

GPM/DPR Product Version 07

Japan Aerospace Exploration Agency (JAXA) Earth Observation Research Center (EORC)

History GPM/DPR Product

AXA OPPEr Print Manuary

- GPM/DPR Level 1 algorithm (JAXA)
 - V05 product released in May 2017.
 - V07A product released in December 2021.
- DPR Level 2 and 3 algorithm (Joint Japan-U.S.)
 - V06A product released in Oct. 2018.
 - V07A product released in December 2021.
- DPR Spectral Latent Heating (SLH) algorithm (Japan-U.S.)
 - V06A product released in Oct. 2018, and V06B product released in Jul. 2020.
 - V07A product released in December 2021.

DPR 3D observation image

Major updates of DPR algorithm (1/3)

- Scan pattern of KaPR has been changed since May 2018.
 - https://www.eorc.jaxa.jp/en/news/2020/nw200604.html
 - The change has been made from the observation at 17:13UTC on May 21, 2018 (orbit number 24021).
- The GPM/DPR product version 7 is the first product responding to the KaPR scan pattern change.
 Color in Figures: DPR L2 surface precipitation rate a) KuPR

Major updates of DPR algorithm (2/3)

Major updates of DPR algorithm (3/3)

P5

- [PRE] (Kanemaru, Masaki & Kubota)
 - New rain/no-rain classification
 - Improvement sidelobe clutter rejection
- [CSF] (Awaka, Chandra & Le)
 - 🕷 (new) flagHail

🌸 **[SLV]** (seto)

- Improvement of R-Dm relationship
- Fixed ε in vertical -> variable in vertical
- Add soil-moisture effect on σ0

Precipitation rate over land estimated by single frequency algorithm increases (approximately 20%).

Common file structure before and after the scan change

Several minor modification in Level 1 algorithm

Update on the DSD database

GPM/DPR L2 Algorithm Theoretical Basis Document (ATBD): https://www.eorc.jaxa.jp/GPM/doc/algorithm/ATBD_DPR_V07A.pdf

Improvement of detection of shallow precipitation systems The method is more pronounced at mid and higher latitudes

Spectral Latent Heating (SLH) Algorithm

- V04: Applying TRMM/PR V7 SLH algorithm to GPM/KuPR (only TRMM domain)
- V05: Extratropical module newly added
- V06: Input the improved KuPR data
- V07: Revision of tropical and extratropical module, and Highland module newly added (only LH)

Products

- L2 (SLP): SLH orbit data
- L3 (SLG): SLH orbit gridded data (0.5 degree)
- L3 (SLM): monthly gridded data (0.5 degree)

Takayabu and Tao, 2020: Latent heating retrievals from satellite observations. https://doi.org/10.1007/978-3-030-35798-6_22

Algorithm Theoretical Basis Document (ATBD) https://www.eorc.jaxa.jp/GPM/doc/algorithm/ATB D_DPR_V07A.pdf

Appendix : Major improvement in DPR-L2/L3

DPR L2 algorithm flow

Figure 3.1-1 DPR algorithm flow

(K. Kanemaru) Improvement of precip. detection with 3-d information

⁽Provided by Dr. Kanemaru, NICT)

- To improve detection of low-level storms, precipitation detection of the DPR algorithm in V07 was developed with 3d-information of precipitation echoes.
- At mid latitudes, the new method increases frequency against the V06 products.

¹⁰Major changes in V7 of DPR L2 **PRE** module (T. Masaki , T. Kubota & K. Kanemaru)

- Introduce a new method for the rain/no-rain judgement.
 - <u>Improvement of clutter rejection method</u> before rain/no-rain judgement.
- Update adjustment factor which corrects Zm and sigma zero.
- Change code for new AutoSnow format
- Some minor updates.
 - Add a new flag for mirror image etc.

By improving the clutter removal routine, false precipitation caused by clutter are reduced. 19/09/04 orbit# 31343 KuPR vertical cross section (17.0 deg.) 10

(K. Kanemaru)

¹Major changes in V7 of DPR L2 **CSF** module

What's new in CSF V7

- flagHail is introduced as STD output (Le & Chandra)
- Type counts have increased because of 3D rain/no-rain decision by Dr. Kanemaru.
 - Le, M. and V. Chandrasekar, 2021: Graupel and hail identification algorithm for the Dual-Frequency Precipitation Radar (DPR) on the GPM core satellite. *J. Meteor. Soc. Japan*, 99, 49-65. <u>https://doi.org/10.2151/jmsj.2021-003</u>

J. Awaka)

Changes of DSD/Solver module from V06 to V07

of $\log_{10} \varepsilon$

Ave

of $\log_{10} \varepsilon$

Std.

