

Investigating the Representation of Extremes in High-Resolution, Long Period-of-Record Precipitation Products in the Continental US

Janice L. Bytheway NOAA Physical Sciences Laboratory

Motivation

- Multiple US agencies are working to create or update models and datasets that rely on precipitation data, in particular estimates of precipitation extremes:
 - O US Geological Survey: Precipitation induced landslides
 - O Federal Emergency Management Agency: Future of Flood Risk Data (FFRD)
 - O NOAA: Atlas 15, Probable Maximum Precipitation (PMP)
- Each requires precipitation information with
 - O High spatiotemporal resolution
 - O Long period of record
 - O Latency needs vary
 - O Most work is currently CONUS-focused, but some may expand globally

NATIONAL ACADEMIES

Modernizing Probable Maximum Precipitation Estimation

<u>Probable Maximum Precipitation:</u> ¹The greatest depth of precipitation for a given duration meteorologically possible for a design watershed or a given storm area at a particular location at a particular time of year, with no allowance made for long-term climatic trends (WMO, 2009).

²Theoretically, the greatest depth of precipitation for a given duration that is physically possible over a given size storm area at a particular geographical location at a certain time of year (AMS, 2022; Hansen et al., 1982).

What is the best precipitation dataset to use?

Candidate Datasets

Name	Dates of availability	POR	Included data	Spatial Res	Temporal Res	Global?
AORC	1979-present	45	NLDAS-2, StageIV, may include Stage II and CMORPH1	4 km	1h	
Conus404	1979-2022	43	WRF downscaled ERA-5	4 km	1h	
Stage IV	2002-present	22	Radar, gauge	4 km	1h	
MSWEP	1979-present	45	Gauge, satellite, reanalysis	0.1 degree	3 hourly	Х
IMERG v7	2000-present	24	Multi-satellite	0.1 degree	30min	X
PERSIANN-CCS-CDR*	1983-present	41	IR satellite (Gridsat B1, CPC 4km IR) bias corrected monthly with CPCP	4 km	3h	X
CMORPH2*	1990s-present	20-30	Multi-satellite with gauge correction	0.05 degree	30 min	X
NLDAS	1979-present	45	multisensor+reanalysis	0.125 degree	hourly	
ERA-5	1940-present	104	reanalysis	30km	hourly	X
PRISM	1981-present	43	multisensor (incl radar post-2002)	4 km	daily	
Daymet	1980-present	44	gauge-based	1 km	daily	
CHIRPS V2.0	1981-present	43	gauge, satellite, reanalysis	0.05 degree	daily	Х
NARR	1979-present	45	reanalysis	32 km	hourly	
MRMS	2020-present	4	multisensor	1 km	1h (2min)	

* Dataset of interest but not currently available

Study Design

- 2002-2021
- Accumulate to 3, 6 and 24h rainfall on native grids
- Frequency of ARI exceedances at 2, 10, and 50 year (50%, 10%, and 2% chance of occurrence in a given year)
- Maximum, 90th, 95th, and 99th percentile rainfall at each duration
- Ability to examine CDFs of extreme rainfall at a given location
- Dig into interesting features or events

Average Recurrence Interval Thresholds [mm]

10 year ARI Exceedances

AORC and Stage IV similar, less so at shorter accumulation periods.

IMERG has the most ARI exceedances on the west coast.

Impact of gauges visible in MSWEP.

Number of Exceedances

3

4

5

CONUS 404 has highest number of exceedances on the east coast. Apply Sciences Laboratory

Seasonal 10 year 6 hour ARI Exceedances

Seasonal 10 year 6 hour ARI Exceedances

Maximum Rainfall

- IMERG-Final, MSWEP, CONUS404 lowest in Mountain West.
- IMERG- Early more similar to AORC and Stage IV, but less contiguous east of Rockies
- CONUS404 higher maxima extending farther north than other datasets.
- MSWEP somewhere between IMERG Early and Final east of the Rockies.

Upper Quantiles of 6 -h Rainfall

CDFs of 6h Rainfall in Select Cities

Case Study – Hurricane Ida

Total Rainfall August 29-30, 2021

IMERG Early

IMERG Final

Total Rainfall September 1-2, 2021

StagelV

CONUS 404

IMERG Final

IMERG Early

Summary and Ongoing Work

- Understanding the representation of extreme precipitation in high-resolution, longperiod of record datasets has broad interest across a number of US agencies.
- What is the best precipitation dataset to use?
 - o It depends...
 - Satellite datasets tend to miss much of the summertime extreme precipitation in the eastern US, while IMERG (both Early and Final) identifies a large number of ARI exceedances along the west coast during the cool season.
 - The "lower-upper quantiles" of precipitation are fairly similar across the datasets over much of the CONUS the big differences lie in the extreme tails of the distribution.
- Ongoing work will include continued evaluation of case studies and evaluations by storm type (e.g. atmospheric rivers, MCSs, and tropical cyclones)

Thank you

Janice.Bytheway@noaa.gov

Backup Slides

Case Study – Hurricane Harvey

Total Rainfall [mm] August 28-31, 2017

StagelV

IMERG Early

CONUS 404

