
Aerosols: Validation Discussion and Recommendations

Aerosols: Validation Discussion and Recommendations (I)

Overview

- There are now enough discrete comparisons that patterns have become clear.
 - E.g. L1 Depolarization issues.
 - Classification issues e.g. Cirrus ←→ Dust confusion.
 - Different Baselines have been compared with validation data and generally confirm improvements!

L2 products

- A-FM
 - Overfilling of some regions (e.g. in and around inhomogeneous ice clouds).
 - A-FM can perhaps benefit from interaction with ATLAS approach.
 - Performance in stratosphere should be improved.
- A-AER/A-EBD
 - MS approaches are starting to be evaluated.
 - Only a few cases so far.
 - More cases need!
 - E.g. Semi-transparent "nice" cirrus layers

Aerosols: Validation Discussion and Recommendations (II)

- A-TC
 - Aerosol/Cloud discrimination likely still needs improvement.
 - More cases in difficult conditions would be helpful
 - E.g. Broken thick BL clouds
 - Situations where ice and aerosol do really co-exist.
 - Florescence lidar observations could help.
 - Beter QA flags to enable "removal" of uncertain detections needed
 - Elimination of high- and med- classification outputs?
 - Esp. Changing classes for aerosols is creating confusion for users and not really adding value.
- ATL_CLA (JAXA L2a)
 - Target mask for optically thin aerosols should be improved.
 - More validation using ground-based lidars is welcome.
- MSI-AOT
 - Missing aerosol retrievals near coastlines and water bodies.
 - Problems with accurate BRDFs in such (shallow-water) conditions?

Aerosols: Validation Discussion and Recommendations (III)

- Other points.
 - We did not see many(any?) comparisons with aerosol in-situ sensors
 - Potentially valuable as they could provide real microphysical properties.
 - Are more measurements needed, or are they just not ready yet?