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Outline

 ESM Advancements (at any scale)

* Some examples of new methods: Model-Data Synergies, Machine
Learning

 Larger vision: Model-Data Fusion

Improving (weather, climate) predictions requires synergistic use of
observations and models

EarthCARE can help with critical cloud processes: great timing!



Where are ESMs Going?

* GSRMs (e.g. uniform high resolution)

* Traceable to lower resolution Global, Regional
* Merging with mesoscale models (especially cloud processes)
» Scalable complexity: chemistry, aerosols, cloud processes (e.g. rimed ice)

* New methods
* Emulators, Machine Learning (new generation of ‘empirical’ parameterizations)

e Better analysis, optimization methods
 Satellite Simulators
e Data Assimilation for Climate (especially for clouds)



Climate Extremes: Variable-Resolution (6023 km)

Huang et al, 2022, GMD
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Major Issues for Clouds, Precip and Aerosols

* Cold Cloud Phase:

® Critical for high latitude radiative effects, cloud feedbacks, weather extremes

* Cloud Microphysics:
*® Size distributions govern process rates
® Cross scale convective processes
* Dynamics-Microphysics coupling
® Vertical structure of clouds: cloud base, freezing, entrainment at top
* Aerosol activation (cloud-aerosol interactions)
® Vertical velocity critical
* Precipitation Formation: Frequency & Intensity

» Convective organization across scales



! SOCRATES All Flights

Cloud Phase

SOCRATES in-situ flights over the S. Ocean
used to understand & improve models

CAMG6: Too little ice. This contributes to high
climate sensitivity.
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Microphysics, Size distributions
Advanced GCMs/GSRMs can be compared directly to cloud

dN/dlogD (L m™)

microphysical size distributions (here from SOCRATES).

Comparison is GCM cloud microphysics along aircraft flight tracks with in-situ data
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Observation Simulators
(Reflectivity)

Comparisons over Macquarie Island in S. Ocean between
a and single column simulations with
one-moment and 2-moment microphysics in the ECMWEF-
IFS SCM.
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Radiation Comparisons
MICRE Low Cloud Cases

« 2-Moment Microphysics does a good job of reproducing the
radiative fluxes

* Low clouds too bright at TOA, okay at surface?
* Butlarge LWP bias!
« LWPv. Albedo saturates
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Precipitation Frequency

Improving precipitation formation with emulators of detailed models
(a) MG2 Rain Rate

Replace autoconversion and
accretion in a bulk scheme with
stochastic collection with a bin
scheme. Then emulate that with a
neural network.
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Where can

* Doppler velocity: what are the intensity and scales of motion in

shallow and deep clouds
* Coupling to thermodynamics (e.g.: higher order closure schemes: w'q’)
* We are still parameterizing this even in GSRMs

* Reflectivity:
* Simulate in models: if the microphysics is wrong we will know it
* Cloud phase: Synergistic use of radar & lidar
* Better simulators. Want more direct process information
* What simulator are we going to use? J-SIM? COSP? RTTOV?
e Assimilation of cloud information for model evaluation



Goal: Improving Prediction

Improving prediction relies on models AND observations together
- A ‘model-data fusion’

Better models

Better observations
Better techniques (assimilation, evaluation of models and obs)

. Also: coupling to applications (Digital Twin Earths)



Vision: Model — Data Fusion
Obs Simulator

Observations

Signal (Voltage)
Radiance

Data Cube or ‘Twin’
Prediction
‘Applications’
Model

Empirical ‘_
Models/Training \, “NE&ee

Assimilation Retrieval
Gettelman et al, 2022, Science Advances



Summary

- Improving (weather, climate) predictions requires synergistic use of
observations and models

New methods for Model-Data Fusion

« Simulators [Let’s talk more about EarthCARE simulators]
« Assimilation

- EarthCARE can help with critical processes

- Key cloud microphysics problems:
« Cloud Phase

« Aerosol-Cloud Interactions (cloud dynamics-physics coupling!)
« Precipitation

Key places to make progress with Earth Care
Vertical motion, reflectivity, cloud phase



‘Digital Earth’ = Digital Twin of the Earth

An interactive information system for the
past, present & future state of the earth

The Digital Earth: Understanding
our planet in the 21st Century

by Al Gore

The tools we have most commonly used to interact with data, such as the "desktop metaphor”

employed by the Macintosh and Windows operating systems, are not really suited to this new

challenge. | believe we need a "Digital Earth". A multi-resolution, three-dimensional

representation of the planet, into which we can embed vast quantities of geo-referenced data. January 31, 1998



Why is a Digital Twin different than just a ‘model’?
Data goes in. Human scale predictions come out

: Predictions/ Data
Key dl.fferefnf:e_s Applications
= Data: Assimilation & Data Models @
" Coupling to human systems Water
= For Decision making @
XC
* |s this just Hype? X®)

* Digital Earth may be Regional
* Hierarchy of models/configurations  Feod
* Configurable




Digital Earths Lighthouse tv (D i git a I E a rth Sl p ‘
WCRP . WCRP Lighthouse Activi ty it

Support the design and building of integrated interactive
digital information systems that provide global and

regional information on the past, present, and future of A T
our planet, including both natural and human systems. | o A

Areas of activity

— Fully coupled km-scale regional and global models: Need a global
research network in km-scale modeling of the Earth system and
individual components

— Data assimilation for climate: Establish an active community in data
assimilation for climate, expanding on the excising numerical weather \ _
prediction and re-analysis efforts T

— Beyond the Physical Earth System: Include human interactions on and
impacts to human systems in ESMs
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