmospheric observations for nearly 3 years. 
(between September 2018 and May 2021)
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Temporal Experiment for Storms and Tropical Systems 
(TEMPEST) Space Test Program-Houston 8 (STP-H8)

Image source : https://space.skyrocket.de/doc_sdat/stp-h8.htm 

 The TEMPEST STP-H8 sensor is nearly identical to the 
TEMPEST-D instrument, with slight differences in channel 
center frequencies and spectral responses.

 TEMPEST STP-H8 performs TB observations at five 
millimeter-wave frequencies of 89, 165, 176, 180, and 182 
GHz and has been providing nearly continuous 
measurements from the ISS since January 8, 2022.

 The machine learning rain rate estimation system developed 
using TEMPEST-D TB observations has been applied to 
estimate the rain rate from TEMPEST STP-H8 TB 
observations. 

STP-H8

COWVR instrumentTEMPEST instrument

https://space.skyrocket.de/doc_sdat/stp-h8.htm
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TEMPEST-D Observations over Tropical Cyclones

Tropical Cyclone Nisarga 
on June 3, 2020

TEMPEST-D 164 GHz Brightness Temperature (K) Images

Hurricane Florence
on September 11, 2018 

Typhoon Surigae 
on April 16, 2021 

Hurricane Juliette
on September 5, 2019 

Atlantic Ocean Eastern Pacific Ocean
Indian Ocean

Western Pacific Ocean
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Cross-Validation of TEMPEST-D and GPM-GMI 
Observations

Hurricane Dorian (2019) Tropical Cyclone Kyarr (2019)Typhoon Hagibis (2019)

Radhakrishnan et. al. [2] (JSTARS, 2023)

 TEMPEST-D brightness temperature observations were validated over 
precipitating systems on a global basis. TEMPEST-D (164 GHz) and GPM-
GMI (166 GHz horizontal and vertical channel) brightness temperature 
observations, with different sensor properties and viewing geometries, have 
a mean absolute difference of 2.9 K. The correlation coefficient between 
TEMPEST-D and GPM-GMI brightness temperatures is 0.86.

 When combined with GMI, TEMPEST-D increases the temporal sampling 
frequency of TCs by a factor of  approximately 2.5.

Comparison of NOAA best track with combined storm tracks from TEMPEST-D and GPM-GMI 
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Physical Cross Validation between TEMPEST-D and GPM-DPR 
Observations over Hurricane Delta on Oct. 7, 2020

V. Chandrasekar et. al. [3] (EuCAP 2023)

 TEMPEST-D TB observations are 
normalized between 0 to 1.

 GPM-DPR reflectivity profile 
measurements are vertically 
cumulative, normalized between 
0 and 1, and then flipped ( 
Subtracted from 1)

rKa= 0.88
rKu= 0.83
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Radhakrishnan et. al. [4] (JSTARS, 2022)

Rainfall Estimation From TEMPEST-D CubeSat
Observations over CONUS

(a)–(e) TEMPEST-D TB observations of Tropical Storm Olga over New 
Orleans, Louisiana on October 26, 2019 at 09:00 UTC, (f) TEMPEST-D 
estimated rain rate, and (g) MRMS rain rate.

Graphical representation of 
rainfall measurement from 
ground-based weather 
radar and a space-borne 
passive microwave sensor.

 In prior research, a Machine Learning (ML) model was developed to estimate surface rain 
rate using TEMPEST-D observations within the CONUS region.

 The TEMPEST-D Brightness Temperatures (TBs) at five frequencies were employed as 
input, and the Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation 
(QPE) product was utilized as the ground truth or target for the ML model.
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Rainfall Estimation From TEMPEST-D
Observations on a Global Basis

Scanning patterns and coverage of the 
GPM Core Observatory’s GMI and 

DPR instruments.

 The ML model was developed using TEMPEST-D TB observations over the period 
from 2018 to 2021.

 For the GMI-based ML model, the GPM GMI (GPROF) Radiometer Precipitation 
Profiling L2A (V07) dataset for each orbit with 13 km spatial resolution was utilized 
as a reference.

 Similarly, for the AMSR2-based ML model, the  AMSR2 on GCOM-W1 (GPROF) 
Radiometer Precipitation Profiling L2A (V07) dataset with 10 km spatial resolution 
served as  reference.

