ICCP-GSRA Workshop 2023, March 27–29, 2023

Process representations of cloud and precipitation in MIROC6 with prognostic precipitation: Evaluation against A-Train observations Takuro Michibata¹ and Kentaroh Suzuki²

¹Graduate School of Natural Science and Technology, Okayama University, Japan ²Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan

Thanks to: X. Jing (U. Michigan, USA), N. Hirota (NIES, Japan), T. Takemura (Kyushu Univ., Japan),
 H. Okamoto (Kyushu Univ., Japan), T. Ogura (NIES, Japan), G. Cesana (GISS, USA),
 Y. Yamagami (JAMSTEC, Japan), Y. Imura (U. Tokyo, Japan), and MIROC developer team

tmichibata@okayama-u.ac.jp

What can be done using satellite observations to constrain the model uncertainty?

How can we improve model biases in cloud and precipitation processes using a simulator?

Simulations using MIROC6-SPRINTARS were executed with the SX-Aurora supercomputer system of the National Institute for Environmental Studies, Japan. This study was supported by JSPS KAKENHI Grant Numbers JP19K14795 and JP19H05669.

Most CMIP5/6 GCMs

Most GCMs treat precipitation diagnostically

- instantaneously removed from the atmosphere (Ghan and Easter, 1992)
- overestimate of the magnitude of ACI (Quaas et al., 2009; Wang et al., 2012)
- bias in warm rain frequency and intensity (Stephens et al., 2010)

Diagnostic-vs-Prognostic precipitation

Most CMIP5/6 GCMs

Michibata et al. (JAMES'19)

Prognostic precipitation in MIROC6

- prognoses mass and number mixing ratios of rain (q_r, N_r) and snow (q_s, N_s)
- keeps precipitation in the atmosphere across model timesteps
- explicitly considers radiative effects of precipitating hydrometeors

Other some (but still limited) GCMs including PROG

- CAM MG2/3; ECHAM6-HAM; GISS-ModelE3; ECMWF-IFS; HadGEM3; E3SM

T. Michibata ICCP-GSRA Workshop 2023: March 29th, 2023

Improved warm-rain formation and ACI

Michibata and Suzuki (GRL'20)

Improved "too frequent" warm rain bias in the PROG scheme

 time-evolution of the raindrop size, by controlling the relative contribution of the autoconversion and accretion depending on the cloud regime

The new scheme also improves the magnitude of aerosol-cloud interactions

T. Michibata ICCP-GSRA Workshop 2023: March 29th, 2023

Improved warm-rain formation and ACI

Michibata and Suzuki (GRL'20)

Prognostic precipitation can keep a good balance of precipitation and the required energy budget.

T. Michibata

ICCP-GSRA Workshop 2023: March 29th, 2023

Mechanisms of the weakening ERFaci

T. Michibata

ICCP-GSRA Workshop 2023: March 29th, 2023

3 of 12

Mechanisms of the weakening ERFaci

- Regions where ERF_{aci} reduction can be found has abundant snow water path.
- The falling snow over the midlatitude effectively accretes lowlevel liquid clouds through the riming process.

T. Michibata ICCP-GSRA Workshop 2023: March 29th, 2023

ERFaci in other (high-reso) models

Different LWP response in CAM5, SPCAM, and UPCAM

Chris Terai et al. (2020, JAMES)

LWP change seems less evident in more high-reso models.

T. Michibata

ICCP-GSRA Workshop 2023: March 29th, 2023

Changes in ECS and cloud feedback

- The PROG model represents more warming due to increased LW cloud feedback compared to DIAG model.
- The increased LW feedback is linked to increased (realistic) cloud ice and snow in the PROG, resulting in enhanced warming.

Changes in ECS and cloud feedback

- The PROG model represents more warming due to increased LW cloud feedback compared to DIAG model.
- The increased LW feedback is linked to increased (realistic) cloud ice and snow in the PROG, resulting in enhanced warming.

Use of satellite simulator: Precipitation flag

AGU100 ADVANCING EARTH AND SPACE SCIENCE

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE

10.1002/2017JD028213

Key Points:

- Study provides tools to evaluate model rain and snow frequency at a range of intensities using CloudSat (94-GHz) radar reflectivities
- Applying tools shows that the Community Earth System Model has excessive near-surface rain and snow frequency, especially for light rain
- Projected precipitation frequency changes in a warmer world are detectable but contain imprints of present-day model biases

Scale-Aware and Definition-Aware Evaluation of Modeled Near-Surface Precipitation Frequency Using CloudSat Observations

Jennifer E. Kay^{1,2} (D), Tristan L'Ecuyer³ (D), Angeline Pendergrass⁴ (D), Helene Chepfer⁵ (D), Rodrigo Guzman⁵ (D), and Vineel Yettella^{1,2} (D)

¹Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO, USA, ²Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA, ³Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, WI, USA, ⁴National Center for Atmospheric Research, Boulder, Colorado, USA, ⁵University Pierre et Marie Curie, Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace Ecole Polytechnique, Palaiseau, France

Kay et al. (2018, *JGR*)

We must be careful about differences in resolution and definition.

The precipitation flag provides information on the precipitation phase and intensity, in a manner that is consistent with the algorithms of the CloudSat product.

Use of satellite simulator: Precipitation flag

- We must be careful about differences in resolution and definition.
- The precipitation flag provides information on the precipitation phase and intensity, in a manner that is consistent with the algorithms of the CloudSat product.

T. Michibata

Regional bias in snowfall occurrence

PrecipFlag: Occurrence frequency of surface snowfall from CloudSat and MIROC6

Imura and Michibata (2022, JAMES)

- MIROC6 PROG produces the Arctic snowfall "too-frequently".
- ► The too-frequent snowfall bias compensates by too-light intensity.
- The error compensation can be related to biases in the polar climate projection.

Model-vs-Observation inconsistency

Imura and Michibata (JAMES'22)

- a) Old MIROC scheme w/ default lidar simulator
 - cloud layer is detected by the lidar backscattering from cloud droplet and ice crystals.
 - lidar does not feel raindrop and snowflake because precipitation is instantaneously remove from the atmosphere.
- **b**) Actual retrieval process (updated lidar simulator)
 - lidar cannot separate ice crystals and snowflake as done in bulk microphysics models.
 - lidar observation partly includes the snow layer as the cloud layer.
- Note: this is currently not the official version of the COSP

Cloud phase partitioning by temperature

- Supercooled Liquid Fraction (SLF) = Liquid / (Liquid + Ice)
- ► The impact of lidar update on cloud-phase partitioning is also significant.
- The denominator is increased by a part of snow detected as ice cloud, resulting in the apparent SLF being decreased.
 - If other GCMs incorporate prognostic precipitation, same problem will occur.
 - Underestimating SLF means higher potential of ice-to-liquid phase change.
 - larger negative cloud feedback and smaller climate sensitivity (Tan et al, 16)

Cloud phase partitioning by temperature

depend on how much precipitation is within the clouds
 EarthCARE and/or GPM missions for process improvement

 The model may have potential bias in the phase partitioning of cloud and precipitation.

Summary and next step

Recent advances in cloud and precipitation modeling in MIROC6

- How can we improve model biases using satellite simulator?
- Prognostic precipitation: one of the desirable solutions, but not perfect.
- Inter-model comparison among PROG GCMs and GCRMs.
- How the model resolution and dynamics control ACI and cloud feedback
- ► EarthCARE and process studies with satellite simulator
 - satellite simulator is an essential tool
 - consistent with model physics and retrieval processes?
 - synergistic use of CloudSat/CALIPSO/MODIS/GPM will also be useful

