Vicarious Calibration for JAXA MSI L2 cloud product (MSI_CLP) of EarthCARE

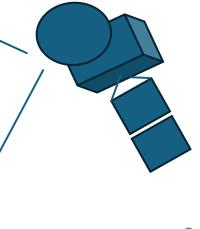
Image of the vicarious calibration for MSI_CLP

②Calculate MSI observed radiance ($L_{MSI,CAL}$) from (τ_c , R_e), which do not depend on satellites.

 (τ_c, R_e)

LMSI,CAL F(\tau, Re)

F infers the LUT of CAPCOM


3 The calibration coefficient k of MSI radiance k=L_{MSI,CAL}/L_{MSI,OBS}

 Targeting clouds observed simultaneously by Himawari and MSI

 Cloud physical properties do not depend on the solar zenith angle, satellite zenith angle, or relative azimuth angle. **1** Estimating cloud properties (τ_c, R_e) from Himawari measured $L_{HIMAWARI,OBS}$

 $(\tau_c, R_e) = F(1(L_H))$

F⁻¹ infers CAPCOM algorithm

Principles of MSI observation radiance vicarious calibration

- CAPCOM's LUT is grid data that uses cloud top altitude as altitude information. (F($\tau_{\rm c}, R_{\rm e}$))
- Normally, $\tau_{\rm e}$ and $R_{\rm e}$ are retrieved from the inverse function F⁻¹ of the LUT from the observed radiance as input from L1C data. However, in this case, τ_c and R_e retrieved from Himawari are used as input, and the corresponding radiance (L_{MSI} _{CAL}) is estimated by radiative transfer calculation.

- "Remote sensing" is a process for developing retrieval algorithms.
- We have measured I_{λ} by satellite remote sensing.

$$I\lambda = F\{\omega_a, \omega_c, \tau_a, r_c, \tau_c, \tau_{\text{molecule}}, T(z), ...\}$$
 How to retrieve "rc and τ_c " from $I\lambda$?
$$(r_c, \tau_c) = F^{-1}\{I_\lambda, \omega_a, \omega_c, \tau_a, \tau_{\text{molecule}}, T(z), ...\}$$

Himawari cloud retrieval

Date: Sep. 22, 2024 (autumnal equinox day)

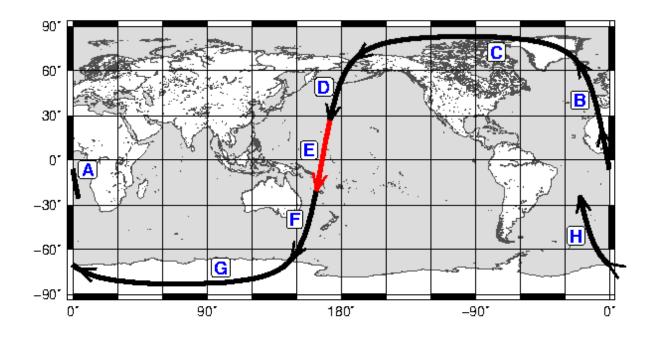
1. JRA-3Q long-term reanalysis data provided by the Japan Meteorological