 For cross-comparison purposes, the GPM IMERG Early Precipitation L3 (V06) 
dataset with a spatial resolution of 0.1 x 0.1 degrees was utilized.

JAXA GCOM-W1 satellite and AMSR2 
sensor illustrating earth surface 

scanning geometry

Image source:
https://gpm.nasa.gov/missions/GPM 
https://www.scirp.org/pdf/IJG_2015011913083540.pdf 

https://gpm.nasa.gov/missions/gpm/gmi
https://gpm.nasa.gov/missions/GPM
https://www.scirp.org/pdf/IJG_2015011913083540.pdf


C. Radhakrishnan et al.  11th Workshop of International Precipitation Working Group                                       10

Data Pre-Processing and Database Creation for 
Machine Learning Model

Rain Categories Rain rate range Percentage in 
GMI Database

Percentage in 
AMSR2 Database

1 No rain < 0.1 mm/hr 48.69 49.17
2 Light Rain 0.1 <= RR < 2.5 mm/hr 38.75 40.62
3 Medium Rain 2.5 <= RR < 10 mm/hr 11.67 9.56
4 Medium Heavy Rain 10 <= RR  < 20 mm/hr 0.70 0.54
5 Heavy Rain 20 mm/hr >= RR 0.17 0.08

 After conducting a spatiotemporal match (with a spatial resolution of 25 km and a temporal resolution of 5 
minutes), we collected 750,000 overlapping data points between TEMPEST-D and GMI measurements, and 
4.36 million overlapping data points between TEMPEST-D and AMSR2 measurements.

 Approximately 89% of the data falls below the light rain category, while 10% of the data corresponds 
to medium rain. 

 Less than 1% of the data is classified as heavy rain. This poses a  challenge for machine learning 
models attempting to identify and accurately estimate the intensity of heavy rain.
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Machine Learning (ML) based Rainfall Estimation 
Model

• Utilizing a hybrid approach combining precipitation 
identification and regression-based machine learning 
systems proves highly effective for addressing such 
problems [5].

• An ML classification model was developed to classify 
TEMPEST-D observations into categories of non-raining, 
light, medium, heavy, and extremely heavy rain 
conditions.

• Additionally, four distinct Random Forest (RF) 
regression models were trained for the light, medium, 
medium heavy, and heavy rain categories.

• During the estimation phase, the process consists of 
two steps. Firstly, the RF classification model determines 
the rain categories based on TEMPEST-D TB 
observations. Subsequently, in the second step, the RF 
regression models specific to each category are applied to 
the corresponding identified rain category to estimate the 
surface rain rate.

Training Estimation
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Independent Validation of TEMPEST-D Rain Rate 
Estimation System over Hurricane Dorian - 1

 TEMPEST-D observed Hurricane Dorian 
on September 5, 2019, from 6:01 to 6:04 
UTC, whereas AMSR2 observed it from 
7:02 to 7:05 UTC. There is an 
approximate 1-hour time difference, with 
TEMPEST-D observations preceding 
those of AMSR2.

 For comparison, the IMERG product at 
6:00 UTC on September 5, 2019, is 
utilized.

TEMPEST-H8 observations and estimated rain rates (mm/hr) (a) Brightness 
temperature (K) at 165 GHz. (b) AMSR2-based model. (c) GMI-based model. (d) 
Combined AMSR2 and GMI based model. (d) AMSR2 rain rate product (mm/hr) (e) 
IMERG rain rate (mm/hr)
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TEMPEST -D vs AMSR2 r MAE (mm/hr)
AMSR2-based Model 0.91 3.8

GMI-based Model 0.86 4.4

AMSR2+GMI-based Model 0.90 4.0

TEMPEST-D vs IMERG r MAE (mm/hr)
AMSR2-based Model 0.79 6.1

GMI-based Model 0.73 6.7

AMSR2+GMI-based Model 0.78 6.2

Comparison of TEMPEST-D and AMSR2 
rain rate

Comparison of TEMPEST-D and IMERG rain rate

Independent Validation of TEMPEST-D Rain Rate 
Estimation System over Hurricane Dorian - 2

r -> Correlation coefficient

Comparison of estimated rain rates from TEMPEST-D 
observations using three ML models with AMSR2 and IMERG rain 
rate products.

r MAE (mm/hr)
AMSR2 vs IMERG 0.87 4.0

Comparison of AMSR2 and IMERG rain rate
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Rain Rate Estimation from TEMPEST STP-H8 
Observations over Hurricane Hilary - 1 

 TEMPEST STP-H8 observed Hurricane 
Hilary on August 17, 2023, from 21:52 to 
21:56 UTC, while GMI observed it from 
21:35 to 21:38 UTC. The time difference is 
approximately 17 minutes, with GMI ahead 
of TEMPEST STP-H8.

