



8th *IPWG* & 5th IWSSM Joint Workshop Bologna, 3-7 October, 2016.

# Absolute performance of drop size distribution fittings applied to 2DVD measurements from **GPM Ground Validation campaigns** E. Adirosi<sup>1</sup>, E. Volpi<sup>2</sup>, F. Lombardo<sup>2</sup>, and L. Baldini<sup>1</sup>

<sup>1</sup>Institute of Atmospheric Sciences and Climate, CNR, elisa.adirosi@artov.isac.cnr.it <sup>2</sup>Dipartimento di Ingegneria, Università degli Studi Roma Tre, elena.volpi@uniroma3.it



## **Motivation**

Modelling raindrop size distribution (DSD) is fundamental to develop reliable precipitation remote sensing products.

- Gamma distribution is the most widely used but other 2-parameter distributions have been proposed.
- At what extent assumptions of Gamma and other models are supported by disdrometer measurements ?

# **Objectives**

- Gamma, lognormal, and Weibull distributions parameter) are (2 considered
- > Their absolute statistical performance in representing DSDs in nature is evaluated.
- > To provide some clues on the conditions under which a model is more **appropriate** to represent natural DSDs.

## **Methods**

### 1. DSD definitions

#### a) Disdrometer measured

Product of the probability density function (pdf) of

**2. Statistical inference of** f(D) and  $f_{v}(D)$ 

Gamma, lognormal, and Weibull distributions are fitted to

## 3. Model testing

The Kolmogorov-Smirnov (KS) test is used: a model assumption is accepted if

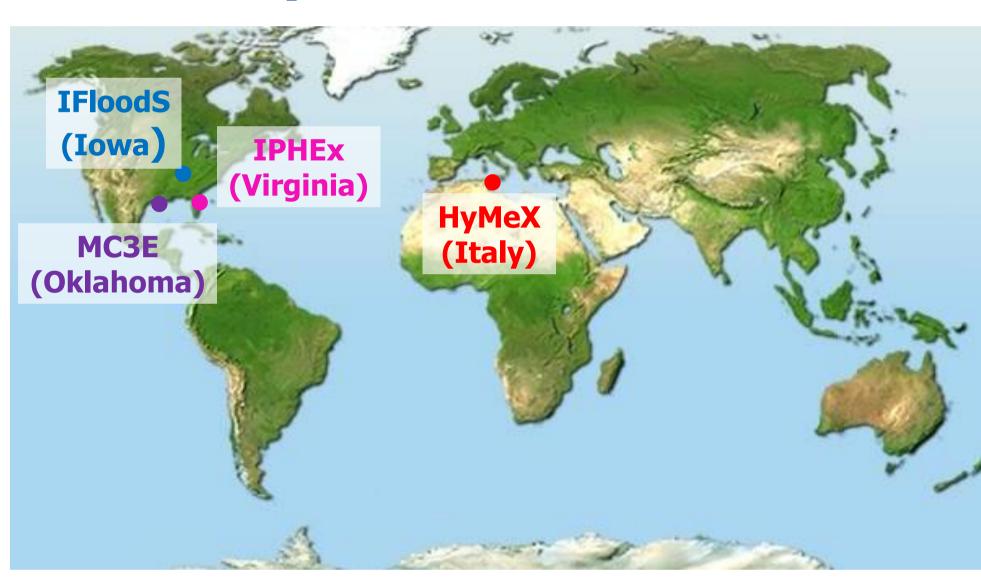
the 2DVD measured drop size spectra by the Maximum  $D_M < \Delta_M(\alpha)$ drop diameters at ground f(D) by the number M of Likelihood Method (ML): where  $\Delta_M(\alpha)$  is a critical reference value computed drops collected at ground through Monte Carlo simulations and a) Standard definition a)  $\mathcal{L}(\beta,\gamma) = \prod_{i=1}^{n} [p(D_i;\beta,\gamma)]$ Product of concentration of raindrops in a volume of air  $n_c$  $D_M = max_i \left| F(D_i) - \hat{F}(D_i) \right|$ b)  $\mathcal{L}(\beta,\gamma) = \prod_{i=1}^{i=1} [p(D_i;\beta,\gamma)]^{N_i}$ by the probability distribution of drop size in the For  $f_{v}(D)$  fitting: unit volume of air  $f_{v}(D)$  ( $V = A \Delta t v(D)$ ) where  $\Delta t$  is the  $\hat{F}_{V}(D_{i}) = \frac{1}{\sum_{z=1}^{M} 1/v(D_{z})} \sum_{i=1}^{l} \frac{1}{v(D_{i})}$ sampling time interval, A is the measuring area and v(D)is the terminal fall velocity of drops) :  $N(D) = n_c f_v(D)$ where  $\beta$  and  $\gamma$  are the scale and shape parameters and N<sub>i</sub> f(D) and  $f_{\nu}(D)$  are transformations of one another, For f(D) fitting: is given by the inverse of the volume of air (V). if drop terminal velocity – size relation v(D) is known. CDF is computed with the Weibull plotting position formula