Agency

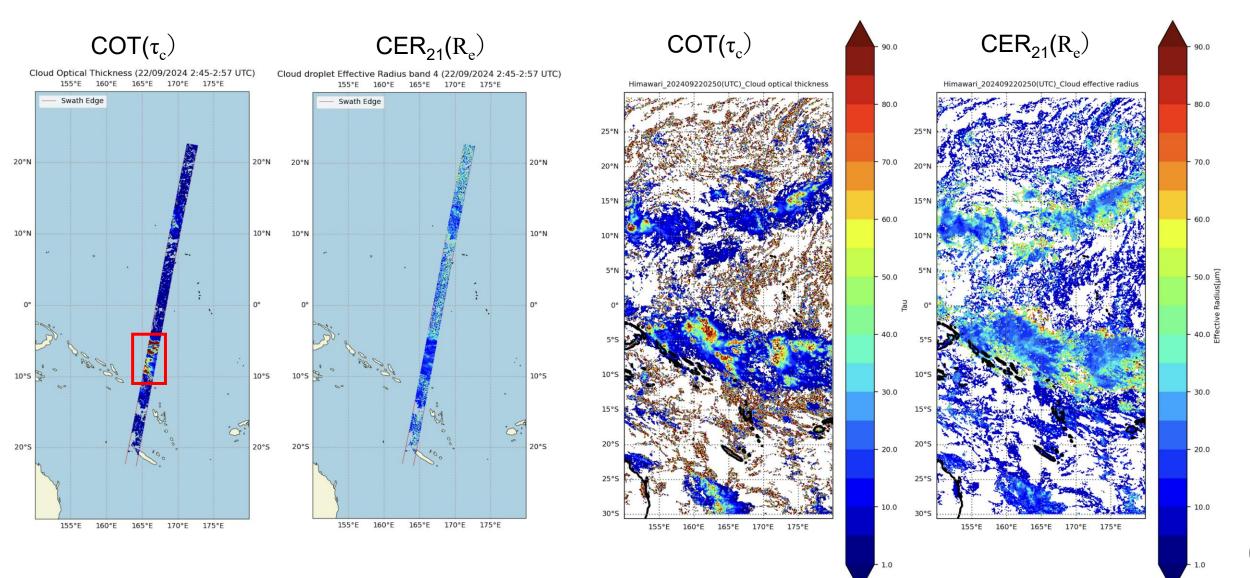
https://search.diasjp.net/ja/dataset/JRA3Q

- 2. Albedo: rmin_modis.201710.ch1.dat
- 3. Himawari gridded data.