 For comparison, the IMERG product at 
22:00 UTC on August 17, 2023, is utilized.

TEMPEST-H8 observations and estimated rain rates (mm/hr) (a) Brightness 
temperature (K) at 165 GHz. (b) AMSR2-based model. (c) GMI-based model. (d) 
Combined AMSR2 and GMI based model. (d) GMI rain rate product (mm/hr) (e) 
IMERG rain rate (mm/hr)
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TEMPEST STP-H8 vs GMI r MAE (mm/hr)
AMSR2-based Model 0.66 6.2

GMI-based Model 0.77 5.1

AMSR2+GMI-based Model 0.78 5.1

TEMPEST STP-H8 vs IMERG r MAE (mm/hr)
AMSR2-based Model 0.76 6.8

GMI-based Model 0.80 6.6

AMSR2+GMI-based Model 0.80 6.6

Rain Rate Estimation from TEMPEST STP-H8 
Observations over Hurricane Hilary - 2 

r MAE (mm/hr)
GMI vs IMERG 0.90 4.7

Comparison of TEMPEST STP-H8 and GMI rain rate

Comparison of TEMPEST STP-H8 and IMERG 
rain rate

Comparison of GMI and IMERG rain rate

Comparison of estimated rain rates from TEMPEST-D observations using three ML models with GMI and 
IMERG rain rate products.
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Summary and Conclusions - 1

 The main advance of this research is demonstration of a classification and quantification system 
using machine learning for rain rate estimation from passive microwave observations by small 
satellites.

 These integrated ML systems demonstrate superior performance in identifying heavy rainfall pixels 
and accurately estimating intense precipitation compared to methods based solely on regression.

 Independent validations demonstrate consistent performance across all three ML systems when 
compared with IMERG rain rate products, showing an average correlation coefficient (r) of 0.79 
and an average MAE of 5.6 mm/hr, indicating strong agreement with IMERG estimates.
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Summary and Conclusions - 2

 The high-quality rain rate estimates from TEMPEST-H8 TB observations over tropical cyclone 
systems demonstrated that the developed ML systems perform well in estimating rain rates from 
various sensors with similar channel characteristics, with an average correlation coefficient (r) of 
0.81 and an average MAE of 7.0 mm/hr.

 The performance of the ML system is similar while using TEMPEST-D and TEMPEST-H8 TB 
observations.
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Thank you
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Independent Validation over Hurricane Florence

TEMPEST-D vs IMERG r MAE
(mm/hr)

AMSR2-based Model 0.80 5.0

GMI-based Model 0.83 5.4

AMSR2+GMI-based Model 0.79 5.1

 TEMPEST-D observations over Hurricane Florence on September 9, 2018, from 11:48 to 11:52 UTC are 
utilized.

 For comparison, the IMERG product at 12:00 UTC on September 9, 2018, is employed.
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Rain Rate Estimation from TEMPEST STP-H8 
Observations over Tropical Cyclone Batsirai - 1 

 TEMPEST STP-H8 observed Tropical 
Cyclone Batsirai on February 4, 2022, from 
05:09 to 05:12 UTC, while GMI observed it 
from 05:26 to 05:28 UTC. The time 
difference is approximately 17 minutes, with 
GMI ahead of TEMPEST STP-H8.

 For comparison, the IMERG product at 
05:00 UTC on February 4, 2022, is utilized.