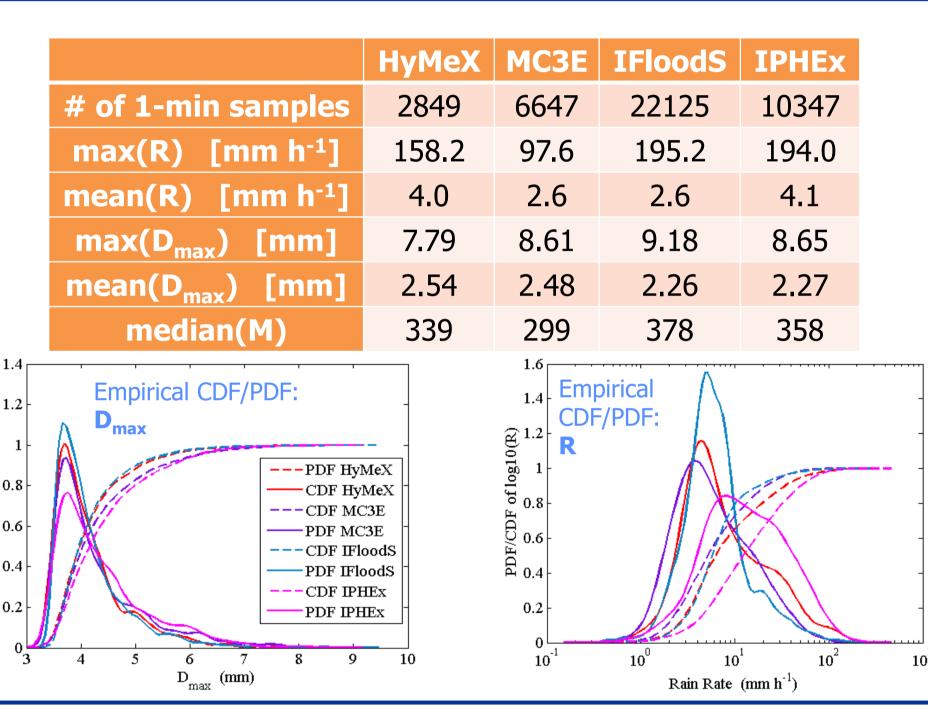
| 2DVD                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------|
| Contraction of the second s |
|                                                                                                                 |
|                                                                                                                 |

2D videodisdrometer The (2DVD) optical ĪS an that measures disdrometer the equivolumetric diameter and fall velocity of each single falls hydrometeor that through its virtual measuring area.

Thousands of 1-minute drop spectra were collected by NASA 2DVDs in four pre-launch field campaigns of Ground Validation program of NASA/JAXA Global Precipitation Measurement (GPM) mission

## **Experimental data**





## Results

### <u>**Rejection rate from KS test (all datasets)**</u>

|           | Fitting of $f(D)$ |       |         |       |  |           | Fitting of $f_v(D)$ |       |         |       |  |
|-----------|-------------------|-------|---------|-------|--|-----------|---------------------|-------|---------|-------|--|
|           | HyMeX             | MC3E  | IFloodS | IPHEx |  |           | HyMeX               | MC3E  | IFloodS | IPHEx |  |
| gamma     | 69.0%             | 66.2% | 71.8%   | 67.0% |  | gamma     | 77.3%               | 73.9% | 83.7%   | 76.7% |  |
| lognormal | 69.8%             | 69.6% | 80.0%   | 73.5% |  | lognormal | 81.3%               | 78.9% | 88.9%   | 82.3% |  |
| Weibull   | 81.6%             | 78.4% | 79.5%   | 78.0% |  | Weibull   | 85.5%               | 82.2% | 85.9%   | 82.3% |  |

### Success rate (all datasets)

Percentage of samples that have passed the KS test and best fitted by a model (distribution with maximum log-likelihood value is the one that performs best). Completed ML is shown because of negligible differences with truncated ML.