http://www.cr.chiba-u.jp/databases/GEO/H8_9/FD/index_jp.html

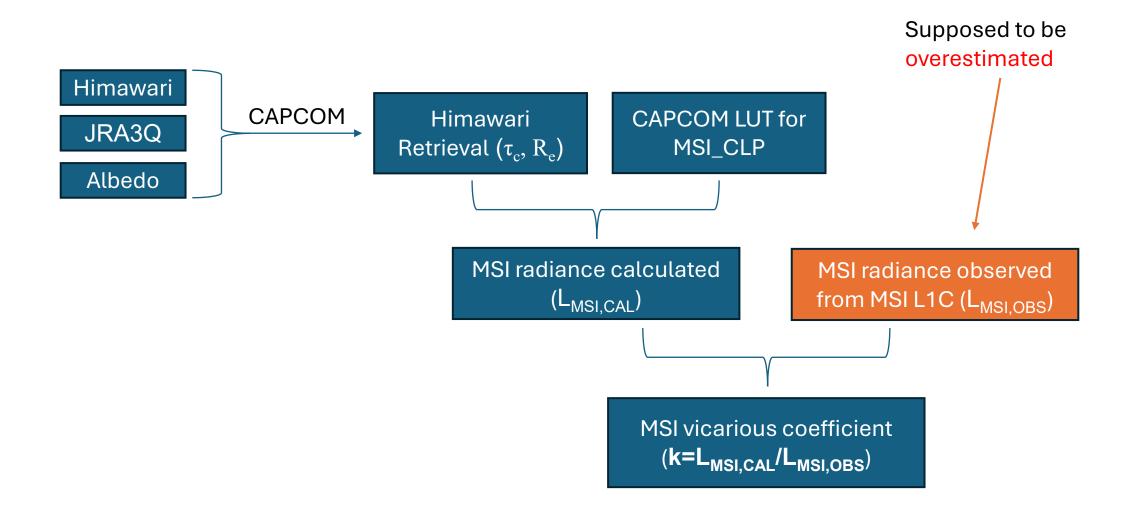

名前 🔨	サイズ	種類
202409220150.ext.fld.coff.txt.bz2	66,650	bz2-ファ
202409220150.ext.fld.loff.txt.bz2	65,285	bz2-ファ
202409220200.ext.01.fld.geoss.bz2	396,363,553	bz2-ファ
202409220200.ext.fld.coff.txt.bz2	69,818	bz2-ファ
202409220200.ext.fld.loff.txt.bz2	68,435	bz2-ファ
202409220210.ext.01.fld.geoss.bz2	397,524,097	bz2-ファ
202409220210.ext.fld.coff.txt.bz2	74,858	bz2-ファ
202409220210.ext.fld.loff.txt.bz2	73,680	bz2-ファ
202409220220.ext.01.fld.geoss.bz2	398,403,743	bz2-ファ
202409220220.ext.fld.coff.txt.bz2	75,763	bz2-ファ
202409220220.ext.fld.loff.txt.bz2	73,857	bz2-ファ
202409220230.ext.01.fld.geoss.bz2	399,106,396	bz2-ファ
202409220230.ext.fld.coff.txt.bz2	73,054	bz2-ファ
202409220230.ext.fld.loff.txt.bz2	71,515	bz2-ファ
202409220250.ext.01.fld.geoss.bz2	398,495,261	bz2-ファ
202409220250.ext.fld.coff.txt.bz2	74,212	bz2-ファ
202409220250.ext.fld.loff.txt.bz2	72,695	bz2-ファ
202409220300.ext.01.fld.geoss.bz2	397,008,172	bz2-ファ
202409220300.ext.fld.coff.txt.bz2	74,923	bz2-ファ
202409220300.ext.fld.loff.txt.bz2	73,122	bz2-ファ
202409220310.ext.01.fld.geoss.bz2	395,582,366	bz2-ファ
202409220310.ext.fld.coff.txt.bz2	73,440	bz2-ファ
202409220310.ext.fld.loff.txt.bz2	71,902	bz2-ファ
202409220320.ext.01.fld.geoss.bz2	394,394,302	bz2-ファ

MSI_CLP Cloud Products Used


- Sep. 22, 2024 (autumnal equinox day)
- Frame number, time (UTC):
- 01807E 02:45~02:57
- 01808D 04:06~04:18
- 01808E 04:18~04:30

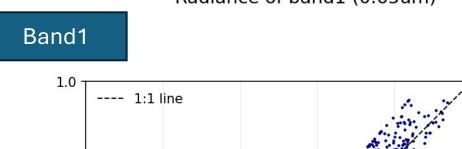
- L1C data version:
- vBa

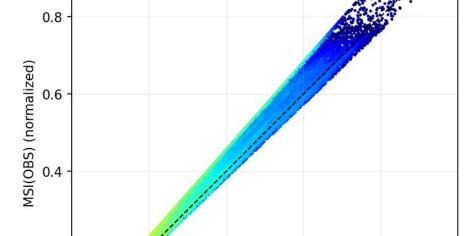
MSI_CLP vs Himawari-9 AHI example: 01807E (UTC 02:45~02:57)



- Water cloud pixels are screened based on the condition that the cloud top temperature T_c > 260K.
- From the screened Himawari data, pixels that match the MSI frames are extracted, and COT (τ_c) and CER (r_e) are used as input data for radiative transfer.


