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JPL Overview and Objectives

» The objective of this research is to estimate surface rain rates using observations performed

by the Temporal Experiment for Storms and Tropical Systems (TEMPEST) Space Test
Program-Houston 8 (STP-H8).

» A machine learning based surface rainfall estimation system is developed from TEMPEST-D
Brightness Temperature (TB) observations.

» The machine learning algorithms employ a combination of Random Forest (RF) classification
and regression techniques.

» Rain rate products from the Global Precipitation Measurement (GPM) Microwave Imager
(GMI) and Advanced Microwave Scanning Radiometer 2 (AMSR2) are used as reference data
in the machine learning algorithms.
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JPL Temporal Experiment for Storms and Tropical
s gystems — Demonstration (TEMPEST-D) Mission

» TEMPEST-D mission [1] is a NASA Earth Venture Technology Demonstration mission to
demonstrate the technology necessary to perform high temporal-resolution observations
of clouds, convection and water vapor profiles from small satellites.

» TEMPEST-D is a collaboration among CSU, NASA/JPL and Blue Canyon Technologies.

» TEMPEST-D is a 6U CubeSat with a cross-track scanning millimeter-wave radiometer
observing the Earth at 87, 164, 174, 178 and 181 GHz.

» Spatial resolution varies from 25 km at 87 GHz to 12.5 km at
164-181 GHz.

» Originally planned for a 3-month technology demonstration,
TEMPEST-D performed well-calibrated and highly stable
global atmospheric observations for nearly 3 vyears.
(between September 2018 and May 2021)
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» The TEMPEST STP-H8 sensor is nearly identical to the
TEMPEST-D instrument, with slight differences in channel
center frequencies and spectral responses.

» TEMPEST STP-H8 performs TB observations at five
millimeter-wave frequencies of 89, 165, 176, 180, and 182
GHz and has Dbeen providing nearly continuous B
measurements from the ISS since January 8, 2022.

» The machine learning rain rate estimation system developed
using TEMPEST-D TB observations has been applied to
estimate the rain rate from TEMPEST STP-H8 TB

observations. TEMPEST instrument  COWVR instrument

Image source : https://space.skyrocket.de/doc _sdat/stp-h8.htm
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JPL Cross-Validation of TEMPEST-D and GPM-GMI

Jet Propulsion Laboratory
California Institute of Technology

Observations

_Comparison of NOAA best track with combined storm tracks from TEMPEST-D and GPM-GMI
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» TEMPEST-D brightness temperature observations were validated over
precipitating systems on a global basis. TEMPEST-D (164 GHz) and GPM-
GMI (166 GHz horizontal and vertical channel) brightness temperature
observations, with different sensor properties and viewing geometries, have
a mean absolute difference of 2.9 K. The correlation coefficient between
TEMPEST-D and GPM-GMI brightness temperatures is 0.86.

Tropical Cyclone Kyarr (2019)

» When combined with GMI, TEMPEST-D increases the temporal sampling
frequency of TCs by a factor of approximately 2.5.

I I3 AR AL N S TR TUNKS 14 AFVLINIS BCARTT CRSIEVUCTHONS ASTH RIGAITE SEMSING, VO I, T

TEMPEST-D and GPM-GMI Observations Over
Precipitating Systems: A Cross-Validation Study
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Observations over Hurricane Delta on
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Synergy between Radar and Radiometer Observations
of Precipitation from Space
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Abstract— This paper is a tribute to Prof Frank Marzano’s
legacy. The objective of this study is to cross-validate radar
(active sensor) and radiometer (passive sensor) satellite
obscrvations over tropical cyclones, typhoons and hurricanes.
To ish this, Global P i (GPM)
Dual-frequency Precipitation Radar (DPR) observations are
compared with GPM Microwave Imager (GMI) and Temporal
Experiment for Storms and Tropical Systems Demonstration
(TEMPEST-D) CubeSat observations over precipitating
systems. The purpose of this paper is twofold: first, to
demonstrate a methodology to show consistency between DPR
and GMI, and second, to apply this method to demonstrate
consistency between DPR and TEMPEST-D CubeSat
observations. This paper also develops a Pearson correlation
coefficient (r) metric between parameters derived from radar
and radiometer observations. The corresponding correlation
between DPR and GMLI, as well as between TEMPEST-D and
DPR, are 0.90 and 0.85, respectively.

Index  Terms—GPM-GMI,
CubeSat, microwave
calibration.

