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ABSTRACT 
 
The relationship between cloud and surface rain rate varies significantly from cloud patch to cloud 
patch. Therefore, a rainfall estimation model characterized by significant transience, heterogeneity, 
and variability is needed to associate rainfall with the extremely complex and still imperfectly 
understood precipitating processes to produce higher quality estimates. We have responded to 
this by developing a high-resolution precipitation estimation algorithm dubbed “CCS” (Cloud 
Classification System) at UC Irvine. The CCS uses computer image processing and pattern 
recognition techniques to develop a patch-based cloud classification and rainfall estimation system 
based on co-registered passive microwave and infrared images from Low Earth-orbiting and 
Geostationary satellites. Unlike the region-based approach, which establishes only one Tb-R 
function for all clouds, this technique classifies various patches into different clusters and then 
searches the best-matched nonlinear Tb-R mapping function for each patch.  Therefore, CCS 
jumps out the deadlock of the assumption that colder cloud pixel must produce higher rain rates 
than warmer cloud pixel, which is not all-time-true but popularly used by some other statistical 
regression or histogram matching approaches. This design feature enables CCS to generate 
various rain rates at a given brightness temperature and variable rain/no-rain IR thresholds for 
different cloud patches, which overcomes the one-to-one mapping limitation of a single statistical 
Tb-R function for the full spectrum of cloud-rainfall conditions. In addition, the computational and 
modeling strengths of neural network enable CCS to cope with the nonlinearity of cloud-rainfall 
relationships by fusing multi-source data sets. We are operating this system with the goal to 
produce data at spatio-temporal resolution suitable for basin scale hydrological research and 
applications, along with the goal to provide high-quality precipitation analysis for GEWEX CEOP 
sites.  
 

1. INTRODUCTION 
 
Because satellites measure rainfall as an integral of space at a point in time, the sampling 
frequency (near 4 x 4 km2 and 30-minute sampling interval) of infrared imageries from 
geostationary satellites provides an attractive option for those applications where high sampling 
frequency is required. In the literature, several efforts have been made to calibrate a statistical 
relationship between cloud IR brightness temperatures and surface rain rate (R) observation either 
from the ground or space measurements. This statistical relationship, hereinafter referred to as Tb-
R, is then applied at the temporal resolution of IR data from geostationary satellites. According to 
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the types of fitting functions, the Tb-R relationships may be broken down further into (1) threshold-
based, (2) linear fitting, and (3) nonlinear fitting approaches. Other than curve fitting approaches, 
histogram-matching (HM) technique is also used to evaluate the relationship between the two 
datasets where a regressive line would not be meaningful (Adler et al. 2001). Todd et al. (2001), 
Huffman et al. (2001), and Kidd et al. (2003) applied HM technique to generate rainfall products. 
These techniques share one feature in common: the relationship between IR Tb and (microwave or 
radar-derived) rain rates is established over a certain region with monthly or pentad adjustment. 
We might call them region-based Tb-R mapping fashion. We argue that these techniques fail to 
represent the variation of cloud-precipitation relationships because they only statistically determine 
one single Tb-R function and then apply to whole study region without discrimination of the 
innumerous clouds. Although enjoying the benefits of simplicity and low computational cost, they 
provide only a climatologic calibration and may not respond adequately to hydrometeorological 
variations, e.g., diurnal variation. As a result, considerable temporal and spatial integration, e.g., 
daily 1.0o, is conducted to reduce the estimation error. 
 
The cloud-precipitation mechanism is determined by different dynamical and thermodynamical 
processes, which are highly time-dependent and space-variant. As can be seen from Figure 1, the 
Tb-R relationships can vary significantly from one cloud patch to another at small scale. Previous 
studies (Griffith et al. 1978; Woodley et al. 1980; Adler and Negri 1988; Xu et al. 1999) suggested 
that classification of cloud patches into a number of groups would improve discrimination of 
different precipitation-generating systems. 
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computational and modeling strengths of neural network may cope with the nonlinearity of cloud-
rainfall relationships by fusing multi-source data sets (Tapiador et al. 2002). 
 

2. METHODOLOGY  
 

This algorithm establishes different Tb-R relationships, calibrated by co-located cloud images and 
microwave or radar rainfall data, for every classified cloud group by implementing a sequence of 
four steps (Figure 2): (1) separating cloud images into distinctive cloud patches, (2) extracting 
cloud features including coldness, geometry, and texture, (3) clustering cloud patches into well-
organized subgroups, and (4) calibrating cloud-top temperature and rainfall (Tb-R) relationships for 
the classified cloud groups using microwave or gauge-corrected radar rainfall data. An automated 
network, SONO (Self-organizing Nonlinear Output; Hong et al. 2005a) model is developed to carry 
out the step 3-4 functions.  
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2.1 Segmentation of satellite infrared cloud images 
 
