A proposal for regime-based LES-GCRM-ESMobservation-forward simulation closure studies

Ann Fridlind • NASA Goddard Institute for Space Studies

GEWEX Atmospheric System Studies (GASS) Panel

*

 focuses on atmospheric and cloud processes
incubates process-oriented case studies and community model intercomparisons

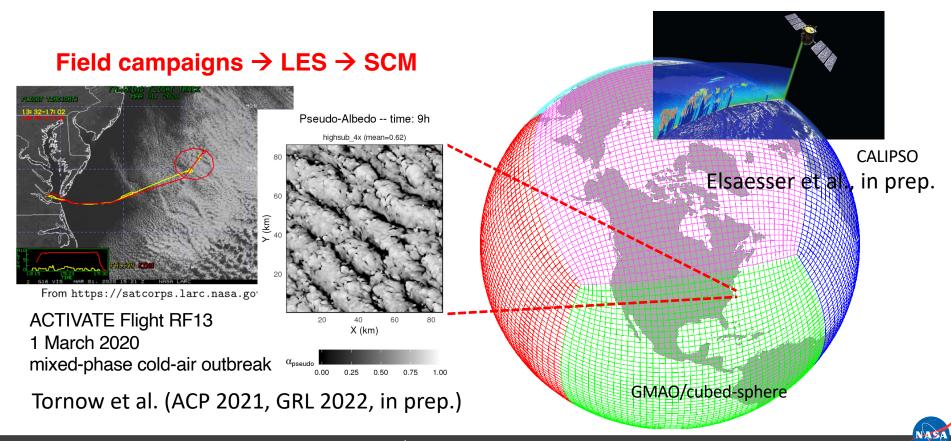
GEWEX Data and Analysis Panel (GDAP)

- focuses on long-term global data sets to describe complete water and energy budgets
 - coordinates observation efforts, analysis methods, and integrated assessments

WCRP Global Energy and Water Exchanges Project (GEWEX)

WCRP Lighthouse Activity on 'Explaining and Predicting Earth System Change' — Modeling and Monitoring Earth System Change WG

• WG themes


Heimbach et al. AGU FM '22 Invited GC22C-02

- observational and modelling requirements to monitor, explain and predict
- convergence between climate modelling and Earth system data assimilation & reanalysis
- WG identified five relevant gaps/shortcomings
 - persistent model biases
 - underutilization of diverse observational data
 - disconnect between ESM and reanalysis/DA efforts
 - sparse observational sampling of parts of the Earth system
 - insufficient approaches to handle model and observational uncertainty

ModelE3 development approach

Global data → ESM tuning

Field campaigns —> LES —> ESM in SCM mode

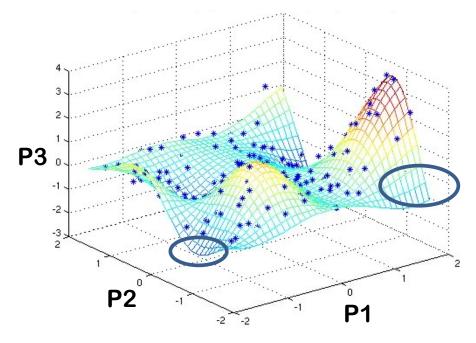
Conditions	Case study	Aerosol aware?
dry convective boundary layer	idealized [Bretherton and Park 2009]	—
dry stable boundary layer	GABLS1 [Cuxart et al. 2006]	—
marine stratocumulus	DYCOMS-II RF02 [Ackerman et al. 2009]	observed (2 modes)
marine trade cumulus (shallow)	BOMEX [Siebesma et al. 2003]	—
marine trade cumulus (deep, raining)	RICO [van Zanten et al. 2011]	—
marine stratocumulus-to-cumulus *	SCT [Sandu and Stevens 2011]	—
continental cumulus ^	RACORO [Vogelmann et al. 2015]	observed profile (3 modes)
Arctic mixed-phase stratus	M-PACE [Klein et al. 2009]	observed (2 modes)
Antarctic mixed-phase stratus *	AWARE [Silber et al. 2019, 2021, 2022]	estimated (1 mode)
tropical deep convection	TWP-ICE [Fridlind et al. 2012]	observed profile (3 modes)
mid-latitude synoptic cirrus *	SPARTICUS [cf. Mühlbauer et al. 2014]	-
mid-latitude cold-air outbreak *^	ACTIVATE [Tornow et al., 2021, 2022, in prep.]	observed profile (3 modes)
high-latitude cold-air outbreak *^	COMBLE [Tornow et al., in prep.]	observed/estimated profiles (3 modes, 1 INP)
marine cumulus and congestus *^	CAMP2Ex [Stanford et al., in prep.]	observed profiles (3 modes)
subtropical marine deep convection *^	SEAC4RS [Stanford et al., in prep.]	observed profiles (TBD)
continental sea breeze convection *^	TRACER [Matsui et al., in prep.]	observed profiles (TBD)
*Lagrangian (cf. Neggers JAMES 2015, Pithan et al. NatGeo 2019)		