GPM-DPR, TEMPEST-D,
radiometry, radar, instrument

1. INTRODUCTION

Global weather satellite measurements are essential to
observe and monitor the Earth, especially over the oceans
where limited or no ground weather observations are
available. Space-borne radiometer and radar observations
provide critical information to initialize numerical weather
prediction (NWP) models and improve prediction skills [1].
Microwave radiometers on weather satellites are passive
sensors that capture upwelling radiation emitted from the
Earth’s surface and atmosphere, after interaction with
atmospheric cloud liquid water, cloud ice water, and
hydrometeors. The captured microwave radiation has
information about the vertical column of the atmosphere.
Radars on weather satellites are active sensors that measure
the backscatter of microwave signals at different altitudes.
The consistency between active and passive microwave
sensors needs to be evaluated before generating combined
weather observations to utilize the advantages of both
sensors. A cross-comparison study between TEMPEST-D
CubeSat and RainCube (Radar in a CubcSat) observations
over precipitation systems showed high correlation between
TEMPEST-D brightness temperatures (TB) and RainCube
reflectivity profiles [2]. That study was conducted with nine
storm events from around the globe. This study compares
the GPM-DPR reflectivity observations with radiometer

observations from the traditional GPM-GMI and a low-cost
TEMPEST-D CubeSat over a hurricane system.

II.  GPM AND TEMPEST-D

The Global Precipitation Measurement (GPM) satellite
mission is very successful, following the Tropical Rainfall
Measuring Mission (TRMM). Both TRMM and GPM have
been jointly developed by the National Acronautics and
Space Administration (NASA) and the Japan Aerospace
Exploration Agency (JAXA). GPM is a low-Earth orbiting
(LEO) satellite with a GPM Microwave Imager (GMI) and
Dual-frequency Precipitation Radar (DPR). GMI has a 13-
channel radiometer, and DPR has Ka-band (35.6 GHz) and
Ku-band (10.5 GHz) vertically-pointing radars. This study
used version 7 calibrated GMI TB data products at 13 km
spatial resolution and the DPR data product at 5 km spatial
resolution. The detailed GMI and DPR instrument
configuration and specifications are described in [3.4].
TEMPEST-D is 6U CubeSat jointly developed by Colorado
State University (CSU) and NASA/JPL. TEMPEST-D is a
CubeSat demonstration mission for a future TEMPEST
constellation [5] that aims to deploy six identical CubeSats
in the same orbit with about 6 minutes separation between
satellites. TEMPEST-D is a highly successful CubeSat
mission that operated for nearly three years in orbit and
provided high-quality global atmospheric observations,
including of severe weather events over oceans and land.
The TEMPEST-D radiometers measure at five millimeter-
wave frequencies (87, 164, 174, 178, and 181 GHz) that
provide detailed information on convection as well as the
surrounding water vapor environment. At nadir the spatial
resolution is 25 km for 87 GHz and 12.5 km for other four
frequencies. TEMPEST-D instrument configuration and
pre-launch calibration are described in [6]. The on-orbit
validation of TEMPEST-D using the GPM-GMI and
Microwave Humidity Sounder (MHS) instruments is
discussed in [7].

III.  METHODOLOGY

Figure 1 shows the flow chart of the cross-comparison
procedure followed in the study. The first part of the study
focuses on comparing the GMI and DPR observation over
the precipitation events. The second part compares the
observations from TEMPEST-D CubeSat and GPM-DPR.
Only nadir observations from GMI and DPR overpasses are
used in this study to reduce the complexity of analysis. The
GMI and TEMPEST-D radiometers’ radiances are from the

V. Chandrasekar et. al. [3] (EuCAP 2023)
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gL Rainfall Estimation From TEMPEST-D CubeSat

Jet Propulsion Laboratory
California Institute of Technology

Observations over CONUS

» In prior research, a Machine Learning (ML) model was developed to estimate surface rain
rate using TEMPEST-D observations within the CONUS region.

» The TEMPEST-D Brightness Temperatures (TBs) at five frequencies were employed as
input, and the Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation
(QPE) product was utilized as the ground truth or target for the ML model.

Passive microwave
sensor

Graphical representation of
rainfall measurement from
ground-based weather
radar and a space-borne
passive microwave sensor.
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(a)-(e) TEMPEST-D TB observations of Tropical Storm Olga over New
Orleans, Louisiana on October 26, 2019 at 09:00 UTC, (f) TEMPEST-D
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Observations: A Machine-Learning Approach
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Abstract—In this study, » machinelcarning model was uscd
to produce surface rainfall estimates from Temparal Fxperk

ion. In addilion, precipilation is il global and

for Starms and Tropical Systems — Demonstration (TEMPEST-I)
microwave radiance uum.u ans from a CubeSat. The machine-
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i 141
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The significant spatial and temporal variability of precipitation
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scales; dcmc nlm:ﬂshnnxl networks are required Lo caplure
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Index Terms—Artificial neoral metwark (ANN), cubeSats,
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quantitative precipitation estimation (QPE), smallssts, temporal
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lial coverage o eslimale rainfall over larger arcas. Kidd er al.
[7] reported that only 0L0DD00DOO0593% of carh’s surface is
covered by ground-hased rain panges.

