

PREVENIR ROPE 1.0: Ground Radar Quantitative Precipitation Estimation development for nowcasting and hydrological applications

Paola Salio

M. Cancelada M., D. Kitahara, L. Vidal, M. Rugna, T. Ushio, T. Miyoshi, J.J. Ruiz and Y. García

Forecast and Warning of Urban Flash Flood Events

Sarandí-Santo Domingo Basin

Plain and highly populated

Suquía Basin

Rural and urban basin. Step region

Pilot Basins

Cuencas • Municipios — Rios principales — Arroyos Principales

Monitoring

PREVENIR proposes the expansion of hydrometeorological observation networks and the implementation of real-time precipitation estimation methods using radar and satellite data.

WP2 | Radar QPE over available C-band radar network

WP2 | Calibration of GSMaP Precipitation estimates using local gauges

WP2 | GOES-16-based QPE using PDF matching and AI techniques

SINARAME

- C band Doppler Dual Polarization network over Argentina.
- Challenges on data quality to obtain a QPE for hydrological applications considering the precipitation regime over the area.
 - attenuation during strong convection events
 - wet radome

SINARAME

 \cap

- C band Doppler Dual Polarization network over Argentina.
- Challenges on data quality to obtain a QPE for hydrological applications considering the precipitation regime over the area.

• attenuation during strong convection events

SINARAME

- C band Doppler Dual Polarization network over Argentina.
- Challenges on data quality to obtain a QPE for hydrological applications considering the precipitation regime over the area.
 - attenuation during strong convection events
 - \circ wet radome

Objective:

- PREVENIR RQPE 1.0 initiative seeks to address these challenges through the proposal of a technique centered on specific differential phase (KDP) estimation
- a monotonically increasing smooth spline function of PHIDP is proposed, facilitating the calculation of estimated KDP.
- evaluate performance during convective events and under the bright band for stratiform cases, alongside gauge measurements.

K_{DP} Estimation Technique

Poster presented at the 40th AMS radar conference - Kitahara et al, 2023

 K_{DP} (specific differential phase [deg/km]) is a useful variable for QPE estimation since it is strongly correlated with rain rate. Unlike reflectivity, K_{DP} is robust to miscalibration, partial beam blockage, rain and wet radome attenuation.

However, it cannot be calculated directly from the observed IQ signal, but must be estimated from the observed differential phase (Ψ_{DP}).

Two mask created:

reliable: There is Ψ_{DP} with **low** noise (precipitation pixel)

- $\rho_{hv} \ge 0.9$
- average ρ_{hv} of 9 adjacent pixels is greater than 0.9
- $Z_h \ge 10 \text{ dBZ}$
- $\Psi_{\rm DP}$ is not NaN
- exclude the first 12 data (about 7km)

medium reliable: There is Ψ_{DP} with **large** noise (possible precipitation pixel)

- $\rho_{hv} \ge 0.65$
- average ρ_{hv} of 9 adjacent pixels is greater than 0.75
- $Z_h \ge 10 \text{ dBZ}$
- $\Psi_{\rm DP}$ is not Nan
- exclude those that are more than 10 pixels away from the last reliable pixel

63.8°W

62.8°W

61.8°W

64.8°W

65.8°W

PREVEN. Existing and proposed K_{DP} estimation techniques

PREVEN Final proposed K_{DP} estimation

Monotonically Increasing Spline Smoothing (Final Re-Fitting)

Main points:

- \Box Φ_{DP} is estimated as a smooth piecewise polynomial, i.e., a spline function *S(r)*
- $\Box \quad \Phi_{DP} \text{ is monotonically increasing, i.e., is nonnegative <u>under the melting layer</u> <math>\Rightarrow s'(r) \ge 0$
- **D** Consider an optimization problem similar to the problems of Giangrande and Wang & Chandrasekar
- **D** The problem is **convex** and can be solved by **quadratic programming**

Validation

Poster to be presented at the ERAD European radar conference - Cancelada et al, 2024

PREVEN, **PREVE**

Period: May 2018 - April 2019 - RELAMPAGO dataset - No operational data

QC performed (Casanovas et al. 2021):

- Removed drops whose measured fall speed Vj differed by more than 50% from the expected terminal velocity for a drop of its size
- Only 1 min DSD data with at least 100 total drops and R > 0.05 mm/h during at least 3 consecutive minutes

Radar parameters calculation with Pydsd and pyTmatrix libraries

Relationship obtained via the Levenberg-Marquardt (LM) algorithm

Less impacted by the more frequent, lower-intensity observations and better fit in more relevant heavy rain

PREVEN Gridded and interpolated radar QPE

- Instantaneous QPE calculated with R(K_{DP}) relationship
- Gridded data necessary to perform temporal interpolation and calculate hourly accumulated precipitation

\Rightarrow 2km x 2km grid

Higher resolution grid tested and no sensitivity was found, besides higher computational times

29.6°S

30.6°S

31.6°S

32.6°S

 Melting layer for December 13th at 4500m above ground level, corresponding approximately to 150 km radar range

⇒ Analysis restrained to 150km from radar position

- Advection correction (Anagnostou and Krajewski, 1999) implemented in PySTEPS library.
 - Temporal interpolation procedure to correct for the shift of rainfall patterns between consecutive radar rainfall maps.
 - Shift significant for long radar scanning cycles and in presence of fast moving precipitation features.
- To evaluate the advection occurred between two successive radar images, the Lucas-Kanade optical flow routine is used. Local features are tracked in a sequence of two radar images.

Lucas-Kanade optical flow

PREVEN Rain-gauge data and validation

- 49 stations available for this situation
- Stations west to the radar were not considered due to topography impact on radar measurements
- Stations removed from analysis:
 - \circ Too close to the radar, no K_{DP} estimations
 - \circ Affected by full radar ray extinction, not possible to obtain K_{DP}

 Both proposed methods (denoised ZPHI & final re-fitting) improved RMSE, estimation bias, and correlation coefficient mainly in light rain areas by introducing the self-consistency

- Both proposed methods (denoised ZPHI & final re-fitting) improved RMSE, estimation bias, and correlation coefficient mainly in light rain areas by introducing the self-consistency
- In the proposed framework, the accuracy for heavy rain areas can be improved from denoised ZPHI results by final re-fitting

- Both proposed methods (denoised ZPHI & final re-fitting) improved RMSE, estimation bias, and correlation coefficient mainly in light rain areas by introducing the self-consistency
- In the proposed framework, the **accuracy for heavy rain areas can be improved from** denoised ZPHI results by final re-fitting
- Algorithm of Wang & Chandrasekar had the lowest average score in this case, but high accuracy for very heavy rain areas

• Nonnegativity of K_{DP} does NOT hold at far areas in some azimuths \Rightarrow Leads to accuracy degradation of final re-fitting K_{DP} estimates

• Dr. Kitahara will stay for two months in Argentina to implement the KDP estimation technique at the National Meteorological Service.

• Develop RQPE techniques over complex terrain.

 Validation over multiple precipitation regimes. Implement on other C-band radars.

• Improve multi-sensor QPE including RQPE into microwave and/or infrared based precipitation estimation by using PDF matching and/or AI techniques.

Thanks

Paola Salio: salio@cima.fcen.uba.ar Maite Cancelada: cancelada@cima.fcen.uba.ar Daichi Kitahara: kitahara@eei.eng.osaka-u.ac.jp

Acknowledgment: The authors would like to thank JICA and JST (Grant #JPMJSA2109) for supporting this work under the SATREPS program.