Des de la company En company de la company

The SSMI/SSMIS Global Hydrological Gridded Products

Daniel Vila

Divisão de Satélites e Sistemas Ambientais – Centro de Previsão do Tempo e Estudos Climaticos – DSA/CPTEC/INPE Cooperative Institute for Climate & Satellites - Earth System Science Interdisciplinary Center - University of Maryland - CICS/ESSIC/UMD

> Hydrology training workshop in conjunction with IPWG 11-15 Oct 2010 - University of Hamburg

CENTRO DE PREVISÃO DE TEMPO E ESTUDOS CLIMÁTICOS

OUTLINES

- > The extension of hydrological products into the SSMI/S era.
 - SSM/I SSMI/S: similarities and differences
 - The Simultaneous Conical Overpass (SCO) approach
 - Preliminary results

SSMI-based Monthly Hydrological Products

• Global monthly rainfall estimates (RR) and other hydrological products like integrated Cloud Liquid Water (CLW) and Total Precipitable Water (TPW) have been produced from 1987 to present using measurements from the Defense Meteorological Satellite Program (DMSP) series of Special Sensor Microwave Imager (SSM/I)

Special Sensor Microwave/Imager (SSM/I)

Channels	1,2	3	4,5	6,7
Central Frequency Pol. (GHz)	19.35	22.24	37.0	85.5
Radiometric Pol. (V/H) (*)	V,H	V	V,H	V, H
Thermal resolution (K)	0.8	0.8	0.6	1.1
Integrated FOV (Km)	70 x 45	60 x 40	38 x 3 0	16 x 14
Spatial sampling (Km)	25	25	25	12.5
Scan angle			102.4 °	
Sweep periodicity			1.9s	
Ground incidence			53.1°	
Swath width			1394 Km	
Antenna diameter			65 cm	
Weight			120 Kg	
Power			70 W	

SSMIS Instrument Aboard DMSP16

(Special Sensor Microwavelmager/Sounder)

Channel No.	Frequency (GHz) / Polarization	Resolution (km)	Scan positions	Channel Type	
1	50.3 V	37.5	60	Lower Atmosphere Sounder	
2	52.8 V	37.5	60	Lower Atmosphere Sounder	
3	53.956 V	37.5	60	Lower Atmosphere Sounder	
4	54.4 V	37.5	60	Lower Atmosphere Sounder	
5	55.5 V	37.5	60	Lower Atmosphere Sounder	
6	57.29 V	37.5	60	Lower Atmosphere Sounder	
7	59.4 V	37.5	60	Lower Atmosphere Sounder	
8	150.0 H	37.5	180	Imager	
9	183.31 H (7)	37.5	180	Imager	
10	183.31 H (3)	37.5	180	Imager	
11	183.31 H (1)	37.5	180	Imager	
12	19.35 H	25	90	Environmental	
13	19.35 V	25	90	Environmental	
14	22.235 V	25	90	Environmental	
15	37.0 H	25	90	Environmental	
16	37.0 V	25	90	Environmental	
17	91.655 V	12.5	180	Imager	
18	91.655 H	12.5	180	Imager	
19	62.283 H+V	75	30	Upper Atmosphere Sounder	
20	60.792 H+V	75	30	Upper Atmosphere Sounder	
21	60.792 H+V	75	30	Upper Atmosphere Sounder	
22	60.792 H+V	75	30	Upper Atmosphere Sounder	
23	60.792 H+V	75	30	Upper Atmosphere Sounder	
24	60.792 H+V	37.5	60	Lower Atmosphere Sounder	
Notes:					
nadir viewing angle of 45 deg		EIA of 53.2 deg			
orbit altitude = 833 km		arcs are 144 degrees			
rotation period = 1.9s		swath width = 1707 km			

SSMI/T/T2		SSML/S			
Req. (Gas) / R	hristian.	Footprint (km)	Req. (GHs) /)	Po lerisetion	Footprint (km.)
19.350	/H&V	43 x69	19 350	/8&V	73 z 47
22.235	/¥	40 x60	22 23 5	/ v	73 z 47
37.000	/H&V	28 x37	37 000	/88¥	4I x 3I
85.500	/ H & V	13 x 15	91.655	/ H & V	14 x 13 (imager)

Thickest lines denote GPCP calibrator.

Image by Eric Nelkin (SSAI), 23 October 2009, NASA/Goddard Space Flight Center, Greenbelt, MD.

-150

-200

SSMI-SSMIS Transition

A Simultaneous Conical Overpass (SCO) is defined as the data pair generated when two polar-orbiting satellites (SSM/I F15 and SSMI/S F16 cross the same area at similar local times (t < 2 minutes).