Giround-based weather radars form (he key infmstrociune i
momilor storms, issue walches, and warnings, as well as provide
data for numerical weather prediction (NWP). In addilion w
these benelils, weather radars provide precipilation cstimales
over large areas (7000-32000 km?) with high spatial and tem-
porl resolution and reasonable scoorcy o that scale. Ground-
hased wesither radar networks are correnily in use throughout
the: LS. and some edher parts of the world, providing accurate
rainlall messurements within the radar network's anea of cover-
age, [owever, current radar networks primarily observe rainfall
ower land. A Emited aumber of radars also perform ohservations
ower coastal rones. Some lmitations of ground-based wﬂm T
radars [lovws: Rainfall products from westher rad:
larger uncerainties over complex terrain; and they lack coverage
ower the oceans. Oceanic rainfall is essential for understanding
the glohal waler cycle as well as providing critical information
Lo imitialize NWT models for the accurate forecasting of severe
weather events, such as hurricanes and tropical cyclomes [8], [9].

Satellile-hased precipitation observations can be used o pro-

vide global coverage, particularly over the ocean and in the polar
regions. Currently, operational weather salelliles are deployed
in both geostationary orbit (GEO) and low carth orbit (LEO)L
Weather salelliles in GEO orbils, approximately 36 000 km
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_||=|_ Rainfall Estimation From TEMPEST-D
Observations on a Global Basis

» The ML model was developed using TEMPEST-D TB observations over the period
from 2018 to 2021.

1250,500m W
2% range gates

after May 2018
KaPR =245 km

' » For the GMI-based ML model, the GPM GMI (GPROF) Radiometer Precipitation
e Pl Profiling L2A (V07) dataset for each orbit with 13 km spatial resolution was utilized

Scanning patterns and coverage of the @S a reference.
GPM Core Observatory’s GMI and

DPR Instruments. > Similarly, for the AMSR2-based ML model, the AMSR2 on GCOM-W1 (GPROF)
Radiometer Precipitation Profiling L2A (VO7) dataset with 10 km spatial resolution
served as reference.

SSSSSSS

» For cross-comparison purposes, the GPM IMERG Early Precipitation L3 (V06)
dataset with a spatial resolution of 0.1 x 0.1 degrees was utilized.

JAXA GCOM-W1 satellite and AMSR2 image source: N
sensor illustrating earth surface https://gpm.nasa.gov/missions/GPM

https://www.scirp.org/pdf/IJG 2015011913083540.pdf

scanning geometry
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Jet Propulsion Laboratory

JpL Data Pre-Processing and Database Creation for
Machine Learning Model

» After conducting a spatiotemporal match (with a spatial resolution of 25 km and a temporal resolution of 5
minutes), we collected 750,000 overlapping data points between TEMPEST-D and GMI measurements, and
4.36 million overlapping data points between TEMPEST-D and AMSR2 measurements.

> Approximately 89% of the data falls below the light rain category, while 10% of the data corresponds
to medium rain.

> Less than 1% of the data is classified as heavy rain. This poses a challenge for machine learning
models attempting to identify and accurately estimate the intensity of heavy rain.

Percentage in Percentage in

Rain Categories Rain rate range GMI Database AMSR?2 Database

No rain < 0.1 mm/hr
Light Rain 0.1 <= RR < 2.5 mm/hr

Medium Rain 2.5 <= RR <10 mm/hr
Medium Heavy Rain 10 <= RR <20 mm/hr
Heavy Rain 20 mm/hr >= RR
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JPL Machine Learning (ML) based Rainfall Estimation

Jet Propulsion Laboratory
California Institute of Technology

Model

Utilizing a hybrid approach combining precipitation
identification and regression-based machine learning
systems proves highly effective for addressing such
problems [3].

An ML classification model was developed to classify
TEMPEST-D observations into categories of non-raining,

light, medium, heavy, and extremely heavy rain
conditions.
Additionally, four distinct Random Forest (RF)

regression models were trained for the light, medium,
medium heavy, and heavy rain categories.