^ensemble (cf. Neggers et al. JAMES 2019)

Tuning Protocol

- 45 ESM cloud and turbulence parameters taken to be poorly constrained
- LES/SCM cases used to estimate parameter uncertainty ranges
- global satellite datasets assembled with estimated uncertainties (also sometimes a latitude range omitted)

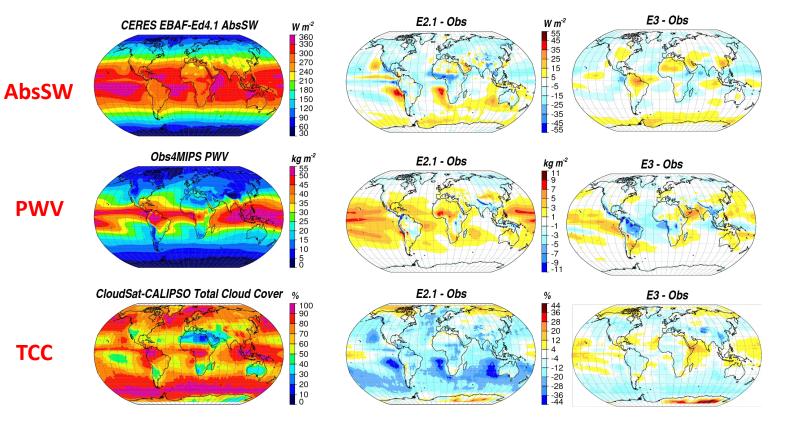
Elsaesser et al. (in prep.)


Metrics (36 in total)	Data Source
Radiation (Longwave [LW], Shortwave [SW])	CERES-EBAF-Ed4.1
Cloud Radiative Forcing (LWcrf, SWcrf)	CERES-EBAF-Ed4.1
Column Water Vapor (CWV)	Obs4MIPS RSS, G-VAP
Specific Humidity profiles (qv)	Obs4MIPS AIRS, MLS
Temperature profiles (T)	Obs4MIPS AIRS, MLS, GNSS-RO
Total Liquid Water Path (TLWP)	MAC-LWP, GPM/TRMM
Total Ice Water Path (TIWP)	CloudSat, MODIS
Total Precipitation (Pr)	GPCP, GPM/TRMM
Convective Precipitation (Prc)	GPM/TRMM
Total Cloud Cover (TCC)	CloudSat/CALIPSO, ISCCP
Low (Shallow Cu, StratoCu) Cloud Cover	CloudSat/CALIPSO
Cloud-top Droplet Number Concentration	MODIS (Bennartz, Grosvenor)
Surface Wind (W)	WindSat, QuikSCAT
Liquid-to-ice transition Temperature/Height	CALIPSO

ModelE3 emulator based on 450 1-year atmosphere runs

Latin Hypercube sampling in a 45-dimensional parameter state space. Lots of empty state space; emulator (neural network) fills in the gaps.

