

TEMPO Mission Status

Date	Details
2023/04/07	Launch
2023/06–07	TEMPO power on + dry-out, cool down, etc.
2023/08/01-02	First light
2023/10/19	Nominal operations
2025/06/18	Prime mission ends, review on 2025/10/10
2026/09	First extended mission ends, further extension via NASA senior reviews (2026/03)

Public Release	Date	Details
V03	2024/05	L1 updated, Level 2/3 cloud, NO_2 , HCHO, total O_3 V3 O_3 profile (ASDC 6/9/2025, not for the public)
V04	2025/09/17	Release ozone profile (beta), updated L1 + other L2/L3 (provisional)
NRT V02	2025/09/17	L1, Level 2/3 cloud, NO ₂ , HCHO (funded by SNWG)

Updates in Version 4 Level 1 products

> Radiometric calibration updates

- Diffuser transmittance correction
- Magnitude adjustment for the radiometric calibration coefficients
- Diffuser goniometry correction
- Etalon fringe correction

> Image processing + Spectral calibration updates

- Stray light correction
- Smear correction
- Solar irradiance wavelength calibration

Diffuser transmittance

Issue to resolve in Version 3: Positive bias in Sun-normalized radiance (on the order of 10%)

```
(Sun-normalized radiance) = \frac{(Earth radiance)}{(Solar irradiance)}
= \frac{(Earth-radiance electric current) * (Calibration coefficient)}{(Solar-irradiance electric current) * (Calibration coefficient) / (Diffuser transmittance)}
```

Approach: Adjust the solar diffuser transmittance.

Diffuser transmittance

(TEMPO Version 3 irradiance) – (TSIS-1 reference irradiance)

Why did the transmittance bias <u>not</u> appear in Version 3? \rightarrow Biases in calibration coefficients

(Solar irradiance) = (Solar-irradiance electric current) * (Calibration coefficient) / (Diffuser transmittance)

How to verify the hypothesis? → Earth radiance

(Earth radiance) = (Earth-radiance electric current) * (Calibration coefficient)

Diffuser transmittance

Update in BTDF (Bidirectional Transmittance Distribution Function) data interpretation

 Definition of BTDF at GSFC during on-ground calibration

$$\beta_t^{GSFC} = \frac{L_t}{E_i}$$

Definition of BTDF in TEMPO algorithm

$$\beta_t^{TEMPO} = \frac{L_t}{E_{sol}} = \frac{L_t}{E_i} \times \cos \theta_{SD}$$
$$\sim \frac{L_t}{E_i} \times 0.866$$

- Use of β_t^{GSFC} in TEMPO algorithm
 - Version 3: $\beta_t^{GSFC} o \beta_t^{TEMPO}$
 - Version 4: $\beta_t^{GSFC} \rightarrow \frac{L_t}{E_i}$

Applying $\cos \theta_{SD}$ in Version 4 will <u>decrease</u> Sun-normalized radiances by $\sim 13.4\%$.

Radiometric calibration coefficients

Earth radiance intercomparison (TEMPO vs. ABI vs. VIIRS)

Example: 470 nm (UV), GOES-19

$$\rightarrow \frac{TEMPO}{VIIRS} = 1.1070$$

In Version 4, the UV and visible calibration coefficients will be reduced by 11% and 7%, respectively.

Absolute calibration

Sun-normalized radiance (Version 3 → Version 4)

Ratio: TEMPO / VLIDORT simulation

2023/11/06, scan 009, granule 02

*Note: Spectral-independent, constant surface albedo (0.074) was used.

[Credit: Junsung Park]

Most significant outcome: Cloud fraction bias will be significantly reduced.

Diffuser goniometry correction

Etalon fringe correction

[etaloning] = f([depletion region thickness], [wavelength of incident light], [CCD temperature])

Summary

- For Version 4, we have enhanced
 - Diffuser transmittance correction
 - Magnitude adjustment for the radiometric calibration coefficients
 - Diffuser goniometry correction
 - Etalon fringe correction
 - Stray light correction
 - Smear correction
 - Solar irradiance wavelength calibration
- > Calibration work will continue.

Thank you for your attention!

Stray light correction

Issues to resolve in Version 3:

- (1) Overcorrection at short wavelengths
- (2) Background stray light remaining in the UV channel

Most significant outcome: Ozone profile retrieval will be stabilized.

Stray light correction

Approach 3: Reconstruct radiances for CCD pixels with signal saturation.

Most significant outcome: Positive biases in formaldehyde retrieval over cloudy pixels will be mitigated.

Spectral calibration

Issue to resolve in Version 3: Spatial variability (North-South) in wavelength registration

Approach: Remove the slit-function asymmetry factor from the fitting to increase stability.

[Image credit: Gonzalo González Abad]

Most significant outcome: The Level 1 calibration will capture spectral changes with enhanced accuracy.

Trending

NASA

UV

Working irradiance changes

Proxy for working diffuser changes

Proxy for optics+detector changes

Working irradiance changes

Proxy for working diffuser changes

Proxy for optics+detector changes

