Merging Gauge Observations and Satellite Estimates of Daily Precipitation over China

A.-Y. Xiong¹⁾, P. Xie²⁾, J.-Y. Liang¹⁾, Y.Shen¹⁾, M.Chen²⁾, R.J. Joyce²⁾, J.E. Janowiak³⁾, and P.A. Arkin³⁾

1) CMA: 2) NOAA / CPC: 3) UMD / ESSIC

OBJECTIVE

To develop a prototype algorithm to define high-resolution analysis of daily precipitation over land by combining gauge observations and satellite estimates

DOMAIN

0.25°lat/lon over China

PERIOD

May - September, 2007

■ INPUT DATA

Gauge Data

Gridded analysis of daily precipitation defined by interpolating gauge observations from over 2.400 stations over China

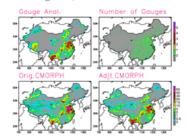
Satellite Data

High-resolution precipitation estimates generated by the CPC MORPHing technique (CMORPH, Joyce et al. 2004) Precipitation estimates of 8 km/30-min resolution regridded into 0.25° lat/lon / daily

BASIC STRATEGY

- First Step --- Removing Satellite Bias
 - Assuming gauge data is unbiased
 - · Removing bias in the satellite estimates through comparison against the gauge data
- Second Step --- Combining Gauge Data and Bias-Corrected Satellite Estimates
 - · Combination through OI
 - Bias-corrected satellite estimates as first guess
 - Gauge data used to improve the first guess over regions with gauge coverage

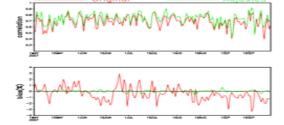
■ BIAS CORRECTION THROUGH PDF MATCHING


Principal

Matching the PDF of the CMORPH against that of the gauge to define and remove the bias, assuming PDF of the gauge analysis represents that of the truth

Implementation

Collecting co-located pairs of gauge and CMORPH over grid boxes within a spatial window centering at the target grid box and for a time period ending at the target dates. Define PDF for the gauge and CMORPH, respectively.


■ SAMPLE RESULTS OF BIAS CORRECTION for August 2, 2007

- → Under-/over-estimates in the original CMORPH over southern/northern China is corrected in the adjusted CMORPH
- CROSS-VALIDATION RESULTS
 - Combined Time / Space Domain

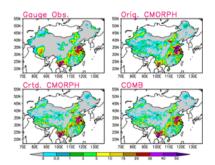
CMORPH	Bias (%)	Correlation
Original	-9.7%	0.706
Adjusted	-0.0%	0.785

Time Series

→ Bias in the CMORPH is removed successfully and the PDF of the bias-corrected CMORPH close to that of the gauge data

COMBING GAGUE DATA WITH THE BIAS-CORRECTED CMORPH THOUGH THE OI

First Guess: Bias-Corrected CMORPH


Observations: Gauge Data

Final analysis is the same as the bias-corrected CMORPH over gauge sparse areas Final analysis is the combination of the bias-

corrected CMORPH and the gauge data

over areas with gauge

■ SAMPLE OI MERGED ANALYSIS For August 2, 2007

→ Precipitation distribution pattern looks better than the individual inputs.

SUMMARY

- A prototype algorithm is developed to define daily precipitation analysis on a 0.25°lat/lon grid over land by merging gauge observations and CMORPH satellite estimates
- Merged analysis presents improved quality of precipitation fields compared to the inputs
- More work is underway to implement the algorithm for global applications