Segmentation of satellite IR imagery is a preprocessing step for cloud analyses such as cloud- 
feature extraction, cloud-type classification, and wind detection. The proposed segmentation 
method, Incremental Temperature Threshold (ITT; Hong et al. 2003), falls under the category of 
hybrid segmentation approaches because it combines the hierarchical thresholding and Seeded 
Region Growing (SRG; Adams and Bischof 1994). As a hybrid method, ITT retains the advantage 
of SRG—fast execution and robust segmentation and, meanwhile, eliminates manual selection of 
seeds through hierarchical thresholding. Examples of cloud segmentation using the ITT method 
are shown in Figure 3.  
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A cloud image is shown in Figure 3a and cloud-patch segmentation of this image using a fixed 
threshold (253K) is shown in Figure 3b. Note that even though the cloud image contains several 
convective cells, the single threshold cannot separate them effectively. Given the same IR image, 
ITT first locates the minimum temperature as seeds (illustrated by the cross marker), and then 
starts to iteratively expand each seed’s area one neighborhood size at a time until touching 
neighboring clouds or temperature threshold that delineates clouds from the clear sky. Along with 
the expanding process, new cloud patch with lower altitude might be identified.  
 
2.2. Extraction of cloud-patch features 
 
An empirical-statistical analysis was conducted to investigate different sets of feature combinations 
in terms of three criteria: precipitation relevance, classification impact, and computation efficiency, 
in the order of decreasing importance. Additionally, the inter-relationships (i.e., correlation and 
covariance) among the features help to determine the importance of the features in discriminating 
alternative clusters. The characteristics of cloud patches, relevant to precipitation, are grouped into 
three categories: coldness, geometry, and texture. The first category is generally associated with 
the geophysical variables—cloud brightness temperature; the second one is derived from the 
geometric properties of cloud patches; and the third category is the texture variation of cloud-
brightness temperature. Statistical analyses found that the first category is mostly relevant to the 
rainfall intensity in a manner of negative correlation and that the size in the second category is 
positively correlated to rainfall volume. Although the features in the third category are not 
necessarily directly related to rain rate or rainfall volume, they do improve the discrimination of 
cloud clusters. The fourth category is the geo-location (latitude and longitude) of center of the 
cloud patch and the averaged altitude of ground surface shadowed by the cloud patch. 

  
2.3 SONO: cloud patch classification and rainfall mapping 
 
An automated neural network suitable for cloud-patch based rainfall estimation, entitled Self-
Organizing Nonlinear Output (SONO) model, is developed to account for the high variability of 
cloud-rainfall processes at small scales (Hong et al. 2005a). The SONO model is a modification to 
the Self-Organizing Linear Output (SOLO) model, designed for efficient and effective estimation of 
network parameters and output  (Hsu et al. 2002). In this study, SONO executes cloud 
classification and Tb-R mapping by performing the two basic functions of a “switchboard” and an 
“approximator”. First, the SOFM (Self-Organizing Feature Map) functions as a “switchboard” to 
switch “on” or “off” the nodes in the nonlinear output layer, i.e., the SOFM classifies cloud patches 
into a number of clusters and determines to which node (cluster) in the nonlinear output layer it 
must be routed for approximation of the Tb-R relationship. The “approximator” in the nonlinear 
output layer calibrates a nonlinear Tb-R function for the cloud-patch cluster, which is turned “on” by 
SOFM. Therefore, SONO consists of a number of Tb-R functions, and each function addresses 
one cluster of clouds that contains similar features. 
 
In each classified cloud-patch group, the Tb-R pixel pairs are first redistributed using the Probability 
Matching Method (PMM; Atlas et al. 1990).  This method matches histograms of Tb and R 
observations such that the proportion of the R distribution above a given rain rate is equal to the 
proportion of the Tb distribution below the associated Tb threshold value. The redistributed pixels 
are fitted with a nonlinear exponential function for each patch group. Given classified patch group 
j, the Tb-R relationship is specified as: 

])(exp[ 5
4321

jvj
b

jjjj vTvvvR +⋅⋅+=                                                    (1) 
Where R is the rainfall rate (mm hr-1), Tb is the cloud top brightness temperature (K), and vj

1, vj
2, 

vj
3, vj

4, and vj
5 are parameters with respect to patch group j. The parameters of the Tb-R functions 
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in each patch group are calibrated using a large amount of GOES infrared images and their co-
registered microwave or radar rainfall. This SONO is an automated network system, state 
variables and model parameters of which can be recursively adjusted/re-calibrated whenever 
accumulation of new observations from ground or space is sufficient (e.g. pentad fashion) during 
later operation.  

 

3. MODEL TRAINING AND CASE STUDY 
 
Three data sets are used to conduct model initialization and case study. The brightness 
temperature images of IR channel (10.7um) are stored at the Climate Prediction Center (Janowiak 
et al. 2001), and the nationwide radar network—Weather Surveillance Radar-1988 Doppler (WSR-
88D)—is used as reference data in the model calibration and validation. In addition to the radar 
rainfall, low-orbital satellite rainfall data derived from the Tropical Rainfall Measuring Mission 
(TRMM) Microwave Imager (TMI) instrument are also used in the model adjustment and 
evaluation. 
 
