

Resolution Sensitivity of the GRIST Nonhydrostatic Model From 120 to 5 km (3.75 km) **During the DYAMOND Winter**

Yi Zhang With contributions from: Jian Li, Xiaohan Li, Zhuang Liu, Xinyao Rong, Yihui Zhou, Xindong Peng, Rucong Yu and many other collaborators

PIESAT Information Technology Co., Ltd. | Chinese Academy of Meteorological Sciences | Tsinghua University | CMA Earth system Modeling and prediction Center

Model: Global-to-Regional Integrated Forecast System

GRIST model development was initially started in response to explore unified weatherclimate modeling

Initial physics suites ported from two community models maintained by NCAR

Icosahedron-like Voronoi grid Domain: Global; Global Var-Res; *limited-area*

• Metric term due to coordinate transform is converted to a layer-integrated/averaged product

• Advection and pressure-gradient terms are consistently discretized around a control volume | PIESAT

A final chain in the 1st-round GRIST model development

PIESAT

Unstructured grid model

GRIST model architecture

Model: Global-to-Regional Integrated Forecast System

PIESAT

GRIST model development was initially started in response to explore unified weatherclimate modeling

✓PhysW physics suite (days to months/years)
PhysC physics suite (years to centuries)

Dynamics (~87%): dry core: ~61% with nh-solver: 22%; tracer transport: ~25%

Physics (~11%): mp: wsm6; pbl: ysu; rad: rrtmg; lsm: noah-mp

- The main structural difference between PhysC and PhysW lies in the treatment of **dynamics-microphysics** coupling
- Cloud Radiative Forcing is most sensitive to this difference (TOA energy balance)
- For GSRM, dynamics-microphysics has to be coupled more tightly to better represent explicit model convection

PhysW: AMIP simulations with cumulus parameterization

• AMIP simulations show good agreement with observations with regard to global precipitation and other largescale climatic features at ~1degree

• TOA radiation balance needs man-made tuning to get a close-to-zero budget (droplet radius, cloud fraction, ...)

• Compared with another "climate-model" configuration of GRIST (Li et al. 2022), precipitation performs better while energy balance is worse.

Two AMIP simulations of GRIST at ~1-degree

OBS

239.7 240.5

-47.2 26.1

PIESAT

AMIPW: Zhang et al. 2021, JAMES

AMIPC: Li et al. 2022, JGR-A

Table 4Global Averages for Some Important Climate Quantities					Table 3 Global Mean Radiation for Each Model					
Variable	OBS	HDC	NDC	EAMv1LR		ZM-UW	DP	DP_cape	DP_c1	DP_c2
SWCF	-47.1	-54.5	-56.5	-49.3	Net TOM radiation, W m ⁻²	0.9	1.4	0.5	2.0	1.0
LWCF	26.1	20.4	20.7	24.5	OLR_TOA, W m^{-2}	241.8	240.4	238.2	239.5	241.8
Allsky-SW TOA	240.5	240.8	238.9	239.4	SW_TOA, W m^{-2}	244.8	244.0	240.8	243.6	244.9
Allsky-LW TOA	239.8	238.2	237.3	239.0	SW cloud forcing, W m^{-2}	-49.1	-49.8	-52.9	-50.1	-48.8
Allsky-Net TOA	0.85	2.6	1.6	-0.5	LW cloud forcing, W m^{-2}	20.8	22.7	24.8	23.5	21.3
Surface SW down	186.6	188.8	186.3	184.6	Energy budget at surface, W m^{-2}	1.8	2.3	1.3	2.8	1.8
Surface LW down	345.2	341.6	342.2	344.8		1 .	. •		1 .	
Sensible heat flux	19.3	24.0	24.5	19.2	• When cumulus scheme is active, AMIPW tends to					
Latent heat flux	87.9	88.4	87.5	89.8	underestimate liquid clouds					

Note. Decimal numbers are truncated with one position (except precipitation). OBS and EAMv1LR results cite Table 3 of Rasch et al. (2019). All GRIST simulations are from the 10-year average. SW: shortwave, LW: longwave, CF: cloud radiative forcing, TOA: top of the atmosphere. Unit: W/m^2 for flux, mm/day for precipitation.

2.98

2.95

3.1

2.7

Precipitation

• In AMIPW, clouds have to be tuned more light (reduce droplet radius) for TOA energy balance, leading to overly strong Net CRF

• Some consistent behaviors also found in SCM modeling

• Li, X., Y. Zhang, X. Peng, B. Zhou, J. Li, and Y. Wang, (2023), Intercomparison of the weather and climate physics suites of a unified forecast/climate model system (GRIST-A22.7.28) based on single column modeling. *Geosci. Model Dev. Discuss.*, 2023(1-31.doi:10.5194/gmd-2022-283.