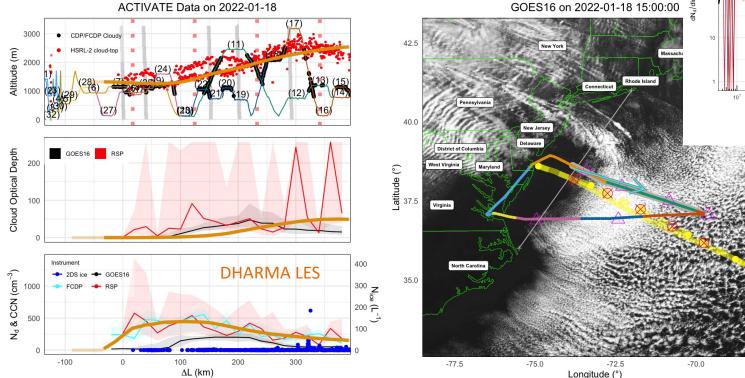
Example Penalty State Space Transect for any given model metric

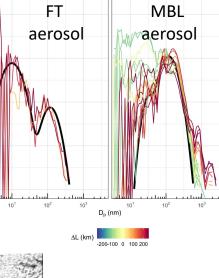


source: Marcus van Lier-Walqui

Obs

E2.1 – Obs


E3.tun2 – Obs



source: Greg Elsaesser

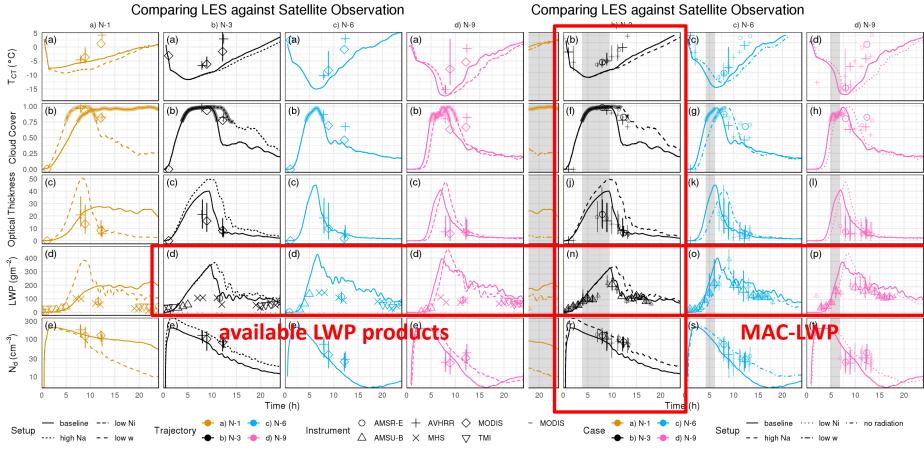
ACTIVATE LES case study selection

choose 2020-2022 flights with greatest fetch offshore

clear, below-cloud

clear, above-cloud

1000


 $D_p (cm^{-3})$

Tornow et al. (in prep.)

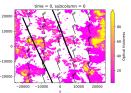
NASA

draft

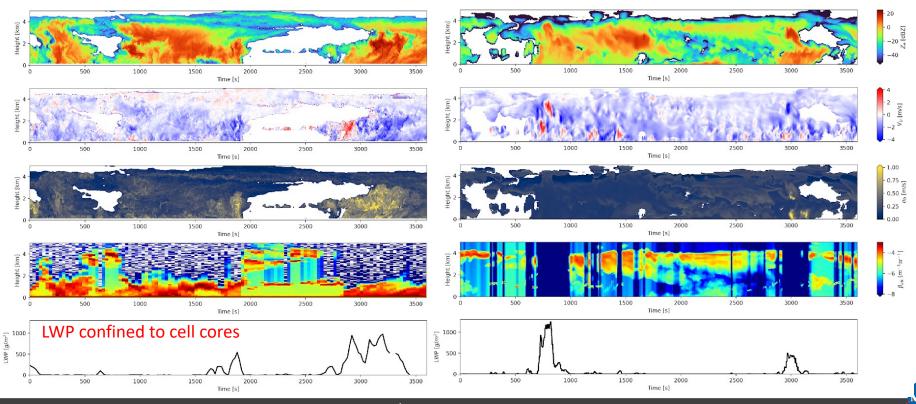
Tornow et al. (submitted)

