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Hydrology Application Team (AT) 
Background

• Support the AWG by providing recommended, 
demonstrated, and validated algorithms for 
processing GOES_R observations into user-
required products which satisfy requirements.

• Each Application Team will:
• Review candidate algorithms and identify 

algorithm deficiencies;
• Establish priorities and suggest solutions to 

resolve deficiencies;
• Formulate, oversee, and participate in 

algorithm intercomparisons;
• Recommend algorithms for GOES-R.

• The selected algorithms will then be 
demonstrated and documented for delivery to the 
System Prime via the GOES-R Program Office.
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Background / Objective

Objective
• Select algorithms that will form the basis of the Hydrology EDR’s in the GOES-R Ground System:

• Rainfall rate retrieval;
• Nowcasts of reflectances and brightness temperatures, which will be processed by the rainfall 

retrieval algorithm to form the basis for the Rainfall Potential and Probability of Rainfall EDR’s.

Objective
• Select algorithms that will form the basis of the Hydrology EDR’s in the GOES-R Ground System:

• Rainfall rate retrieval;
• Nowcasts of reflectances and brightness temperatures, which will be processed by the rainfall 

retrieval algorithm to form the basis for the Rainfall Potential and Probability of Rainfall EDR’s.

DISCLAIMER: The contents of this poster are solely the opinions of the author and do not constitute a statement of 
policy, decision, or position on behalf of the GOES-R Program Office, NOAA, or the U.S. Government.

DISCLAIMER: The contents of this poster are solely the opinions of the author and do not constitute a statement of 
policy, decision, or position on behalf of the GOES-R Program Office, NOAA, or the U.S. Government.

References
Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—a radar-based methodology.  J. Atmos. Ocean. Tech., 10, 785-797.
Joyce, R. J., J. J. Janowiak, P. A. Arkin, and P. Xie, 2004a:  CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution.  J. Hydrometeor., 5, 487-503. 
-----,-----,-----, and -----, 2004b: The combination of a passive microwave based satellite rainfall estimation algorithm with an IR based algorithm.  Preprints, 13th Conf. on Satellite Meteorology and Oceanography, Norfolk, VA, Amer. Meteor. Soc., 

CD-ROM, P4.4.
Kuligowski, R. J., 2002: A self-calibrating GOES rainfall algorithm for short-term rainfall estimates.  J. Hydrometeor., 3, 112-130.
Scofield, R. A., R. J. Kuligowski, and J. C. Davenport, 2004: The use of the Hydro-Nowcaster for Mesoscale Convective Systems and the Tropical Rainfall Nowcaster (TRaN) for landfalling tropical systems.  Preprints, Symposium on Planning, 

Nowcasting, and Forecasting in the Urban Zone, Seattle, WA Amer. Meteor. Soc., CD-ROM, 1.4.
Sorooshian, S., K. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall.  Bull. Amer. Meteor. Soc., 81, 2035-2046.
Turk, F. J., E. E. Ebert, H. J. Oh, B.-J. Sohn, V. Levizzani, E. A. Smith, and R. Ferraro, 2003:  Validation of an Operational Global Precipitation Analysis at Short Time Scales.  Preprints, 3rd Conf. on Artificial Intelligence, Long Beach, CA, Amer. 

Meteor. Soc, CD-ROM, JP1.2.
Turner, B. J., I. Zawadzki, and U. German, 2004: Predictability of precipitation from continental radar images.  Part III: Operational nowcasting implementation (MAPLE).  J. Appl. Meteor., 43, 231-248. 

References
Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm IdentificatiDixon, M., and G. Wiener, 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and on, Tracking, Analysis, and NowcastingNowcasting——a radara radar--based methodology.  based methodology.  J. Atmos. Ocean. TechJ. Atmos. Ocean. Tech., ., 1010, 785, 785--797.797.
Joyce, R. J., J. J. Janowiak, P. A. Arkin, and P. Xie, 2004a:  CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution.  J. Hydrometeor., 5, 487-503. 
-----,-----,-----, and -----, 2004b: The combination of a passive microwave based satellite rainfall estimation algorithm with an IR based algorithm.  Preprints, 13th Conf. on Satellite Meteorology and Oceanography, Norfolk, VA, Amer. Meteor. Soc., 

CD-ROM, P4.4.
Kuligowski, R. J., 2002: A self-calibrating GOES rainfall algorithm for short-term rainfall estimates.  J. Hydrometeor., 3, 112-130.
Scofield, R. A., R. J. Kuligowski, and J. C. Davenport, 2004: The use of the Hydro-Nowcaster for Mesoscale Convective Systems and the Tropical Rainfall Nowcaster (TRaN) for landfalling tropical systems.  Preprints, Symposium on Planning, 

Nowcasting, and Forecasting in the Urban Zone, Seattle, WA Amer. Meteor. Soc., CD-ROM, 1.4.
Sorooshian, S., K. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall.  Bull. Amer. Meteor. Soc., 81, 2035-2046.
Turk, F. J., E. E. Ebert, H. J. Oh, B.-J. Sohn, V. Levizzani, E. A. Smith, and R. Ferraro, 2003:  Validation of an Operational Global Precipitation Analysis at Short Time Scales.  Preprints, 3rd Conf. on Artificial Intelligence, Long Beach, CA, Amer. 