Revision of $R-D_m$ relation $(R=\mathcal{E}^r p D_m^q)$

Conv. (V06) *p*=1.370, *q*=5.420, *r*=4.258 Strat. (V06) *p*=0.401, *q*=6.131, *r*=4.622

Conv. (V07) p=0.392, q=6.131, r=4.815Strat. (V07) p=0.392, q=6.131, r=4.815*In V07, the coefficients and the definition of ε is same for convective and stratiform

The vertical profile estimation of ε in dual-frequency algorithm

(V06) ε is vertically constant and depend on the storm top height.

(V07) ε is vertically variable and depend on the altitude.

Revision of DSD database (used for single-frequency)

stratiform

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 ./log1@ps_5deg.v20210705_0006.dat 07 C

convective

(S. Seto)

Correction of PIA considering soil moisture effect (single-frequency algorithms, over land only)

See the next slide \rightarrow

Soil moisture effect

(a)

 $\Delta\sigma_e^0$

-3

Fig. 1 The anomaly of σ^0 (KuPR) from its average at no-rain pixels.

- Over land, σ^0 measured near rain area is higher than the average of σ^0 at no-rain pixels (Fig. 1).
- This phenomena was found for TRMM/PR (Seto and Iguchi, 2007), and is called soil moisture effect. It is also seen for KuPR and KaPR.
- In the version 07 of DPR product (single-frequency algorithms, over land), soil moisture effect is considered and PIA by SRT is corrected. The offset of PIA depends on area, incidence angle and the first estimates of R (Fig. 2). This correction increases the final estimate of *R* by about 18% in KuPR (Fig. 3).

Experimental product: precipRateEsurface2

Surf precip estimate based on an <u>a priori low-level precip profiles</u>

precipRateEsurface (R1), precipRateEsurface2 (R2)

Incidence-angle differences in precipRateEsurface

PR v.8 & KuPR 06A 1998/1-2021/8

R_{AII}: precip at 1-49 bins,
 R_{NN}: precip at Near Nadir 21-23, 27-29 bins

ITE760, Dual, 2yr

All

Ocean

Land

R1 [mm d⁻¹]

2.24

2.43

1.62

2.58

1.70

6.0

4.7

-15.8

-14.2

-11.0

-11.0

Validation results

2014/7	rain [mm/month]						
35N-35S	DPR	06A	07X_20210312	07X_20210415	07X_20210709		
	Ku	06A	07X_20210312	07X_20210415	07X_20210709		
	Ка	06A	07X_20210312	07X_20210415	07X_20210709		
	PR	06A	N/A	N/A	N/A		
rain @ eSurf							
Land+Ocean	DPRMS	97.03	93.32	86.77	98.17		
	DPRHS	70.41	72.12	70.28	71.47		
	DPRNS (or DPRFS)	88.93	84.71	79.50	88.4		
	KuMS	86.03	82.27	78.31	85.85		
	KuNS (or KuFS)	83.29	79.08	75.18	82.17		
	KaMS	69.70	68.77	66.83	68.20		
	KaHS	70.93	70.40	68.68	69.85		
	KaFS	-9999.00	-9999.00	-9999.00	-99999.00		
	PRMS	82.09	-9999.00	-9999.00	-9999.00		
	PRNS (or PRFS)	80.04	-9999.00	-9999.00	-9999.00		
Ocean	DPRMS	105.17	100.51	93.79	105.92		
	DPRHS	78.97	77.55	75.83	77.25		
	DPRNS (or DPRFS)	97.41	90.45	85.09	94.75		
	KuMS	93.15	83.38	80.09	88.00		
	KuNS (or KuFS)	91.25	81.71	78.10	85.6		
	KaMS	77.27	73.53	71.62	73.18		
	KaHS	79.12	75.48	73.86	75.25		
	KaFS	-9999.00	-99999.00	-9999.00	-9999.00		
	PRMS	90.14	-9999.00	-9999.00	-9999.00		
	PRNS (or PRFS)	88.64	-9999.00	-9999.00	-9999.00		
Land	DPRMS	66.33	65.81	60.21	68.8		
	DPRHS	40.30	51.03	49.03	49.4		
	DPRNS (or DPRFS)	58.89	62.62	58.22	64.6		
	KuMS	59.34	72.21	66.90	72.80		
	KuNS (or KuFS)	55.30	65.88	61.63	66.6		
	KaMS	42.78	49.95	48.15	48.8		
	KaHS	42.03	50,41	48.60	49.0		
	KaFS	-9999.00	-9999.00	-9999.00	-9999.00		
	PRMS	54.38	-9999.00	-9999 00	-999900		
	PRNS (or PRES)	51 28	-99999.00	-99999.00	-9999 00		

precipRateESurface (July 2014)