LES case study development ~ closure study

- defined as measuring everything that goes into a model and what it predicts, then testing whether a prediction matches the observed results within experiment (and model) uncertainties
 - point and column radiative closure (e.g., Quinn et al. 1996)
 - aerosol–CCN or CCN–droplet closure (e.g., Martin et al. 2011)
 - aerosol–INP closure (Knopf et al. BAMS 2020)
 - foundational framework for more robust handling of observational and model uncertainties? at the same time, a strong development test bed
- LES/SCM case studies also used for retrieval development (e.g., Alexandrov et al. 2020), ground-based simulator development (Silber et al. 2022 GMD; EMC²), satellite simulator refinement (Cesana et al. GRL 2021)

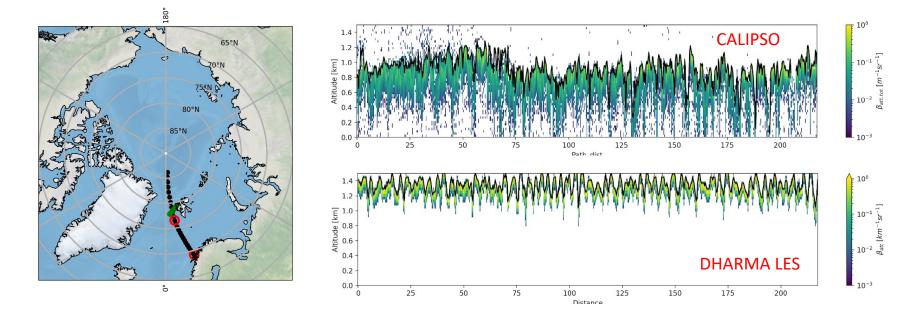

Strawman strategy step-by-step

- 1) select regime-based case studies from a field campaign (e.g., TOOC)
- 2) collate appropriate satellite data extractions (e.g., MAC-LWP)
- 3) derive Lagrangian, aerosol-aware set-up for LES/SCM/1D (GASS-type activity; also amenable to extraction of Lagrangians from GCRMs or ESMs)
- 4) perform closure calculations (e.g., column radiative)
- 5) if participating models are treated collectively as representative of model uncertainty, <u>then</u> the degree to which individual observational data products are outlying could be quantified (e.g., MAC-LWP on a regime-based basis)
- -> foundation for handling model and observational uncertainty regime-wise?



COMBLE observational constraint

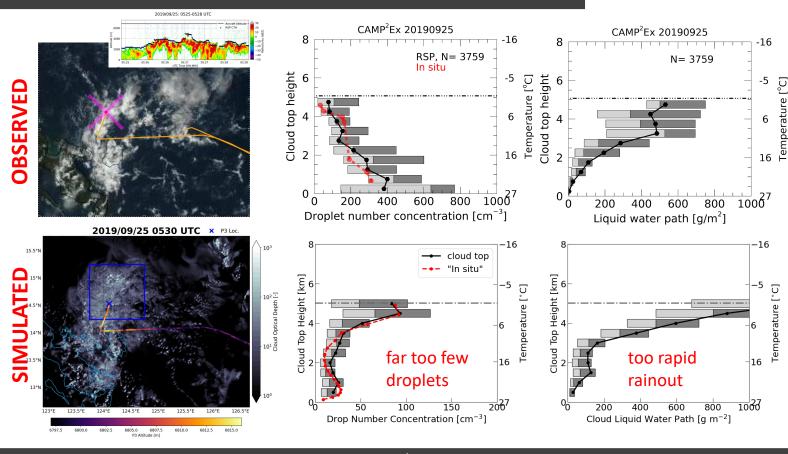
Silber et al. (in prep.)



use EMC² (Silber et al. GMD 2022) to evaluate LES vs ground-based radar + lidar

COMBLE observational constraint

- use EMC² (Silber et al. GMD 2022) to evaluate LES vs CALIPSO satellite
- LES clouds too deep + dense


CAMP2Ex tropical convection

source: McKenna Stanford

perature [°C]

Ω

Temperature [

cloud system location and top heights are well represented by NU-WRF, but not the microphysical processes

It may take a village, but something for everyone?

- LES, climate model or GSRM participant? regime-based analysis of your model's performance, community-based evaluation of diverse observational data, LES/SCM/1D development test bed suitable to fix persistent model biases
- retrieval evaluation and development participant? regime-based test beds ready-made to independently estimate model and observational uncertainties, multiple LES freely available for retrieval development/testing, community results to explain where more funding is needed and why

