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The Global Precipitation Mission

CORE SATELLITE

« Dual frequency radar CONSTELLATION SATELLITES
¢ Multifrequency radiometer
* Non-sun synchronous orbit
« 70 deg inclination

e ~400km altitude

« ~“4km horizontal resolution

* 250m vertical resolution

~8 satellites

Radiometer only

Rely on existing radiometers
Multifrequency radiometer

+« 3 houraveragerevisit ime
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MISSION: Provide enough sampling to reduce

MISSION: Understand the horizontal uncertainty in short-term rainfall
and vertical structure of rainfall and accumulations. Extend scientific and societal
its microphysical elements. Provide applications.

training for constellation radiometers
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Currently Available Radiometer Data

Radfnmeter Data Avarlabmty
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Differences in Sensor Characteristics

Sensors for GPM

Sensor | ChannelFrequency(GH) |incAng
TMI 10.7 19.4  21.3* 37 85.5 53.4°

AMSR-E 69 10.7 187 238 36.5 89 55.0°

SSM/I 19.4  22.22 37 85.5 53.1°

SSMIS 19.4 2223 37 91.7 150 183.3 53.1°

+1,3,7
WINDSAT 6.8 10.7¢ 18.7¢ 23.8 37¢ 49.9° -

aV-Pol only; P H-Polonly; ¢V, H,+/45¢2, L, R 55.3°



AMSR-E Calibration Differences

L1B — L2A

AMSR-E Calibration Differences (18.7 V)

AMSR-E Calibration Differences (36.5 H)
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SSM/I Calibration

Monthly Mean Rainfall (ocean only)
(Selected Region: 30S-30N, 0-360E)
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NOAA SDS Project

Create a Fundamental Climate Data Record (FCDR) of
SSM/I and SSMIS

Goal

* Generatea transparent and documented Fundamental
Climate Data Record (FCDR) of SSM/I and SSMIS
brightness temperatures from 1987 - Present.

* Develop/implement multiple approaches for
intercalibration and then identify and apply the best
approach in the stewardship code to produce FCDR.



SSMI(S) FCDR Philosophy

* Science Data Stewardship must be an open and

transparent process involving the broad science and user
communities

* After an initial development period, we envision Science
Data Stewardship to consist of a sustained level effort by

the community that leads to occasional reprocessing of
the data

* SDSis not a real time activity although some tools are
being developed to monitor instrument stability.
Because users will always press for faster release of

products, it is important to plan for this from the onset of
the activity.



SSMI(S) FCDR Approach

1. ReformatSSMI/SSMIS TDR files into NetCDF “Base files”. These files
contain all the original data and nothing is modified except to make orbit
granules, add ephemeris and reformatted time, and reformat to NetCDF.

2. Create a well documented software package (“Stewardship code”) that
ingests the Base files, applies corrections (i.e QC, cross-track bias, TA-TB,
geolocation, calibration) and outputs the final FCDR in NetCDF for use by
the broader community.

3. Expertusers can be given access to the Base files and the “stewardship
code”. This gives them access to the beta versions without confusing the
general users.

Stewardship Code

Tato C Track Inter-
Th FO35- Lk calibration

Bias

Correction



SSMI(S) FCDR Intercalibration

* Sensor data must be physically consistent

*

— Sensor still different due to differences in frequencies, view
angles, resolution, observation time etc.

— Geophysical retrieval algorithms must take into account sensor
differences in order to create TCDR (eg: precipitation, wind,
humidity, etc).

Investigate calibration differences using multiple
approaches [described later].

— Consistency/inconsistency between approaches will provide
insight into methods as well as estimate of the uncertainties.

Goal is to understand any differences and use sensor
information to select correct solution. If not possible, will

select one method and use others to describe uncertainty
in Version 1 of the FCDR.



Known issues/risks

* Inconsistency between Calibration Methods
— Using multiple approaches will help to identify problems and
estimate uncertainties.

— Ultimately stewardship must allow for future investigators to
look into discrepancies and develop new/improved
techniques/approaches.

* Geolocation Errors
— Difficulty in separating effects of spacecraft orientation from
other issues.
— Limitations in determining spacecraft attitude

* Other sensor Issues
— Warm versus cold end calibration, nonlinearities etc.