Choosing the network size of the CCS is a tradeoff between efficiency and accuracy of model 
fitting; the decision is usually made through progressively increasing the classification network size 
until a stable fitting criterion is reached. In this study, the SOFM classification layer is determined 
as a 20 x 20 matrix (Figure 4a), which classifies cloud patches into 400 groups. The minimum 
(maximum) count of cloud-patch samples held by a classification unit is 51 (855), while the 
average count is 192. 
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Note that both the SOFM classification layer and nonlinear mapping layer consist of the same 
arrangement of units in a 2-D coordinate. Therefore, a matrix (20 x 20) of Tb-R relationships is 
determined according to Equation (1), and all the 400 curves are plotted on an Tb-R plane (Figure 
4b). Long and flat curves indicate cirrus clouds where cloud-top temperatures are usually cold but 
produce little or no rain. Steep curves represent convective clouds that are capable of producing 
significant rainfall. In particular, curves with short temperature range and steep slope are relevant 
to convective cloud in its early stage and often go largely unnoticed by many rainfall estimation 
techniques. Notably, this designed feature enables CCS to generate varied rain rates at a given 
brightness temperature for different cloud types, which overcomes the one-to-one mapping 
limitation of a single Tb-R function for the full spectrum of cloud-rainfall conditions. 
 
It is worth mentioning that this algorithm is capable of generating variable rain/no-rain IR 
thresholds (IRT) for different cloud groups. The appropriate IRT is derived for each cloud group by 
matching a small rain rate (i.e., 0.1 mm hr-1) according to the fitting function. The IRT varies from 
220K to 245K with respect to the 20 x 20 classified cloud groups, as shown in Figure 4c. Clearly, 
the large variation shown in Figures 4b-c cannot be well represented by a single Tb-R mapping 
relationship as shown in Figure 4d.  
 
During the evolution of a raining cloud, the Tb-R distribution varies significantly from the initial 
stage to the dissipated stage of the cloud patch. Figure 5 illustrates the evolution of a convective 
cloud patch from beginning (small-warm), pre-mature (midsize-cold), mature (maximum size-
coldest), dissipating (midsize-cold), and to disappearing life stages. Note that the corresponding 
Tb-R functions also change, in sequence for each life stage, respectively. This clearly shows CCS 
possesses temporal correspondence between cloud and precipitation at every life stage of the 
cloud patch, which region-based Tb-R approaches would not capture. 
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Hourly rainfall on 8-9 July 1999 were simulated over a relatively large area (25o-45oN; 100o-130oW) 
and then accumulated to daily rainfall for model evaluation. A comparison of CCS with PERSIANN 
results, after re-mapping at a daily 0.25ox 0.25o scale, as shown in Figure 6, indicates that 
PERSIANN estimates demonstrates lower spatial correlation than CCS.  
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ONCLUSION AND FUTURE WORK 

able product of precipitation at high spatial and temporal resolution would be invaluable for 
ology-related researches and applications. Within this decade, the deployment of Global 
ipitation Measurement constellation of low-altitude orbiting satellites will increase to 90% of 

global that will be sampled with a return interval of less than 3-hours. The use of this resource 
njunction with the existing suite of geostationary satellites is expected to result in significant 
ovements in scale and accuracy of precipitation estimates. We have responded to this by 
loping a new high-resolution precipitation estimation algorithm dubbed “CCS” (Cloud 
sification System) at UC Irvine. The CCS uses computer image processing and pattern 
gnition techniques to develop a patch-based cloud classification and rainfall estimation system 
d on co-registered passive microwave and infrared images from Low Earth-orbiting and 

stationary satellites.  

 the beginning of this analysis, it was anticipated that the relationship between cloud-top 
erature and surface rain rate varies significantly from cloud patch to cloud patch. Therefore, a 
all estimation model characterized by significant transience, heterogeneity, and variability is 
ed to associate rainfall with the extremely complex and still imperfectly understood 

ipitating processes to produce higher quality estimates. Unlike region-based approach, which 
rates only one Tb-R function for all clouds, this technique classifies varied patches into 
rent clusters and then searches the best-matched nonlinear Tb-R mapping function for each 
h. This designed feature enables CCS to generate various rain rates at a given brightness 
erature and variable rain/no-rain IR thresholds for different cloud patches, which overcomes 

one-to-one mapping limitation of a single statistical Tb-R function for the full spectrum of cloud-
all conditions. In addition, the computational and modeling strengths of neural network enable 
 to cope with the nonlinearity of cloud-rainfall relationships by fusing multi-source data sets. 

ently, the CCS operational system moves toward two directions: 1) incorporating more 
rate measurements from multi-spectral and multi-platform microwave-derived precipitation 
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estimates; and 2) enhancing the existing system by sequentially on-line updating the model 
network and parameters (long-term memory) in time and space accordingly. The computational 
strength of Neural Network enables us to build up a database of cloud type-rainfall mapping 
relationships, which are undergoing recursive (in space and time) data assimilation and system 
update, allowing for flexibility in the adjustment of the cloud-precipitation mapping relationships as 
new ground or space-based microwave/radar measurements become available. We are operating 
this system with the goal to produce data at spatio-temporal resolution suitable for basin scale 
hydrological research and applications, along with the goal to provide high-quality precipitation 
analysis for GEWEX CEOP sites.  
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