Over ocean: (vs V06A)

-Decrease by about 5% (Single freq algorithm)

-Increase by about 1% (Dual freq algorithm: DPRMS)

Ratio= (V7X - 06A) / 06A * 100 [%]

3

	ratio [%]	(07X - 06A)/06A					
	DPR	06A	07X_20210312	07X_20210415	07X_20210709		
	Ku	06A	07X_20210312	07X_20210415	07X_20210709		
	Ka	06A	07X_20210312	07X_20210415	07X_20210709		
	PR	06A	N/A	N/A	N/A		
rain @ eSurf		0					
Land+Ocean	DPRMS	0%	-3.8%	-10.6%	1.2%		
	DPRHS	0%	2.4%	-0.2%	1.5%		
	DPRNS (or DPRFS)	0%	-4.7%	-10.6%	-0.5%		
	KuMS	0%	-4.4%	-9.0%	-0.2%		
	KuNS (or KuFS)	0%	-5.1%	-9.7%	-1.3%		
	KaMS	0%	-1.3%	-4.1%	-2.2%		
	KaHS	0%	-0.7%	-3.2%	-1.5%		
	KaFS	0%	N/A	N/A	N/A		
	PRMS	0%	N/A	N/A	N/A		
	PRNS (or PRFS)	0%	N/A	N/A	N/A		
Ocean	DPRMS	0%	-4.4%	-10.8%	0.7%		
	DPRHS	0%	-1.8%	-4.0%	-2.2%		
	DPRNS (or DPRFS)	0%	-7.1%	-12.6%	-2.7%		
	KuMS	0%	-10.5%	-14.0%	-5.5%		
	KuNS (or KuFS)	0%	-10.5%	-14.4%	-6.2%		
	KaMS	0%	-4.8%	-7.3%	-5.3%		
	KaHS	0%	-4.6%	-6.6%	-4.9%		
	KaFS	0%	N/A	N/A	N/A		
	PRMS	0%	N/A	N/A	N/A		
	PRNS (or PRFS)	0%	N/A	N/A	N/A		
Land	DPRMS	0%	-0.8%	-9.2%	3.8%		
	DPRHS	0%	26.6%	21.7%	22.8%		
	DPRNS (or DPRFS)	0%	6.3%	-1.1%	9.8%		
	KuMS	0%	21.7%	12.8%	22.7%		
	KuNS (or KuFS)	0%	19.1%	11.4%	20.5%		
	KaMS	0%	16.7%	12.5%	14.2%		
	KaHS	0%	20.0%	15.6%	16.6%		
	KaFS	0%	N/A	N/A	N/A		
	PRMS	0%	N/A	N/A	N/A		
	PRNS (or PRFS)	0%	N/A	N/A	N/A		

Over land: (vs V06A)

-Increase by about 14~23% (Single freq algorithm) -Increase by about 4% (Dual freq algorithm: DPRMS)

DPR-related papers

- DPR Calibration
 - Masaki et al. (2020, *TGRS*), <u>https://doi.org/10.1109/TGRS.2020.3039978</u>
- PRE
 - Kubota et al. (2016, *JTECH*), <u>https://doi.org/10.1175/JTECH-D-15-0202.1</u>
- VER
 - Kubota et al. (2020, *JTECH*), <u>https://doi.org/10.1175/JTECH-D-20-0041.1</u>
- CSF
 - Awaka et al. (2016, JTECH) <u>https://doi.org/10.1175/JTECH-D-16-0016.1</u>
 - Awaka et al. (2021, JMSJ) <u>https://doi.org/10.2151/jmsj.2021-061</u>
- SRT
 - Meneghini et al. (2015, JTECH) <u>https://doi.org/10.1175/JTECH-D-15-0044.1</u>
 - Meneghini et al. (2021, JMSJ) <u>https://doi.org/10.2151/jmsj.2021-010</u>
- DSD/Solver
 - Seto et al. (2021, JMSJ), <u>https://doi.org/10.2151/jmsj.2021-011</u>
 - Seto et al. (2021) was awarded as "JMSJ Editor's Highlight" (Jan. 2021).