— Unknown error sources that can be difficult/impossible to
quantify/correct.



Xcal and other intercalibration
activities

XCAL is a working group of the NASA Precipitation
Measurement Missions (PMM) project whose goal is to
intercalibration available radiometers for GPM.

— Meets ~2-3 times per year

— Comprised of multiple institutions/groups who have developed
different techniques for intercalibration.

— Working group consists of experts in both engineering and
science application aspects of radiometers

— Responsible for developing intercalibration adjustments for
Level 1C Data (Intercalibrated TB dataset for GPM).

GSICS — Global Space-based Inter-Calibration System

— Effort is focused on operational weather satellites and funded
by operational agencies

— http://www.wmo.int/pages/prog/sat/GSICS/



* Caused by partial beam blockage or other

Cross Track Biases

(unknown?) issues
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Spacecraft ephemeris and pixel
geolocation

Many operational satellites such as SSM/I on
board the DMSP spacecraft use predicted
ephemeris.

Spacecraft ephemeris are recomputed using 2-
line element data and SGDP4 code.

Pixel geolocation depends on accurate spacecraft
ephemeris and pointing information (spacecraft
attitude and sensor alignment).

Retrieval algorithms are often sensitive to the EIA
or view angle of the sensor.



Predicted vs computed spacecraft

ephemeris
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Ascending/descending pixel
geolocation differences
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Ascending/descending pixel
geolocation differences
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Ascending/descending pixel
geolocation differences

Example of differences in coast line location
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Sun and Incidence Angles

Notes for presentation at
GPM Intercalibration Working Group
August 3, 2008

Steve Bilanow
Wyle Information Systems
SESDA Il contract support for the
Precipitation Processing System (PPS)



(km)

Altitude Sensitivity

Even a perfectly circular orbit has some altitude
variation due to Earth Oblateness. (Earth 23 km
flatter at poles.) Additional variation results
from orbit eccentricity.

tude

Alt

Altitude (km)

e.groughly circular
e.g eccentric, frozen

Altitude affects Earth Incidence
Angle due to Earth’s Curvature
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Roughly 0.1 degree per 10 km change.
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Solar Beta Angle

= Beta Angle, B : the Sun elevation above the orbit plane
(positive toward the positive-orbit-normal direction).

» Affects illumination and thermal environment.
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Solar Beta Angle History for Intercalibration Span

F13 Beta Angle over Xcal span
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TRMM V7 Correction and Angle Issues

Presentation material for GPM inter-calibration working group meeting, May
19, 2009

Sayak Biswas, Dr. Linwood Jones
UCF, CFRSL
Dr. Kaushik Gopalan
UMD, ESSIC
Steve Bilanow
Wyle, PPS



TMI Bias Table (post boost data)

0B

208 HH\\\\EL

-30 ¢ 7| Space Craft
-40 = ~ Aft-Structure
-50 - Shadowing

[ : [ [
10 20 30 40 50 60 70 80 90

Solar Beta Angle(deg)

Earth Time SincelEcIIi pse Stgrt(min)

" |
Exit e 0 05 1 1.5 9 .25 3

TB Bias (K)



Solar Beta Angle(deg)
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Time of Day Dependence

Time of Day Dependence (2006)
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Diurnal Impacts

Mean Rainfall Bias as a Function of Local Observing Time
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* |tis importantto properly account for these differences when comparing TBs from

different satellites

e Theintercalibrated brightness temperatures (i.e. FCDR) should retain these differences.




Window Channel Radiometer Record
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Monitoring TBs

SSM/I F15 RADCAL issue: beacon was switched on in 2006,
lead to severe interference

— Important to monitor satellites for calibration issues
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Intercalibration

Satellite providers deal with the absolute calibration of satellite
observations

Errorscan be large (1-2K)
Providers do not use same technique or standard so absolute cals differ

Projects such as NOAA SDS and NASA GPM need consistent estimates
from several satellites

Seek to intercalibrate the satellitesto within ~.1-.2K

Goalis to estimate adjustments to TBs for each channel so as to make
observations consistent with some calibration standard

Calibration standard choice not easy and might be arbitrary/political
Aim to make sensors physically consistent (not correct channel diffs, etc)

Intercalibration often takes the form of simple offsets, although TB
dependent adjustments may be more appropriate

How do we calculate TB-dependentadjustment? Need to use techniquesthat
cover a large portion of TB space

Need at least 2 points: low and high TB



1.

