

Application of MET for the Verification of the NWP Cloud and Precipitation Products using A-Train Satellite Observations

Paul A. Kucera, Courtney Weeks, Barbara Brown, and Randy Bullock

National Center for Atmospheric Research/Research Applications Laboratory Boulder, Colorado USA

> IPWG5 11-15 October 2010

Outline

- Introduction
- MET Overview
- Motivation
- Example Comparisons
- Future Work

Introduction

- We recently started a project to demonstrate the application of the NCAR Model Evaluation Tools (MET) for forecast evaluation using A-train (currently focused on CloudSat) observations
- The goal of the project is to create a common toolkit for integrating satellite observations in a framework that permits meaningful comparisons with numerical model output
 - Evaluate forecast products and features to determine when and why forecasts are sometimes deficient
- Develop tools that can easily extend to precipitation
 validation of satellite products

MET Overview

- MET was originally developed to support the Developmental Testbed Center (DTC) at NCAR and is a community resource:
 - It is a stand alone software package that is associated with the Weather Research and Forecasting (WRF) system.
 - Available at:
 - http://www.dtcenter.org/met/users/downloads/

MET Overview

- MET is designed to evaluate a variety of datasets (e.g., rain gauge, radar, satellite, NWP products). The following statistical tools are available:
 - Grid-to-point (e.g., NWP or satellite precipitation products to rain gauge)
 - Grid-to-grid validation (e.g., NWP precipitation to satellite or radar precipitation products)
 - Advanced spatial validation techniques
 - Compare precipitation "features" in gridded fields

Motivation

- Most evaluation studies rely on the use of standard measures to quantify the quality of forecasts or observed fields:
 - Mean error
 - Bias
 - Mean absolute error
 - Root mean squared error

Motivation

- Traditional statistics are often not able to account for spatial or temporal errors:
 - Displacement in time and/or space
 - Location
 - Intensity
 - Orientation errors
- There has been recent studies to develop spatial evaluation techniques

Motivation

- There are several spatial methods that are currently being developed:
 - Neighborhood
 - Scale separation
 - Field deformation
 - Features-based
- We have been developing a feature-based method called MODE

Method for Object-based Diagnostic Evaluation (MODE) MODE results NCAR

24-h precip forecast

Slightly displaced (centroid distance) Too intense (median intensity) A little large (ratio of areas)

In contrast:

 Λ Λ

9

Example CloudSat/NWP Comparisons

We performed our comparison using the RUC (http://ruc.noaa.gov/) cloud top height and derived reflectivity products at a spatial resolution of 20 km over the continental US
Performed a seasonal correlation study for different cloud types

Example: 06 September 2007

Cloud Top Height (km)

11

NCAR

Standard Statistics

Cloud Height Distributions along the track

Standard Statistics

- Forecast mean and standard deviation with 95% confidence intervals
 - Different weighting methods

Standard Statistics

 Correlation (pearson, kendell, spearman), multiplicative bias, mean error, mean squared error, root mean squared error, bias corrected mean squared error and mean absolute error with 95% confidence intervals (boot strap method)

Object based Verification

- MODE is being modified to spatially and temporally search model fields in the vertical to find matched objects:
 - parallel to track, cross track, and temporally
- Next slides show examples of search routines being implemented in MODE

Object-based Comparison: Along_{NCAR} Track

Lon

16

Lat

Object-based Comparison: Parallel to Track (Westward)

17

NCAR

Object-based Comparison: Parallel to Track (Eastward)

18

NCAR

Object-based Comparison: Cross_{NCAR} Track

CloudSat Observations

Lon

Lat

-10

20

-30

Object-based Comparison: -1 hour (0700 UTC)

Lon

20

Object-based Comparison: +1 NCAR hour (0900 UTC)

21

Spatial/Seasonal Comparison

- Spatial Correlation along track for different CloudSat cloud types and for different seasons
- Combine with other datasets (e.g., MODIS) to better understand spatial variability off track

Future Work

- Future updates to MET will include:
 - Finish implementing read and remap tools for A-Train products into MET
 - Add object-based verification in the vertical plane to MODE
 - Add methods for verifying through in time
 - Improve methods for verifying cloud and precipitation properties
 - Implement METViewer Database and Display system

Future Work

- A-train comparisons
 - Reflectivity profiles, cloud top height, cloud base, precipitation, cloud type, cloud phase, etc.
- Currently developing a database of case studies for comparison
 - Tropical storms, multilayer clouds, complex terrain
- The tool is easily extended to other satellite datasets such HRPP, TRMM, GPM, etc.

Acknowledgments

- The study is supported by NASA Project: NNX09AN79G
- We used Quickbeam developed at CSU for some of the initial analysis:
 - Haynes, J.M., R.T. Marchand, Z. Luo, A. Bodas-Salcedo, and G.L. Stephens, 2007: A multi-purpose radar simulation package: QuickBeam. Bull. Amer. Meteor. Soc., 88, 1723-1727.

Thank You