Meteor. Soc, CD-ROM, JP1.2.
Turner, B. J., I. Zawadzki, and U. German, 2004: Predictability of precipitation from continental radar images.  Part III: Operational nowcasting implementation (MAPLE).  J. Appl. Meteor., 43, 231-248. 

Candidate Algorithms and Validation Data Sets

Candidate QPE Algorithms 
• QMORPH (Joyce et al. 2004a)—extrapolates the most recent MW rain rates forward in time using

IR-derived motion vectors.
• CPC-IRFREQ (Joyce et al. 2004b)—matches the cumulative distributions of IR brightness 

temperatures with MW rainfall rates at 8-km resolution to fill in gaps in MW imagery
• CMORPHIR—hybrid of QMORPH and CPC-IRFREQ that chooses one or the other based on 

proximity in space to MW data (closer favors QMORPH; farther away favors CPC-IRFREQ)
• NRL-Blended (Turk et al. 2003)—matches the cumulative distributions of IR brightness 

temperatures with MW rain rates at the MW footprint resolution.
• PERSIANN (Sorooshian et al. 2000)—uses artificial neural networks to match radiance values and 

spatial textures with MW rain rates.
• SCaMPR (Kuligowski 2002)—uses discriminant analysis and regression to relate radiance values 

to MW rain rates.
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Candidate Nowcasting Algorithms 
• Hydro-Nowcaster (HN; Scofield et al. 2004) computes displacement vectors via correlation 

matching; applies statistically-optimized growth / decay parameters
• Also a variant (HNsd) that rescales nowcasts to preserve the variance of the initial observations.

• K-Means (Lakshmanan et al. 2003)—uses hierarchical K-means clustering to identify features and 
motion vectors at multiple scales; simple growth / decay based on temperature changes.

• Thunderstorm Initiation, Tracking, and Nowcasting (TITAN; Dixon and Wiener 1993)—identifies 
contiguous cloud features and weighted centroids and tracks / extrapolates motion. 
• Also a variant (TITANgd) that extrapolates growth / decay with time.

• McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation (MAPLE; Turner et 
al. 2004)—uses a variational scheme for echo tracking, wavelet filters to estimate predictability at 
each scale, and semi-Lagrangian advection.
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Proxy and Ground Validation Data
• METEOSAT Second Generation (MSG) Spinning Enhanced Visible and InfraRed Imager 

(SEVIRI) data were used as ABI proxy channels
• Rainfall round validation data include:

• ~16,000 daily rain gauges over the SEVIRI full disk  obtained from CPC;
• ~1,125 daily gauges and ~65 hourly gauges from the British Atmospheric Data Center (BADC) MIDAS data;
• ~12 10-min gauges on floating buoys from the Pilot Research Moored Array in the Atlantic (PIRATA).

• Nowcast validation used the corresponding  SEVIRI data as ground truth.
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Methodology and Sample Results
Candidate Algorithm Evaluation

• Algorithm developers used SEVIRI data from 1-5 January, April, July, and October 2005 to adapt 
their algorithms for ABI capabilities.

• SEVIRI data from the 6th through the 9th of each month were used to create independent estimates 
for evaluation by the Hydrology AT.

• The Hydrology AT evaluated the algorithms against the corresponding gauge (rain rate) or SEVIRI 
(nowcasts) data over selected regions to reduce data volume.
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Nowcasts
• The MAPLE algorithm performed best overall, followed by K-Means and TITANgd.
• However, the final selection has not yet been made because licensing issues with several candidate 

algorithms are still being resolved.
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Rain Rate
• The CMORPHIR algorithm performed best overall, followed by QMORPH and SCaMPR.
• However, the developers elected not to participate in operational implementation, so SCaMPR will 

be used in the demonstration GOES-R Ground System.
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Figure 1.  Binary scores: (a) probability of detection; (b) false alarm ratio; and (c) Heidke Skill Score as a function of 
observed 24-h CPC gauge rainfall accumulation.
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Figure 3. Heidke Skill Score as a function of nowcast lead time for IR window (10.8-µm) brightness temperatures below 
(a) 240 K; (b) 220 K; and (c) 210 K.
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Table 1.  Rainfall estimates sampled onto a 2-km grid versus (a) 24-h CPC gauges; (b) 1-h MIDAS gauges; (c) 10-min 
PIRATA gauges.  Statistics are Root Mean Squared Error (RMSE), volume bias ratio, and correlation coefficient (CC).
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PIRATA gauges.  Statistics are Root Mean Squared Error (RMSE), volume bias ratio, and correlation coefficient (CC).
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Figure 2.  Area bias ratio as a function of nowcast lead time for IR window (10.8-µm) temperatures below (a) 240 K; (b) 
220 K; and (c) 210 K.
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Conclusions


