EarthCARE's Cloud Profiling Radar: Assessment of Doppler products

Simone Tanelli simone.tanelli@jpl.nasa.gov Ousmane O. Sy syo2jpl@gmail.com

Jet Propulsion Laboratory California Institute of Technology

November 30, 2025

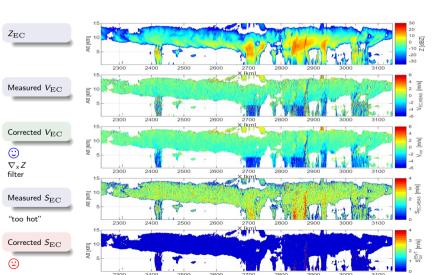
Expectations about ECPR **pre-launch** (based on simulations)

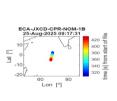
• Expected performance of ECPR:

	Quality	Comment		
Z	///			
V	✓	$V_{ m SAT} > 7~{ m km/s} \Longrightarrow$ aliasing, NUBF, noisiness		
S	\boxtimes	$V_{ m SAT} > 7~{ m km/s} \Longrightarrow$ broadening, noisiness		

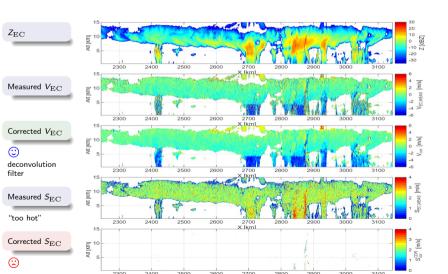
- Thanks to NASA's ES-USPI pgm, collaborators @ NICT & ESA, we developed algorithms
 - mean Doppler velocity: NUBF, noisiness (aliasing);
 - 2 Doppler width: broadening, noisiness.

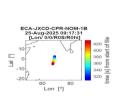
Burning question


- All these algorithms validated successfully (pre-launch) with idealized simulations,
- How do they fare when applied (post-launch) to real spaceborne Doppler measurements?


Corrections developed for ECPR pre-launch (based on simulations)

	Problem	Proposed algorithm	References
V	NUBF	<u>Gradient-based</u> : $V_{ m cor} = V_{ m obs} - lpha abla_{ m x} Z$	Art'14a, Art'23
V	NUBF	$\underline{\mathit{CConDoR}}^1$: Deconvolution of R_1 , then V_{cor} from $\mathrm{arg}(R_{1,\mathrm{dec}})$	JPL'12, Art'22
V	noisiness	Adaptive filters	Art'14b
5	broadening	$\underline{ExpliSyT}^2: S_{\text{cor}}^2 = S_{\text{obs}}^2 - \left[\beta f(\nabla_x Z, \partial_x^2 Z) - \gamma g(\partial_x V)\right]$	Art'23
5	broadening	$\underline{\mathit{CConDoR}}$: Deconvolution of R_1 , then S_{cor} from $ R_{1,\mathrm{dec}} $	Art'22


¹CConDoR: Complex Convolution Doppler Resampling correction for NUBF & spectral broadening


²ExpliSyT: Explicit Sy-Tanelli correction for spectral broadening

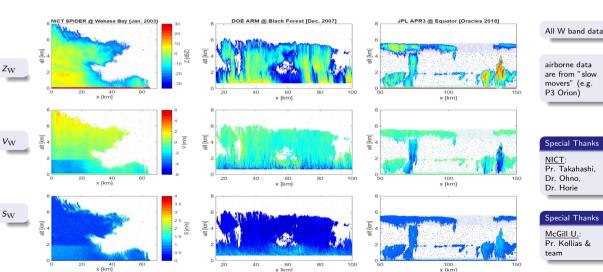
Example of rain in Indian ocean (25 Aug 2025): spectral corrections (CConDoR deconvolution)

Status

Mean Doppler

Recovering the width

- Gradient-based and deconvolution methods work.
- Adaptive filtering removes noise.


Doppler width: neither correction seems to work

After ExpliSyT & CConDoR, $S_{cor}^2 < 0$ invalid.

Problems

- ① Our correction algorithms expect to start from the *uncorrected* Doppler width.
- The $S_{\rm EC}$ (posted) is the result of a correction, but we couldn't find which one.
- The $S_{\rm EC}$ (posted) is still too high.

