Inter-comparison of precipitation products over Europe: experiences, results and recommendations

Dr Chris Kidd School of Geography, Earth and Environmental Sciences, The University of Birmingham

Overview

Introduction

European IPWG validation basics

Experiences

- Day-to-day running of a validation site
- Data availability, ingest, processing, checking Results
- Summary of results
- Radar performance; MPE performance

Recommendations

- Current issues
- Recommendations...

IPWG European validation

- Radar used as 'ground truth'
- Composite of radars over UK, France, Germany, Belgium and Netherlands
- Nominal 5 km resolution
- Equal-area polar-stereographic projection
- Data and product ingest
- Near real-time
- Statistical and graphical output (SGI/Unix; f77/netpbm)
- Currently developing the BALTEX region data set...

Processing setup

Perceived requirements:

- Daily inter-comparison \rightarrow 00Z-24Z (also -06, -09, -12Z)
- **0.25 degree resolution** \rightarrow 25 km resolution
- **Real-time** \rightarrow near real-time dependent upon product
- Validation data \rightarrow radar data (gauge being added later)
- Automatic \rightarrow quasi-automatic (not 'operational')
- Many products → limited number of products

Processing Schedule

Processing system

Initial setup: Setting of dates Cleaning out old/decayed data

Acquiring data: Searching existing data Listing missing data Creation of .netrc file ftp data sources **Remapping of data:** 5 km PSG projection (equel area)

Results generation: Statistical analysis Graphical output

Web pages: Generate HTML files Copy over to server

Processing checks

Processing checks

IPWG-EU Results

- Similar to other regions: seasonal dependence of satellite techniques (poorer in winter)
- Models tend to overestimate rain area/extent
- Satellite products underestimate rain area/extent
- Significant day-to-day variations: rainfall patterns, extent, intensity affect statistics
- Surface contamination noticeable in winter

Results: Snow problems

Results: rain extent

IPWG European Validation

00-24Z correlation statistics

date	NOGAPS	3B40RT	3B41RT	3B42RT	AMSU	IPWG European Validation													
071129	-	<u>0.129</u>	<u>0.179</u>	<u>0.196</u>	-	00-24Z ratio statistics													
071128	<u>0.644</u>	<u>0.065</u>	<u>0.191</u>	<u>0.132</u>	<u>0.353</u>														
071127	<u>0.412</u>	<u>-0.081</u>	<u>0.185</u>	<u>-0.077</u>	<u>0.133</u>														
071126	<u>0.394</u>	<u>0.369</u>	<u>-0.056</u>	<u>0.222</u>	<u>0.150</u>	pr	roduct too di	ry	~right			product too wet							
071125	<u>0.593</u>	<u>0.023</u>	<u>0.290</u>	<u>0.095</u>	<u>0.077</u>	0.000 0	0.200 0.500	0.800	0.900 0.9	950 1.05	0 1.100	1.200 1.5	500 1.800	2.000					
071124	<u>0.564</u>	<u>0.085</u>	<u>0.230</u>	<u>0.328</u>	<u>0.268</u>														
071123	<u>0.454</u>	<u>0.111</u>	<u>0.129</u>	<u>0.247</u>	<u>0.497</u>	date	NOGAPS	3B40RT	3B41RT	3B42RT	AMSU	CMORPH	CPCMW	HYDRO-E	PMIR	FDA	NRLGEO	NRLPMW	
071122	<u>0.436</u>	<u>0.409</u>	<u>0.333</u>	<u>0.419</u>	<u>0.483</u>	0/1129	-	0.824	0.348	0.619	-	-	-	-	-		-	-	
071121	<u>0.480</u>	0.250	<u>-0.008</u>	<u>0.201</u>	<u>0.228</u>	071128	1.206	4.229	2.189	3.536	<u>0.454</u>	<u>0.598</u>	<u>0.606</u>	<u>U.663</u>	-	-	<u>1.922</u>	2.277	
071120	<u>0.453</u>	0.218	<u>-0.034</u>	0.020	0.296	0/112/	<u>1.641</u>	8.646	0.737	<u>6.059</u>	0.540	2.962	<u>3.727</u>	<u>0.388</u>	-	0.022	2.502	3.440	
071119	-	<u>-0.010</u>	<u>-0.126</u>	<u>-0.025</u>	<u>-0.175</u>	071126	0.782	0.593	0.170	0.256	0.098	0.055	0.112	0.033	-99.000	0.179	0.127	0.234	
071118	-	0.274	<u>0.550</u>	0.603	<u>-0.104</u>	071125	<u>0.947</u>	<u>U.551</u>	0.201	<u>0.309</u>	<u>0.330</u>	<u>0.126</u>	0.221	0.535	0.053	0.246	<u>0.337</u>	<u>0.460</u>	
071117	<u>0.773</u>	<u>0.298</u>	<u>0.619</u>	<u>0.576</u>	<u>-0.046</u>	071124	1.210	0.873	<u>1.353</u>	1.015	<u>0.381</u>	0.231	0.252	0.402	<u>0.074</u>	0.085	0.335	<u>0.401</u>	
071116	0.088	<u>-0.005</u>	<u>-0.009</u>	<u>0.038</u>	-0.019	071123	0.905	<u>0.511</u>	0.989	0.842	0.384	<u>0.170</u>	0.217	0.515	0.192	0.077	<u>0.265</u>	<u>0.316</u>	
071115	<u>0.199</u>	<u>0.138</u>	<u>-0.030</u>	0.063	0.023	071122	0.977	0.770	0.418	0.650	0.488	0.404	0.404	0.402	0.144	0.358	0.007	0.404	
071114	<u>0.349</u>	0.235	<u>0.330</u>	<u>0.313</u>	0.028	071121	0.920	0.004	0.399	<u>0.699</u>	0.345	0.200	0.200	0.000	0.030	0.111	0.321	0.491	
071113	<u>0.459</u>	<u>0.105</u>	<u>0.241</u>	<u>0.198</u>	<u>-0.010</u>	071120	0.998	0.600	1.039	1.198	<u>0.345</u>	0.207	0.280	0.601	0.050	0.025	0.308	0.207	
071112	<u>0.377</u>	0.286	<u>0.168</u>	0.302	<u>0.181</u>	071119	-	0.520	1.491	0.000	4.131	0.227	0.230	0.546	0.009	0.000	0.340	0.330	
071111	<u>0.582</u>	<u>0.124</u>	<u>0.435</u>	<u>0.344</u>	<u>0.278</u>	071110	-	0.039	1.040	0.042	<u>3.211</u> 2.020	0.475	0.200	0.769	0.007	0.052	0.225	0.405	
071110	<u>0.718</u>	0.305	<u>0.479</u>	<u>0.486</u>	0.208	071116	1.660	4.050	0.624	0.945	20.054	0.027	0.390	0.150	0.001	0.252	0.016	1.024	
071109	<u>0.536</u>	<u>0.157</u>	0.233	<u>0.239</u>	0.128	071115	0.020	2.504	0.034	1 100	15 720	0.206	0.225	0.020	0.025	0.455	0.200	0.442	
						071114	1.056	0.455	0.460	0.206	2.574	0.124	0.400	0.196	0.025	0.020	0.170	0.255	
						071114	1.030	0.400	1.036	0.590	3.185	0.134	0.109	0.425	0.145	0.030	0.170	0.235	
						071112	0.747	0.230	1 101	0.511	0.306	0.123	0.190	0.425	0.225	0.115	0.216	0.200	