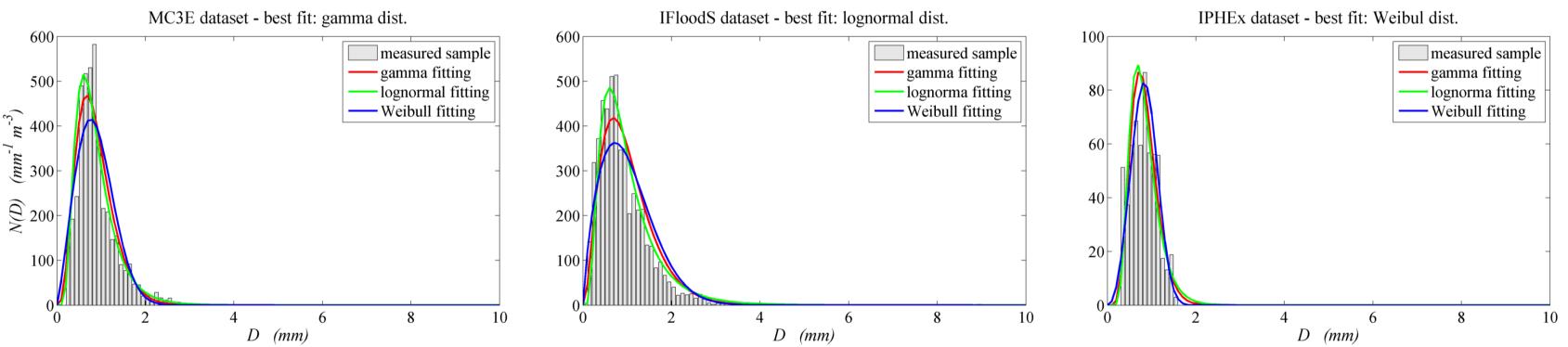
|           | Fitting of $f(D)$ |       |         |       |  |           | Fitting of $f_v(D)$ |       |         |       |  |
|-----------|-------------------|-------|---------|-------|--|-----------|---------------------|-------|---------|-------|--|
|           | HyMeX             | MC3E  | IFloodS | IPHEx |  |           | HyMeX               | MC3E  | IFloodS | IPHEx |  |
| gamma     | 22.1%             | 22.0% | 21.0%   | 22.8% |  | gamma     | 15.8%               | 16.7% | 11.5%   | 16.0% |  |
| lognormal | 14.3%             | 15.1% | 8.1%    | 10.7% |  | lognormal | 10.7%               | 12.7% | 5.3%    | 8.0%  |  |
| Weibull   | 9.9%              | 11.6% | 12.2%   | 13.8% |  | Weibull   | 7.3%                | 8.6%  | 8.6%    | 11.1% |  |
| none      | 53.6%             | 51.3% | 58.8%   | 52.6% |  | none      | 66.2%               | 62.0% | 74.6%   | 64.9% |  |

✓ For  $f_{\nu}(D)$  fitting, the gamma distribution is the best ...