During the estimation phase, the process consists of
two steps. Firstly, the RF classification model determines
the rain categories based on TEMPEST-D TB
observations. Subsequently, in the second step, the RF
regression models specific to each category are applied to
the corresponding identified rain category to estimate the
surface rain rate.
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_|p|_ Independent Validation of TEMPEST-D Rain Rate
smwee Estimation System over Hurricane Dorian - 1
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» TEMPEST-D observed Hurricane Dorian

on September 5, 2019, from 6:01 to 6:04
UTC, whereas AMSR2 observed it from
702 to 7:05 UTC. There is an
approximate 1-hour time difference, with
TEMPEST-D observations preceding
those of AMSR2.

For comparison, the IMERG product at
6:00 UTC on September 5, 2019, is
utilized.
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Jet Propulsion Laboratory

_|p|_ Independent Validation of TEMPEST-D Rain Rate
wameicen Estimation System over Hurricane Dorian - 2

Comparison of estimated rain rates from TEMPEST-D |
observations using three ML models with AMSR2 and IMERG rain Comparison of TEMPEST-D and AMSR2
rate products. rain rate

50 TEMPEST -D vs AMSR2 r MAE (mm/hr)
TEMPEST-D(AMSR2-based model) AMSR2-based Model 0.91
TEMPEST-D(GMI-based model)

GMI-based Model 0.86

TEMPEST-D(AMSR2+GMI-based model)
AMSR2+GMI-based Model 0.90

40 —

AMSR2
IMERG

30 —

20 —

Rain Rate (mm/hr)

10 —

P 5w  w o w b L Comparisonof TEMPEST-D and IMERG rain rate

Distance in km (Northeast to Southwest)

TEMPEST-D vs IMERG r MAE (mm/hr)
Comparison of AMSR2 and IMERG rain rate AMSR2-based Model

r MAE (mm/hr)

GMI-based Model
AMSR2+GMI-based Model

AMSR2 vs IMERG 0.87 4.0

r -> Correlation coefficient
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gL Rain Rate Estimation from TEMPEST STP-H8

Observations over Hurricane Hilary - 1
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IMERG rain rate (mm/hr)
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JPL  Rain Rate Estimation from TEMPEST STP-H8

California Institute of Technology

Observations over Hurricane Hilary - 2

Comparison of estimated rain rates from TEMPEST-D observations using three ML models with GMI and
IMERG rain rate products.
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Comparison of TEMPEST STP-H8 and GMI rain rate
Comparison of GMI and IMERG rain rate

AMSR2-based Model 0.66

r MAE (mm/hr)

GMI-based Model 0.77
AMSR2+GMI-based Model 0.78

GMI vs IMERG 0.90 4.7
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JPL Summary and Conclusions - 1

» The main advance of this research is demonstration of a classification and quantification system

using machine learning for rain rate estimation from passive microwave observations by small
satellites.

» These integrated ML systems demonstrate superior performance in identifying heavy rainfall pixels
and accurately estimating intense precipitation compared to methods based solely on regression.

» Independent validations demonstrate consistent performance across all three ML systems when
compared with IMERG rain rate products, showing an average correlation coefficient (r) of 0.79
and an average MAE of 5.6 mm/hr, indicating strong agreement with IMERG estimates.
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JPL Summary and Conclusions - 2

» The high-quality rain rate estimates from TEMPEST-H8 TB observations over tropical cyclone
systems demonstrated that the developed ML systems perform well in estimating rain rates from
various sensors with similar channel characteristics, with an average correlation coefficient (r) of
0.81 and an average MAE of 7.0 mm/hr.

» The performance of the ML system is similar while using TEMPEST-D and TEMPEST-H8 TB
observations.
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@ JPL Independent Validation over Hurricane Florence

California Institute of Technology

» TEMPEST-D observations over Hurricane Florence on September 9, 2018, from 11:48 to 11:52 UTC are

utilized.

» For comparison, the IMERG product at 12:00 UTC on September 9, 2018, is employed.
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gL Rain Rate Estimation from TEMPEST STP-H8

Jet Propulsion Laboratory
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Observations over Tropical Cyclone Batsirai - 1
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» TEMPEST STP-H8

observed Tropical

Cyclone Batsirai on February 4, 2022, from
05:09 to 05:12 UTC, while GMI observed it
from 05:26 to 05:28 UTC. The time
difference is approximately 17 minutes, with

GMI ahead of TEMPEST STP-HS8.

» For comparison, the IMERG product at
05:00 UTC on February 4, 2022, is utilized.
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Jet Propulsion Laboratory

gL Rain Rate Estimation from TEMPEST STP-H8
=mmeicen - Qlbservations over Tropical Cyclone Batsirai - 2

Comparison of estimated rain rates from TEMPEST-D observations using three ML models with GMI and
IMERG rain rate products.