4.

Intercalibration techniques

Different satellites have different sampling characteristics, so
intercalibration has to use a common target

— Mayneed to account for Incidence angle, channel differences

The following is not an exhaustive list, but does encompass the techniques
used by XCal and for the CSU SDS project

Direct comparison of satellites being intercompared

- For polar orbiters, this takes the form of polar matchups

- Matchupsare available elsewhere if one of the satellitesis notin a non-Sun-
synchronousorbit (TRMM, GPM core)

Comparison of each satellite with a non-Sun synchronous satellite

Comparison with a fixed target

- Target could be an in situ observation related to TBs by a geophysical
retrieval

- Target could be a strictly homogeneous area (not many of these exist)
Calculation of some fixed reference point with known properties
—  Onlyexample of this is from Vicariouscalibration



1. Polar Matchups

* This technique allows direct comparison of two polar orbiting

satellites by finding instances where the paths of the satellites
intersect at the poles

— Note that a limited range of TBs may be observed at poles
* Thistechnigue has been primarily used in cases where the satellites
are very similar and so direct comparison is acceptable

— Themainissueis incidence angle dependence although channel
differences are also important

— Note that EIA is fixed across the scan for conical scanners (such as
SSM/I and SSMIS)

* Sometimes called Simultaneous Conical Overpass (SCO)

— EIA may not be stable (ie: not a conical scan; spacecraft attitude
issues), so sometimes use only nadir pixels

* Thisapproachsometimes called Simultaneous Nadir Overpass (SNO)



1. Polar Matchups

Animation shows ~30 minutes
of F13 and F14 swath

Overlaps at poles are
relatively common within 30
min window

— Such a window is probably OK,

but shorter windows have been
used

Method:

— Find matchups for each channel for the two satellites of interest
— Calculate mean difference between the TBS for each of the satellites
— This yields the calibration between the two sensors

If direct comparison was not possible (eg: SSMI 85GHz and
SSMIS 91GHz channels) then radiative transfer calculations
could be used to simulate and compare (see next technique)



2. Comparison with TRMM TMI

SSMI and TMI Ground tracks for
* Get the matchups between 5 Boyret e B0 R SO

sSMland ™ML "

— Obtain points where SSMI and :" '
TMI groundtracks cross within
30 minutes & 50km (exclude

duplicates within 60 seconds of
each other)

— Calculate1® average Brightness
Temperature (Tb) for each
sensor

— Include only clear sky: require
that SD(85GHz) < 5K el

* Matchups between (eF) SSM/I
and TMlare not directly
comparable due to EIA -

differences and slight channel W
differences k&\\
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Removal of sensor dependent
differences (CSU technique)

Use Elsaesser and Kummerow (2008) Optimal Estimation (OE) approach to retrieve
clear sky geophysical parameters (Wind, TPW, LWP) from TBs and SST (Reynolds)

— Technique finds optimal geo parameters given TBs based on inversion of a Radiative

Transfer (RT) model

Use OE to get Geophysical parametersfrom TMI TBs
— Usesame RT model to simulate idealized TMI TBs from geo parameters
— Use RT again to simulate SSMI TBs based on same geophysical parameters

Comparedifference between simulated TBs (SSMI,, .-TMI,,.,) with difference
between actual TBs (SSMI-TMI) to get calibration offsets

— Notelimited range of TBs for which this is valid

F13 TB Ocean Diff, 37H; Cal: 2.09

Green crosses show what SSM -
TMIshould be if IA was the only

difference

Blue circles show differences
due to |A plus other factors
(which we want to remove)

™

Raining portion —not used
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3. Comparison of retrievals with in situ

Buoy Locations

Concept: calculate wind from SSM/I using _ _
multiple wind algorithms and compare with | ¢ o e
matching hourly buoy wind speed ' °8 o
observations to get relative bias ) P B8
In this example, hourly buoy wind speed from
NOAA National Buoy Data Center and
TAO/TRITON buoys was obtained
— Used SSM/I data within %2 hour of buoy

observation time; made 1° average centered
on station location Buoy Temporal Coverage