- Understanding the behavior of "explicit-convection" of a fixed model system from ~100km to ~km scale
- Assessing fine-scale resolving capability of GRIST with increasing resolution (e.g., convergence behavior)
- Understanding the correspondence between GSRM and its own coarse-resolution version (w/ cumulus parameterization), in terms of the large-scale features

- DYAMOND winter protocol
- 120km (G6), 60km (G7), 30km (G8), 15km (G9), 5 km (G9B3) for 40 days; 3.75 km (G11) for 12 days; 30 vertical layers
- ~2.1 SDPD on 1600 *Intel Xeon Gold* CPU cores, 40TB raw data
- 5-km data submitted to DKRZ is from the first GRIST-GSRM run
- The model formulation is a simplified configuration based on the previous AMIP(W) modeling setup (<u>https://doi.org/10.1029/2021MS002592</u>)

PROJECT DYAMOND 2nd PHASE - THE WINTER

DANIEL KLOCKE, TOMOKI MIYAKAWA

MASAKI SATOH, BJORN STEVENS, FALKO JUDT, WILLIAM PUTMAN, MARAT KHAIROUTDINOV, XI CHEN, NILS WEDI AND JOACHIM BIERCAMP

Intercomparison between two highest resolution runs

25

45

65

85

10.5

125

165

18 5

14 5

20.5

22.5

Global 5-km and 3.75-km are rather close in terms of mean precipitation rates and KE spectra except for those very high wave-number systems
 Effective resolution: ~6dx; from 4dx to 2dx, KE quickly dissipates, where dx is nominal grid spacing

PhysC and PhysW at 5 km

PIESAT

Spatial correlation coef between 5 km and 3.75 km is ~0.86

45

65

10.5

125

14 5

165

22.5

20.5

GRIST with the PhysC suite at 5 km (10 days)

- Overly strong precipitation
- More time consuming (+86% with a cheaper hydrostatic core)

Kinetic energy spectra: divergence and rotational part

PIESAT

- The rotational component dominates at all resolutions
- Slope transition from -3 to -5/3 is clear, large-scale is contributed by the rotational part, while meso-to-cloud scale is contributed by both, but the rotational part still dominates
- Using parametrized convection or not mainly affects the divergent part of KE spectra (G6 vs G6CU)

Global precipitation

45 65 85

20 5 22 5

• 5-km generates better coarse-resolution features among all explicitconvection simulations, with incrementally improved spatial correlation from low to high res.

• Large-scale features are slightly worse than a parameterized coarse model

Global precipitation: mean state and PDF distribution

Zonal averaged precipitation rate

Total intensity [Log (Actual, unit: mm/day)]

Frequency-intensity spectra

Cloud properties and cloud radiative forcing

90S

605

305

60N

90N

90S

60S

305

30N

60N

90N

90S

60S

305

30N

60N

90N

• Much more cloud water generation in the absence of parameterized convection for coarse resolutions (overly strong grid-scale adjustment to stabilize the model atmosphere)

• Cloud ice/LWCF insensitive across resolution (likely due to microphysics formulation)

• 5 km explicit-convection and 120-km parameterizedconvection have more similarities than other runs in terms of large-scale features

PIESAT

Interaction between cumulus ensemble and large-scale flow

 $\frac{Q_1}{c_p} = \frac{\partial T}{\partial t} + \boldsymbol{V} \cdot \boldsymbol{\nabla} T - \omega \left(\frac{RT}{c_p p} - \frac{\partial T}{\partial p} \right),$ $\frac{Q_2}{c_p} = -\frac{L \left(\frac{\partial q}{\partial t} + \boldsymbol{V} \cdot \boldsymbol{\nabla} q + \omega \frac{\partial q}{\partial p} \right)}{c_p},$

• Residual method, subresolving scale heating/drying

• Eddy activities show that the bulk effect of finely resolved model convection of GSRM on the large-scale flow corresponds to that produced by parameterized convection exerted directly on a coarseresolution model

航天宏图 PIESAT

Summary

• GRIST nonhydrostatic model exhibits reasonable resolution sensitivity across ~100 km- ~a few km resolutions, in the absence of parameterized convection

- Fine-scale features become incrementally improved as the resolution is refined (e.g., KE spectra; rainfall frequency-intensity spectra)
- Large-scale features of 5-km explicit-convection model overall converge to that of 120-km coarse-resolution parameterized-convection model
- The interaction between "cumulus ensemble" and large-scale flow as quantified by Q1-Q2-Qrad shows similarity between GSRM and parameterized-convection coarse-resolution model
- Switching off cumulus parameterization at too coarse resolution (e.g., 120 km) leads to overly strong responses of microphysics and associated condensational drying/heating (a direct response of the MP scheme)
- Cloud ice and LWCF shows insensitivity to resolution (model-specific issue)

References:

1. Zhang Y, Yu R, Li J et al (2021) AMIP Simulations of a Global Model for Unified Weather-Climate Forecast: Understanding Precipitation

Characteristics and Sensitivity Over East Asia. Journal of Advances in Modeling Earth Systems 13 (11):e2021MS002592.

https://doi.org/10.1029/2021MS002592

2. Zhang Y, Li X, Liu Z et al (2022) Resolution Sensitivity of the GRIST Nonhydrostatic Model From 120 to 5 km (3.75 km) During the DYAMOND

Winter. Earth and Space Science 9 (9):e2022EA002401. https://doi.org/10.1029/2022EA002401

Ocean-Atmosphere coupled simulation

PIESAT

Mean precipitation amount

100m-depth flow speed

• An ocean-atmosphere coupled simulation based on GRIST-GSRM and MOM6 has been established and was also subject to the DYAMOND winter protocol (5km; from Dr. Xinyao Rong)

• The atmosphere simulation is overall consistent between single and coupled simulations (e.g., rainfall)

• GSRM modeling and data

Intercomparison of regional features with variable-resolution simulation Leverage GSRM data for ML-based model physics development

• The 2nd-round model development

GRIST-LAM

Physics and LSM improvement

Mixed precision

Heterogeneous porting and acceleration

• DA and operational workflow

Thank you.

国内领先的卫星运营与应用服务提供商

400-890-0662 www.piesat.cn

北京市海淀区杏石口路益园文化 创意产业基地A区1号楼5层