50

£ 40 | tehpesT DMt based model) | Comparison of TEMPEST STP-H8 and IMERG
E o ;EMh:IPEST-D(AMSH2+GMI-based mode| raln rate

§ 20 —| TEMPEST STP-H8 vs IMERG r MAE (mm/hr)
= 10 — AMSR2-based Model 0.78

- 0 | | ; i | | [ | F | GMI-based Model 0.88

RE IO SR, L ) > Ne &P N

&P AMSR2+GMI-based Model 0.86
Distance in km (Northeast to Southwest)

Comparison of TEMPEST STP-H8 and GMI rain rate

Comparison of GMI and IMERG rain rate
TEMPEST STP-H8 vs GMI r MAE (mm/hr)
AMSR2-based Model 0.61 r MAE (mm/hr)

GMI-based Model 0.70
AMSR2+GMI-based Model 0.67

GMI vs IMERG 0.88 4.1
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Jet Propulsion Laboratory

_|p|_ RF Classification Model Performance on Training
and Testing Datasets

» Training used 80% of data points, and testing used 20% of data points.

» The AMSR2-based model used 3.48 million data points for training and 872,000 data points for testing.

» The GMI-based model used 600,000 data points for training and 150,000 data points for testing.

» The combined AMSR2 and GMI-based model used 4.08 million data points for training and 1.02 million data
points for testing.

F1 scores from the three best RF classification models for each rain category on both the training and
testing datasets

Rain Categories AMSR2 based model GMI based model AMSR2 and GMI based
model

Training Testing Training | Testing Training Testing
No Rain 0.85 0.81 0.78 0.75 0.77 0.74
Light Rain 0.64 0.55 0.54 0.47 0.57 0.48
Medium Rain 0.60 0.45 0.46 0.44 0.54 0.43
Medium Heavy Rain 0.67 0.53 0.43 0.35 0.59 0.45
Heavy Rain 0.83 0.73 0.65 0.57 0.73 0.62
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_|p|_ RF Classification Model Performance on Training
and Testing Datasets

Optimal parameters determined from grid search hyperparameter tuning process

RF Classification models Number of Maximum Minimum Accuracy
estimators depth samples of leaf | Training | Testing
AMSR?2 based model 40 10 2 0.72 0.62
GMI based model 20 6 3 0.58 0.53
AMSR?2 and GMI based model 40 10 2 0.64 0.55

F1 scores from the three best RF classification models for each rain category on both the training
and testing datasets

Rain Categories AMSR2 based model GMI based model AMSR2 and GMI based
model

Training Testing Training | Testing Training Testing
No Rain 0.85 0.81 0.78 0.75 0.77 0.74
Light Rain 0.64 0.55 0.54 0.47 0.57 0.48
Medium Rain 0.60 0.45 0.46 0.44 0.54 0.43
Medium Heavy 0.67 0.53 0.43 0.35 0.59 0.45

Rain

Heavy Rain 0.83 0.73 0.65 0.57 0.73 0.62
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_|p|_ RF Regression Model Performance on Training and
Testing Datasets

Correlation coefficient values for rainfall for the best Machine learning (Randon Forest) models
developed from three different datasets for four rain categories on both the training and testing

datasets.
Light Rain Medium Rain Medium Heavy Heavy Rain
Rain
Training | Testing | Training | Testing | Training | Testing | Training | Testing
AMSR2 based | 4 74 0.53 0.73 0.52 0.73 0.57 0.77 0.55
model
GMI based 0.42 0.36 0.63 0.34 0.78 0.3 0.84 0.53
model
AMSR2 and
GMI based 0.7 0.37 0.68 0.40 0.70 0.47 0.81 0.54
model
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California Institute of Technology

_|p|_ AMSR2 and GMI Instrument Channels Frequencies
and Spatial Resolution

AMSR2 GMI

. .. |Spatial Resolution(3-dB L Spatial Resolution(3-dB

Band [GHZ]| Polarization fopotprint size)lkm )(( k] Band [GHZ] Polarization footprint size) [km x km]
6.93 V,H 62 x 35 10.65 V,H 32 x19
7.3 V,H 62 x 35 18.7 V,H 18 x 11
10.65 V,H 42 x 24 23.8 \% 16 x 10
18.7 V,H 22 x 14 36.5 V,H 159x 9
23.8 V,H 26 x 15 89 V,H /x4
36.5 V,H 12x 7 165.5 V.H 6x 4
89 V,H 5x 3 183.31+/-3 Vv 6x 4
183.31+/-7 V 6x 4

TEMPEST-D and TEMEPST-HS8 spatial resolution varies from 25 km at 87 GHz to 12.5 km at 164-181 GHz.
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