Flowchart of MSI observation radiance vicarious calibration





10²

0. Data density

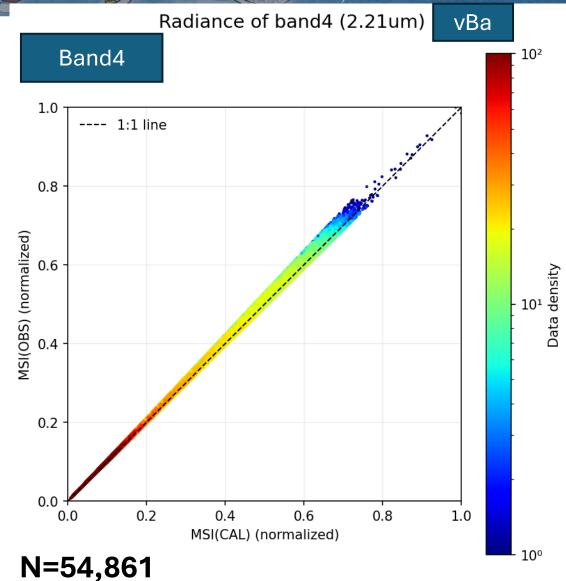
10°

0.4

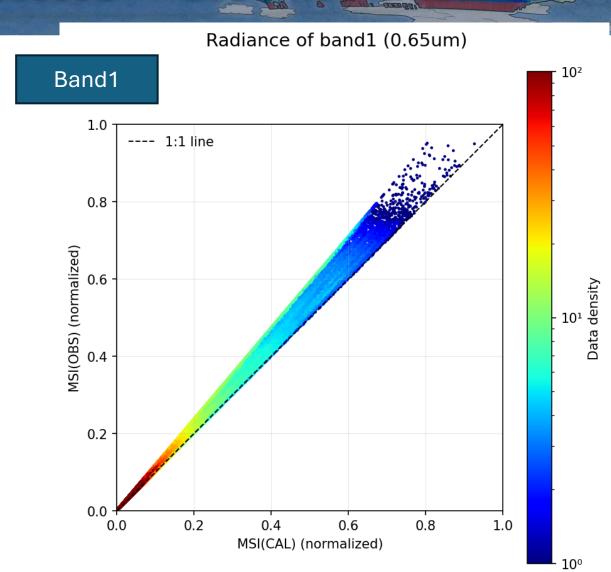
MSI(CAL) (normalized)