— Excluded observations where 3-hrly wind speed R

S

Standard Deviation was not low

* Buoy measurements are made at heights of
3.5,4,50r 10m (most are at 4m); BUT: most
wind speed algorithms retrieve for 19.5m

— Assumed log wind profile to adjust observations
to 19.5m
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Wind algorithms

* Applied several different
approaches and
combinations of channels

(applied to SSMI and TMI):

focus three main types of
approaches today

— Optimal Estimation,
Empirical and Neural
Network

— Also included RSS
estimate of wind (u37)
from nearest gridbox to
buoy
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Wind Speed Bias — preliminary results

 Canuse this analysisto get multiple
realizations of WSB

— How do we convert this to Th
offsets?

* Algorithmskill varies: how to assign
valueto each algorithm?

* Algorithmsensitivity also varies.
Example:F14 in 2008
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Issues with this approach

* Howto convert WSB into TB

— Not enough information in wind speed to get back
to 7 (4) channels (could use multiple parameters)

* Thisis an area of active research



4. Vicarious Calibration

Technique relies on finding minimum TB
over ocean for cloud free, low humidity
days

Min TB for a specific
channel/polarization is different from
the min SST observed

— Plot shows TBs for given SSTs from
radiative transfer calcs

— Black line has no atmosphere; colors
have atmosphere with progressively
more humidity

The minimum TB is termed the Vicarious
Cold Calibration Point and is “fixed” for a
given channel

— Only works for some channels; min TB
can occur outside observed Earth SSTs
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Obtaining the Vicarious Cold
Calibration Point

Screen out all pixels with high humidity, land or cloud/rain/ice
Create histogram for each scan position for each channel

Restrict to lowest part of histogram and estimate VCC from some
statistical model fit to CDF

Use this to obtain VCC for each scan angle and over all scan angles

— Sampling can be anissue, so best to use lots of data to get better
defined VCC values
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Issues and extensions of Vic Cal

* U Michigan group (Prof. C. Ruff) that developed this
technique also have a Warm calibration technique
— Based on stable target at warm end (over the Amazon)

— Useful as that technique gives points in an area of the TB range
that is not well covered by other techniques

* Trends in humidity can affect VC

— VCC would work perfectly if there was no atmosphere (this is
why the fit to the CDF is used)

— Estimates are based on low humidity, so if that increases with
climate change it might effect VCC

* VCC point is not observed for some channels or sensors
— Eg: TMI has limited range and does not observe cold SSTs that
include the 19V
— Technique still works, but may be less reliable



How well do these techniques
compare?

Table shows calibration offsets for F13 vs F14 from Vicarious

Calibration, TMI comparison and Polar matchups (S. Yang,
NOAA/STAR)

— VCC and polar matchups did not attempt to account for EIA differences

— TMImatchup technique used OE to account for such differences but

known issues exist with the EIA values for SSMI (these versions used
an adjusted nominal EIA)

VCC and Polar are in excellent agreement
Less agreement with TMI, but more work needed here

Method 19\! 19H 22\! 37\! 37H 35V 85H




Using intercalibrations
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Intercalibration Issues
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Summary of key issues

A number of specific calibration-related issues need to be addressed
before sensors can be effectively intercalibrated (cross-track biases,
geolocation and pointing errors etc.)

Although conical-scanning radiometers designed to have same view angle
across the scan, differences of as little as 0.1 degrees can impact
calibration as well as geophysical retrievals, particularly over oceans.

Calibration needs to be ongoing as sensors change/degrade, orbits drift,
and new sensors are launched

As demonstrated by biases in TMI due to heating of the antenna (Jones et
al.), calibration errors often change over time (as with spacecraft heating)
and can mimic real physical signals (i.e. diurnal cycle).

Using multiple approaches to intercalibration helps to confirm results,
identify issues, and determine residual errors.

As a result, calibration should be considered an ongoing, continually
evolving endeavor that involves collaboration by multiple groups with
expertise in both the engineering and scientific aspects of the sensors.