"posted S_{EC} still too high"? from experience (NICT SPIDER, DOE ARM, JPL's APR3)

airborne data are from "slow

Special Thanks

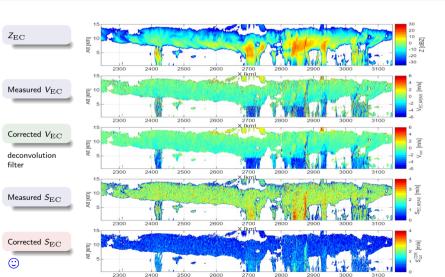
Pr. Takahashi. Dr. Ohno. Dr. Horie

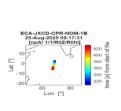
Special Thanks

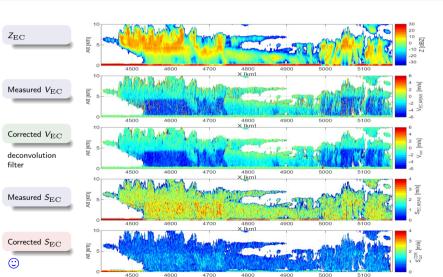
McGill U.: Pr. Kollias &

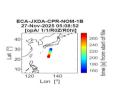
Our correction algorithms start from an uncorrected width

- ExpliSyT: $S_{\text{cor}}^2 = S_{\text{EC}}^2 \left[\beta f(\nabla_x Z, \partial_x^2 Z) \gamma g(\partial_x V)\right] < 0$, i.e. invalid Solution? Add a term to posted S_{EC}^2 until $S_{cor}^2 > 0$? ⇒ arbitrary & biases the analysis.
- 2 CConDoR: deconvolved $|R_{1,dec}| \gg |R_0 R_{0,noise}| \Rightarrow S_{cor}^2 < 0$ invalid. Solution
 - deconvolve R_1 into $R_{1,dec}$; then compute


$$S_{
m dec}^2 = rac{2V_{
m Nyq}^2}{\pi^2} \ln \left(rac{R_0 - R_{0,
m noise}}{|R_{1,
m dec}|}
ight),$$
 (1)


Recovering the width


• since this formula acts on the *noise-subtracted spectrum*, the value of S_{dec} in noise should be 0, i.e.


$$S_{\text{cor.A}}^2 = S_{\text{dec}}^2 - \text{median} \left[S_{\text{dec}}^2(\text{noise}) \right],$$
 (2a)

$$S_{\text{cor}} = S_{\text{cor,A}} - \text{median} [S_{\text{cor,A}}(\text{noise})].$$
 (2b)

Take-away message

- Orrections successfully applied to ECPR data.
- Corrected S calls for validation by co-located suborbital measurements.
- Uncorrected data help validate/invalidate forward models; especially with *novel measurements* like ECPR's Doppler.
- Thanks to the support from ES-USPI program, this work benefited
 - NASA: ECPR Wiener deconvolution ('12) → RainCUBE's deconvolution ('18-'22)
 - from NASA: INCUS's deconvolution ('24) \leftrightarrow ECPR (V.S) deconvolution ('25)
- **1** Details of algorithms all published in literature (see next slide). Application to ECPR measurements summarized in article (to be submitted) "Doppler corrections applied to EarhCARE's radar products".

Thank you for your attention

REFERENCES

- <u>JPL'12</u>: "Non-Uniform Beam-filling corrections for atmospheric spaceborne Doppler radars:
 Reflectivity-based methods"; JPL Postdoc research day 2012; Sy & Tanelli
- Art'14a: "Simulation of EarthCARE Spaceborne Doppler Radar Products Using Ground-Based and Airborne Data: Effects of Aliasing and Nonuniform Beam-Filling",
 IEEE TGRS 2014: Sv. Tanelli. Takahashi. Ohno. Horie & Kollias
- Art'14b: "Application of Matched Statistical Filters for EarthCARE Cloud Doppler Products", IEEE TGRS 2014; Sy, Tanelli, Kollias & Ohno
- 4 Art'22: "Dynamic Retrievals from Spaceborne Doppler Radar Measurements: the CConDoR Approach", IEEE TGRS 2022; Sy & Tanelli
- <u>Art'23</u>: "Recovering the Elusive Spectral Width From Spaceborne Doppler Profiling Radar Measurements: The "ExpliSyT" Approach", IEEE TGRS 2023; Sy & Tanelli