0.6

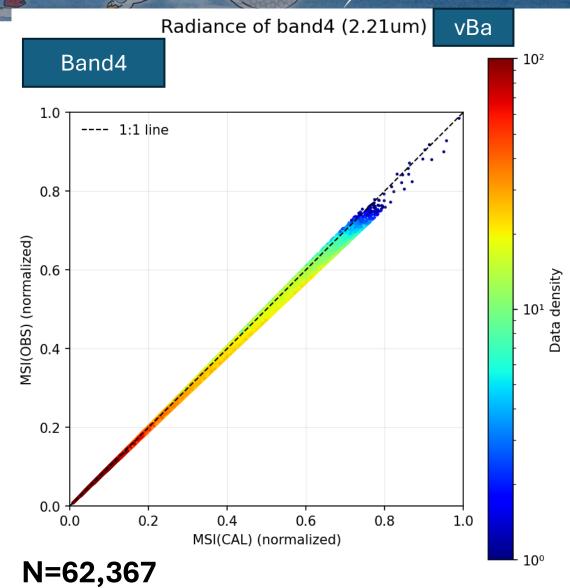
0.8


1.0

N=54,861 k=L_{MSI,CAL}/L_{MSI,OBS}=0.93

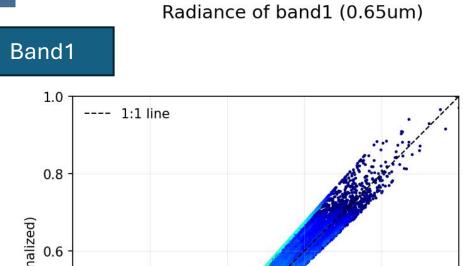

0.2

0.2


0.0 0.0

 $k=L_{MSI,CAL}/L_{MSI,OBS}=0.99$

N=62,367 $k=L_{MSI,CAL}/L_{MSI,OBS}=0.92$



k=L_{MSI,CAL}/L_{MSI,OBS}=1.04

10²

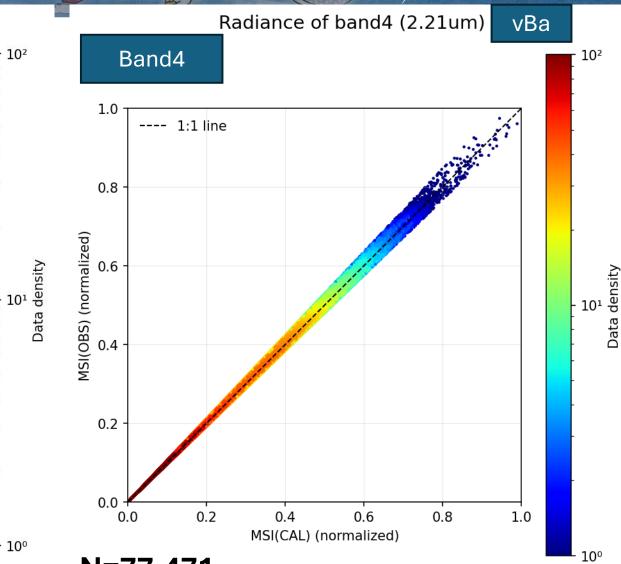
MSI(OBS) (normalized) 0.4 0.2

0.4

MSI(CAL) (normalized)

0.6

0.8


1.0

10°

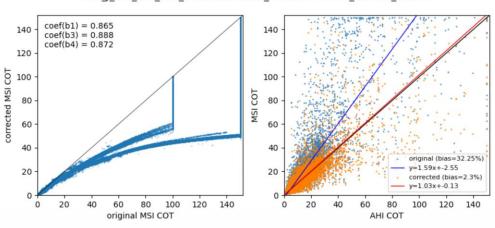
N=77,471 $k=L_{MSI,CAL}/L_{MSI,OBS}=0.94$

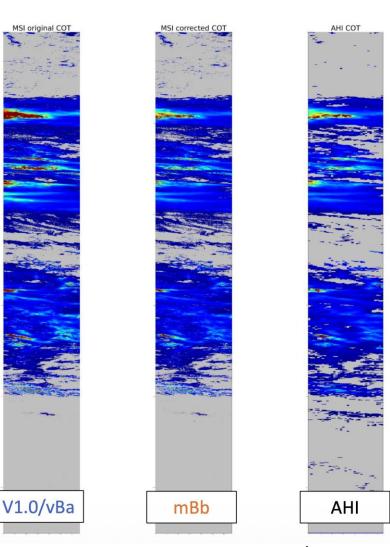
0.2

0.0 0.0

N=77,471k=L_{MSI,CAL}/L_{MSI,OBS}=1.02

Application of the calibration coefficient


(Quoted from Mr. Muto's recent work)


Based on the comparison between MSI_RGR(vBa) & AHI

- Coef01(band1) = 0.924
- Coef03(band3) = 1 (not added)
- Coef04(band4) = 1 (not added)

Case of 06399E (2025/07/14)

ECA_J_MSI_CLP_2AS_20250714T0528_20250714T0539_06399E_vBa.h5

- Compared to v1.0/vBa, the newer L1 data with calibration coefficient applied is now close to Himawari-9/AHI L1.
- Details can be found from Mr. Muto's poster (Annex53, core time 16:30-18:00 on Day4).

- Two frames with a high concentration of water clouds were carefully selected from the equatorial ocean area on the autumnal equinox day.
- Himawari data was used to perform retrievals of COT and CER, and the MSI water cloud LUT was read to perform radiative transfer calculations, which were then used to calculate vicarious calibration coefficients for MSI band 1 (VIS band) and band 4 (NIR band).
- For L1c (vBa), VNS over-trend was mitigated compared to vAc, but still overestimation found in COT, the calibration coefficient for band 1 was around 0.92-0.94. On the other hand, CER did not show significant overestimation or underestimation, and the calibration coefficient for band 4, was around 0.99-1.04, indicating that nearly no calibration is needed for NIR bands.
- The calibration coefficient has been applied to the newest version (vCa) of MSI_CLP, and the overestimation trend in MSI COT has been significantly mitigated.