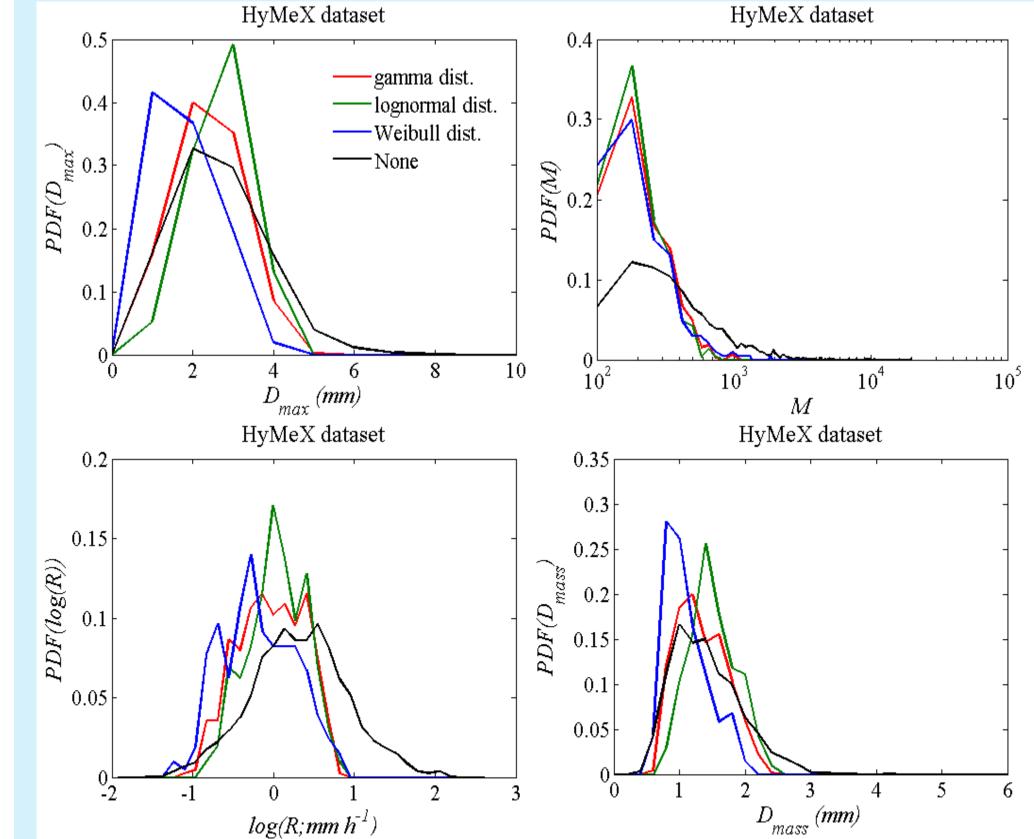
 $\checkmark$  but there is a number of samples that are best fitted by a heavy-tailed distribution (i.e. lognormal distribution).

## **Percentage of samples that cannot be represented**

## **Example of measured 1-min. sample along with the three fitted distributions**



## **Conditions leading a model to overcome the others**



- $\checkmark D_{max}$ , R, and  $D_{mass}$ , shown a dependence on the selected best model:
  - The lognormal distribution (heavy-tailed) represents better samples with high  $D_{max}$ R, and D<sub>mass</sub>;
  - the opposite is valid for the Weibull distribution (a lighttailed distribution).
- $\checkmark$  The number of drops in 1 minute (M) does not affect the selection of the best model
- For large *M*, none of the model

#### <u>represented by any of the three models (all datasets)</u>

 $\checkmark$  In  $f_{\nu}(D)$  fitting, for ~65% of the drop spectra the KS test rejects all the selected models. ✓ This high rejection rate car

| In $f_v(D)$ fitting, for ~65% |                 | Fitting of $f_v(D)$ |       |         |       |  |
|-------------------------------|-----------------|---------------------|-------|---------|-------|--|
| of the drop spectra the KS    |                 | HyMeX               | MC3E  | IFloodS | IPHEx |  |
| test rejects all the selected | M < 200         | 39.6%               | 42.0% | 52.0%   | 39.5% |  |
| models.                       | 200 ≤ M < 500   | 61.4%               | 59.9% | 69.1%   | 56.1% |  |
| This high rejection rate can  | 500 ≤ M < 1000  | 89.8%               | 85.8% | 91.0%   | 83.7% |  |
| be justified by the large     | 1000 ≤ M < 2500 | 98.0%               | 98.6% | 99.0%   | 98.2% |  |
| sample size (M).              | M > 2500        | 100%                | 100%  | 100%    | 100%  |  |

is adequate to fit the data The same happens also for smaller *M* in a significant number of cases

More in: Adirosi, E., Baldini, L., Lombardo, F., Russo, F., Napolitano, F., Volpi, E., Tokay, A. (2015). Comparison of different fittings of drop spectra for rainfall retrievals. Advances in Water Resources, 83, 55-67.

Adirosi, E., Lombardo, F., Volpi, E, Baldini, L., (2016). Raindrop size distribution: Fitting performance of common theoretical models, Advances in Water Resources, 96, 290-305,.