Performance of radar data

Radar data:

- European composite different radar systems, difference calibration strategies, different QC.
- Nominally 5km 15-minute data product; available within ~ 1 hour; 2002-present
- Known errors include range effects and anaprop (including shipping!)

Gauge data:

- 09-09Z data (dated at end of period)
- ~6000 daily gauges with mean 10km spacing
- available 1 month in arrears

Radar & gauge data

- a bad day...

Radar vs Gauge correlations

Radar is calibrated using gauge data – even so, cc's rarely exceed 0.9

Radar vs Gauge correlations – by rain extent

Correlations (and other statistics) are dependent upon rain extent

High-temporal resolution study

EUMETSAT Multi-spectral Precipitation Estimate

- Nominal 15 minute estimates
- Utilises multi-spectral capabilities of SEVIRI sensor
- Remapped to 0.25 degree resolution

AMSR L2 Rain product (for comparison)

• Nominal 25km (ave'd 5km) instantaneous estimates

AMSR instantaneous: very variable

PEHRPP Geneva, 3-5 December 2007

AMSR vs radar (instantaneous)

3 months of data: 20 August 2007 to 20 November 2007

Vis/IR MPE vs radar: 15 minute

PEHRPP Geneva, 3-5 December 2007

Vis/IR MPE vs radar: 30 minute

PEHRPP Geneva, 3-5 December 2007

Vis/IR MPE vs radar: 1 hour

PEHRPP Geneva, 3-5 December 2007

Vis/IR MPE vs radar: 3 hour

PEHRPP Geneva, 3-5 December 2007

Vis/IR MPE vs radar: 6 hour

PEHRPP Geneva, 3-5 December 2007

Vis/IR MPE vs radar: 12 hour

PEHRPP Geneva, 3-5 December 2007

Vis/IR MPE vs radar: 24 hour

Statistical Performance

20070924 0250 L2-Rain AMSR-E.sm9

Performance can be improved just by smoothing the data!

Issues I

Standardisation of data sets – Why?

- Easier/better processing (& fewer errors)
- More coherent long-term data sets

Problems:

- Grid box vs grid point
- Instantaneous vs accumulation (i.e. ±1.5 hours or 00-03)
- Data resolutions (temporal & spatial)
- Data units (storage resolution vs retrieval resolution)
- Formats (I*2; I*4; R*4) (& units: mmh⁻¹;mmd⁻¹; kgd⁻¹)
- Filename and date/time conventions (end, start, period)
- W-E (180°E/0°E & E-W) and N-S (or S-N) layout

Issues II

Statistical results are dependent upon the rainfall:

- intensity, extent and patterns
- temporal resolution
- spatial resolution

All these are inter-related and pose a multi-dimensional problem that cannot currently be adequately resolved

Recommendations

To establish guidelines for satellite precipitation data sets: we need to be forward thinking and establish common criteria that can and will be used to promote long-term data sets

Investigate statistical tests that are more relevant to the data sets we are dealing with, and that be applied over a range of spatial and temporal scales

To promote near real-time high resolution (subdaily, <0.25 degree) precipitation inter-comparisons alongside those of the current IPWG comparisons: these should include combined & component products