TEMPEST-H8 observations and estimated rain rates (mm/hr) (a) Brightness 
temperature (K) at 165 GHz. (b) AMSR2-based model. (c) GMI-based model. (d) 
Combined AMSR2 and GMI based model. (d) GMI rain rate product (mm/hr) (e) 
IMERG rain rate (mm/hr)
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TEMPEST STP-H8 vs GMI r MAE (mm/hr)
AMSR2-based Model 0.61 6.4

GMI-based Model 0.70 5.7

AMSR2+GMI-based Model 0.67 6.2

TEMPEST STP-H8 vs IMERG r MAE (mm/hr)
AMSR2-based Model 0.78 7.7

GMI-based Model 0.88 7.0

AMSR2+GMI-based Model 0.86 7.5

Rain Rate Estimation from TEMPEST STP-H8 
Observations over Tropical Cyclone Batsirai - 2 

r MAE (mm/hr)
GMI vs IMERG 0.88 4.1

Comparison of TEMPEST STP-H8 and GMI rain rate

Comparison of TEMPEST STP-H8 and IMERG 
rain rate

Comparison of GMI and IMERG rain rate

Comparison of estimated rain rates from TEMPEST-D observations using three ML models with GMI and 
IMERG rain rate products.
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RF Classification Model Performance on Training 
and Testing Datasets

Rain Categories AMSR2 based model GMI based model AMSR2 and GMI based 
model

Training Testing Training Testing Training Testing
No Rain 0.85 0.81 0.78 0.75 0.77 0.74

Light Rain 0.64 0.55 0.54 0.47 0.57 0.48
Medium Rain 0.60 0.45 0.46 0.44 0.54 0.43

Medium Heavy Rain 0.67 0.53 0.43 0.35 0.59 0.45
Heavy Rain 0.83 0.73 0.65 0.57 0.73 0.62

F1 scores from the three best RF classification models for each rain category on both the training and 
testing datasets

 Training used 80% of data points, and testing used 20% of data points.

 The AMSR2-based model used 3.48 million data points for training and 872,000 data points for testing.

 The GMI-based model used 600,000 data points for training and 150,000 data points for testing.

 The combined AMSR2 and GMI-based model used 4.08 million data points for training and 1.02 million data 

points for testing.
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RF Classification Model Performance on Training 
and Testing Datasets

RF Classification models Number of 
estimators

Maximum 
depth

Minimum 
samples of leaf

Accuracy
Training Testing

AMSR2 based model 40 10 2 0.72 0.62
GMI based model 20 6 3 0.58 0.53

AMSR2 and GMI based model 40 10 2 0.64 0.55

Rain Categories AMSR2 based model GMI based model AMSR2 and GMI based 
model

Training Testing Training Testing Training Testing
No Rain 0.85 0.81 0.78 0.75 0.77 0.74

Light Rain 0.64 0.55 0.54 0.47 0.57 0.48
Medium Rain 0.60 0.45 0.46 0.44 0.54 0.43

Medium Heavy 
Rain

0.67 0.53 0.43 0.35 0.59 0.45

Heavy Rain 0.83 0.73 0.65 0.57 0.73 0.62

F1 scores from the three best RF classification models for each rain category on both the training 
and testing datasets

Optimal parameters determined from grid search hyperparameter tuning process 
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Light Rain Medium Rain Medium Heavy 
Rain

Heavy Rain

Training Testing Training Testing Training Testing Training Testing
AMSR2 based 

model 0.71 0.53 0.73 0.52 0.73 0.57 0.77 0.55

GMI based 
model 0.42 0.36 0.63 0.34 0.78 0.3 0.84 0.53

AMSR2 and 
GMI based 

model
0.7 0.37 0.68 0.40 0.70 0.47 0.81 0.54

RF Regression Model Performance on Training and 
Testing Datasets

Correlation coefficient values for rainfall for the best Machine learning (Randon Forest) models 
developed from three different datasets for four rain categories on both the training and testing 

datasets.
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AMSR2 and GMI Instrument Channels Frequencies 
and Spatial Resolution

Band [GHz] Polarization Spatial Resolution(3-dB 
footprint size)[km x km]

6.93 V,H 62 x 35
7.3 V,H 62 x 35

10.65 V,H 42 x 24
18.7 V,H 22 x 14
23.8 V,H 26 x 15
36.5 V,H 12 x  7
89 V,H  5 x  3

Band [GHz] Polarization Spatial Resolution(3-dB 
footprint size) [km x km]

10.65 V,H 32 x 19
18.7 V,H 18 x 11
23.8 V 16 x 10
36.5 V,H 15 x 9
89 V,H  7 x 4

165.5 V,H  6 x 4
183.31+/-3 V  6 x 4
183.31+/-7 V  6 x 4

AMSR2 GMI

TEMPEST-D and TEMEPST-H8 spatial resolution varies from 25 km at 87 GHz to 12.5 km at 164-181 GHz.
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