DMSP Equator-crossing times - Ascending Node

SSMI-SSMIS Transition

2-D histogram for SSMIS 91.6 GHz V T_B and SSMI 85.5 GHz T_B difference as a function of SSMI 85.5 GHz V T_B

- Develop empirical fits between SSM/I F15 and SSMI/S F16 during period of close overpass times (3/06 – 2/07)
 - All channels
 - Stratify via land/ocean; rain/no-rain
 - RADCAL correction applied to F15 8/06 and forward
- Improves
 - Rain/No-Rain threshold
 - Rain rate PDF's
 - Other products (e.g., TPW, CLW, etc.)

$$TA_{SSMI} = \alpha_{chan, sfctype, rain} + \beta_{chan, sfctype, rain} * TA_{SSMI/S}$$

Frequency (GHz)		IS	min (clarsly	
		α	ß	æ	ß
1935(V)		43056	1.01.54	-3.7588	1.0081
1935(H)		-0.1004	1.0000	-0.5628	0.9941
1935(V)		-25415	1.0116	-3.0527	1.0139
1935(H)		1 2867	1.0001	1.3982	1.0000
22.23S(Y)	ecean.	4.7092	1.0064	-5.6801	1.0069
22,235(7)	had	1.0261	0.9879	0.0261	0.9879
37D (V)		159657	0.9279	-2.5349	0.9950
370 (H)	ocean.	189355	0.9165	0.4925	0.9900
37D (V)		23171	0.9825	-8.1856	1.0206
370 (H)		16337	0.9875	1.0819	0.9905
91 655(7) - 85.5(7)		30.1409	0.8985	-9.1433	1.0463
91 655 (H) - 85.5 (H)	ocean.	30,8093	0.8947	-32688	1.0066
91 655 (7) - 85.5 (7)	<u>1</u> 2	29,9904	0.8980	1.0681	1.0090
91 655 (H) - 85.5 (H)		28.0057	0.9067	0.8296	1.0111

Rainfall retrieval using PMW Techniques

• Microwave energy can penetrate clouds, in particular, cirrus clouds, and its signal has a strong interaction with precipitation-size drops and ice particles.

• Below 20 GHz, emission by precipitation-size drops dominates and ice particles above the rain layer are nearly transparent. Above 60 GHz, ice scattering dominates and the radiometers cannot sense the rain drops below the freezing layer.

FERRARO ALGORITHM (1997)

FERRARO ALGORITHM (1997)

Scattering Index Computation

scattering materials: $T_v(22) > T_v(85)$

<mark>precipitation,</mark> dry snow, aged sea ice, glacial ice, deserts absorbing materials: T_v(22) < T_v(85)

clouds, melting snow, new sea ice, vegetation, wet soil

Oceanic:

SI85= (-174.4 + 0.715*TB19v + 2.439*TB22v - 0.00504*TB22v*TB22v) - TB85v

Land:

SI85= (451.9 - 0.44*TB19v - 1.775*TB22v + 0.00574*TB22v*TB22v) - TB85v

Estimation of the nonscattering contribution of the 85 GHz measurements If SI85 > 10 then Rain ~ log(SI85) (after screens for ice, deserts, etc using polarization checks)

SSMIS vs. SSMI:

For scattering materials, 91 GHz scatters a bit more than 85 GHz For absorbing materials, 91 GHz emits (absorbs) more than at 85 GHz

SSMI/S F16 -Uncorrected

SSMI/S F16 -Corrected

SSMI F15

SSMI/S F16 - Corrected

Validation results

Rainfall rates – Annual Distribution

F14/F15/ F16 2.00-Global Rain (mm/day) 1.80 1.60 -1.40 Year

Equator-Crossing Times (Local)

DMSP F13/SSMI

F17-F13 Comparisons

- Equator-Crossing Times ~1.5 hours apart.
- Ascending node close to the convection peak.
- No direct match-up between both satellites.
- It's known that F17 still have some solar intrusion problems...
- ... but F17 is closest satellite to the early morning constellation (see figure), so it's our best option for climate products generation (SSMI, GPCP)

Jan09_pr1_bias_f17 -f13

Jul09_pr1_bias_f17 -f13

INSTANTANEOUS RETRIEVALS: GPROF ALGORITHM

- Simulated radiometer footprints and calculated radiance indices of the algorithm's database are shown at right, while the observed footprint and radiance indices are at left.
- Observed radiance indices are compared to each set of simulated radiance indices in the database.
- Those simulations that are more radiatively consistent with the observations contribute strongly to the GPROF estimate of the parameters, while those simulations that are less consistent radiatively contribute much less.

INSTANTANEOUS RETRIEVALS: GPROF/TMI – GPROF/SSMIS

Summary and Conclusions

• The statistical analysis performed with this SCO dataset after applying the proposed scheme, shows a lower bias and high correlation between SSM/I and SSMI/S retrievals when compared with raw SSMI/S retrievals for all variables.

• The proposed correction scheme is not time dependent, as it is shown in the time series analysis. This fact is a key issue for using SSMI/S retrievals for continuing the 21-years SSM/I-based data set.

• Future research should be conducted in order to compare statistical properties of monthly retrievals among different satellites using a longer dataset and different retrieval algorithms.