<u>A310-05</u> Methane Flux Estimation from Point Sources using GOSAT Target Observation: Detection Limit and Improvements with Next Generation Instruments

December 13, 2017

Akihiko KUZE, Hiroshi Suto, Kei Shiomi, Fumie Kataoka, Yutaka Kondo, Andre Butz, and David Crisp

CH₄ Flux estimation by GOSAT

(1) Anthropogenic emission area of CH₄ is generally smaller than CO₂ and type of source can be categorized but emission amount has large uncertainty

(2) GOSAT since 2009

- Frequent: once or twice per 3-day of re-visit cycle
- Long term: almost 9 years
- Uncertainty 13 ppb (0.7 %)
- Larger uncertainty with topography

(3) TANSO-FTS with an agile pointing system

- Covering entire point source horizontally and plume vertically, but large (10.5 km)
- Can target pair of emission point and background (reference)

(4) No satellite data on wind speed and direction

Targeting Point CH₄ Sources with an Agile Pointing System

AFRC (desert)

Los Angeles Basin

- High clear sky ratio
- Located between GOSAT paths 36 and 37

GOSAT TANSO-FTS Level 1 Radiance Spectra V201.202

Level 2 retrieved column-averaged dry air mole fractions of CO_2 and CH_4

RemoteC product by SRON and DLR Except for Pasadena (RemoteC by JAXA)

Aliso Canyon	Largest Gas Leak (decrease with time) Start observation since Nov. 2015 Paired with Simi Valley (reference)	Complicated topography and wind direction	Simi Valley (close reference, basin) Aliso Canyon 1 (Leak Point inside) Aliso Canyon 2 (Flat but LP outside) Burbank (air port)
Chino	Cattle feed lot (constant emission with time) Assuming constant emission Measured wind speed and direction data within IFOV are available Simpler wind field	Enhancement is close to GOSAT uncertainty of 13 ppb	AFRC (far away reference desert) JPL Pasadena (reference) Chino (Emission point, airport inside)

Dec. 2017, AGU 2017, New Orleans

Flux Estimation using Reference XCH₄ and WRF Wind Speed

Wind speed

Is Weather Research and Forecasting Model (WRF) accurate?

Larger Fluctuation in weaker wind Measured data at Chino Airport https://www.wunderground.com/

Emission t/hour

 $= \triangle XCH_4(ppb)^*_{0.495t*3600s*}V(m/s)$ /(distance between source and edge)

 $\Delta XCH_{A} = XCH_{A}s - XCH_{A}ref$

Errors in UT

$$\Delta XCH_4(UT) = XCH_4s(UT) - XCH_4ref(UT)$$

Errors in inflow can be reduced by normalizing with XCO₂

$$\Delta \frac{XCH_4}{XCO_2} = \frac{XCH_4s}{XCO_2s} - \frac{XCH_4ref}{XCO_2ref}$$

Decentered point source within GOSAT footprint

Dec. 2017. AGU 2017. New Orleans

	Aliso Canyon	Chino
Enhancement from	Large enough	Close to
background		detection limit
Upper Troposphere	Close reference	Far (AFRC)
		closer
		(Pasadena)
Inflow	Close reference	Far (AFRC)
CO ₂ Emission source inside IFOV	Lower in North	High
Source Location and Wind	Near Edge,	Mostly West
direction	Unstable	
Wind speed	No airport data, not	Measured data
	uniform	at Chino Airport

CH₄ Gas Leak and its Decrease with Time at Aliso Canyon

How to screen the data: background, normalize, and wind direction

2h average

6.1 ± 2.0m/s

Raw Level 2 data

Screening 1
Background-Subtract
using Simi Valley
Enhancement of 30 ppb >
uncertainty of 13ppb

/

Screening 2 (normalized) with XCO₂ for urban Contaminated Inflow

Assuming CH₄/CO₂ ratio is the same, can be minimized.

<u>Screening 3</u> Filter out East –South –North West using WRF wind direction at leak point Dec. 2017, AGU 2017, New Orleans

Thompson et al. GRL (2016)

5

flatter

Calculated Flux using WRF at Chino Center

Data selection: wind speed between 2 and 5m/s and wind direction between 180 and 270 deg.

Dec. 2017, AGU 2017, New Orleans

Emission t/hour

 $= \triangle XCH_4(ppb)^*_{0.495t^*3600 \text{ s}^*}V(m/s)_{/5000 \text{ m}}$

=(XCH₄(Chino)-XCH4₄ (Ref)) *0.495 t*3600 s* WRFWRF V(m/s) @ city center/5000 m

AFRC is far away and not an ideal reference. Inflow in Pasadena is also contaminated. CO₂ emission within Chino IFOV. XCO₂ at AFRC is low. Normalized with XCO₂ does not work well.

Future Plans: Next Generation Instruments

Combination of staring and coverage

Survey entire earth's surface Selecting Proper reference Staring

- 1 km resolution will enhance dCH₄
- Image can detect plume and has closer reference

Conclusions

<Demonstrated with GOSAT>

- Frequent, long-term target observations together with background reference can detect CH₄ enhancement from local point emission source.
- · Fluctuating satellite data needs proper screening.
- Wind speed is the largest uncertainty.
- GOSAT can monitor emission change with time. Flux estimation has large uncertainty.

<Can be improved with GOSAT>

- Target the center of the emission point to cover plume for any wind direction (robust algorithm against topography)
- Two-tropospheric-layer retrieval using both SWR and TIR can remove inflow in upper atmosphere.

<Remaining issue and next generation instruments>

Much higher spatial resolution, imaging capability, simultaneous measurement of short-lived species such as NO₂
 wind speed information will improve anthropogenic GHG emission estimation.