Towards global convection-permitting NWP using MPAS and MPAS-JEDI

Jake Liu (liuz@ucar.edu)

Junmei Ban, Kate Fossel, JJ Guerrette, BJ Jung, Craig Schwartz, Chris Snyder

Mesoscale and Microscale Meteorology Laboratory National Center for Atmospheric Research

2nd EarthCare Moldeling Workshop, Shuzenji, Japan 27-29 March, 2023

Joint Effort for Data assimilation Integration (JEDI)

led by Joint Center for Satellite Data Assimilation (JCSDA)

JCSDA and all groups from its partner agencies contribute to JEDI's development

https://www.jcsda.org/jedi-mpas

Version 1.0.0	Download Code	Quick Start - Tutorials Build and Test JEDI-MPAS	Support Documentation	Date 2021-09-24
Release Notes		Simulating Observations with a JEDI-MPAS Application	Forums MPAS started from	5-JEDI n early 2018
		Running the JEDI-MPAS Variational		
Model-agnostic https://github.com https://github.com https://github.com https://github.com	components: /JCSDA/oops /JCSDA/saber /JCSDA/ufo /JCSDA/ioda	MPAS model and model-specific https://github.com/JCSDA-internal/M https://github.com/JCSDA/mpas-jedi Build mechanism based on cmak https://github.com/JCSDA/mpas-bund	interfaces: <u>PAS-Model</u> ke/ecbuild: <u>dle</u>	

Liu Z et al., 2022: Data Assimilation for the Model for Prediction Across Scales - Atmosphere with the Joint Effort for Data assimilation Integration (JEDI-MPAS 1.0.0): EnVar implementation and evaluation, Geosci. Model Dev., *15*, 7859–7878.

Main Features in MPAS-JEDI

- Deterministic analysis: **3DVar**, **3D/4DEnVar**, **and hybrid-3D/4DEnVar**
- Ensemble analysis : Ensemble of EnVar (EDA), with perturbed observations or LETKF
- Analysis directly done on MPAS unstructured grid for uniform or variable-resolution mesh, global or regional mesh.
- Multivariate B model follows GSI/WRFDA, e.g., use variable transform from stream function and velocity potential to u/v wind components

All-sky radiance DA capability in MPAS-JEDI

- UFO includes interface to both CRTM and RTTOV, and allows great flexibility of configurations for using either of two or even combination of two RTMs
- Mixing ratios of 5 hydrometeors (cloud water, cloud ice, rain, snow, graupel) as part of analysis variables
 - Currently two microphysics schemes (WSM6 and Thompson) available in MPAS
- So far evaluated all-sky DA impact for AMSU-A, MHS, ABI/AHI, using CRTM-v2.3

A fully open-source model and DA system, a convenient R&D testbed for DA or model evaluation for new satellite missions like EarthCare

AMSU-A window channel all-sky DA impact @ 30km mesh

- Two 6-hourly cycling experiments of 30km-60km dual-resolution hybrid-3DEnVar
 - clrama+clrmhs : non-radiance obs + 6 clear-sky AMSU-A (ch 5-9) + 4 clear-sky MHS (ch 3-5)
 - cldama+clrmhs: above + 5 all-sky window channel (ch 1-4, 15) AMSU-A over water
- One-month period from 15 April to 14 May, 2018.
- Configuration:
 - 75% weight in ensemble B and 25% weight in static B for non-cloud analysis variables
 - 100% weight on ensemble B for 5 cloud analysis variables
 - 1200km/6km localization scale in horizontal/vertical
 - 80-member ensemble input from MPAS-JEDI's own EDA cycling at 60km mesh
 - Variational Bias Correction, CRTM-v2.3, situation-dependent obs error model

situation-dependent all-sky obs error model

89GHz, \bar{c}_{clr} =0.03, \bar{c}_{cld} =0.24, σ_{clr} =6.33, σ_{cld} =19.24

NCAR UCAR

% RMSE change by adding AMSU-A window channels: verify against NCEP-GFS analyses

UCAR

Impact of AMSU-A window channels on clouds in terms of ABI/AHI ch13 radiances

Day-1 forecast

% STD reduction

Improvement concentrated in tropical cloudy regions, with a similar magnitude (10%) of improvement like for Q and U

ABI observations vs. Day-1 forecast

ABI channel 13 (10.3 μ m) Brightness Temperatures (degree C) valid at 00 UTC 9 May 2018

Anomaly Correlation Coefficient for geopotential height

hybrid-3DEnVar: 15km-60km vs. 30km-60km

Overall beneficial when increasing resolution from 30km to 15km

High-resolution experiments @15km & 7.5km

- 3 pure 3DEnVar (i.e., 100% weight on ensemble B) experiments:
 - 6-hourly cycling for May 2019
 - **15km**-30km (full-month), **7.5km**-30km (13 days), **7.5km**-15km (13 days)
 - 11 7-day forecasts from 00 UTC analyses
 - 7.5km mesh has > 10M cells!
- 80-member ensemble input at 30km or 15km, produced using MPAS-DART
- Assimilated non-Radiance obs + (5 AMSU-A's clear-sky T-channels + all-sky window channels) (from NOAA-15/18/19 and METOP-A/B)

Time Series of RMS (omb/oma): NOAA19-AMSU-A

Percentage change of 0-7-day forecast RMSE (vs. 15km-30km exp)

Verified against NOAA19-AMSU-A temperature sounding channels

Percentage change of 0-7-day forecast RMSE (vs. 15km-30km)

Gilbert Skill Scores for 24-h accumulated precipitation forecast: day-1 to day-7

Verified against IMERG data

A single day-1 forecast of 24-h accumulated precipitation

Two physics suites in MPAS

'mesoscale_reference' suite used in all cycling DA experiments

'convection_permitting' suite

Parameterization	Scheme	Parameterization	Scheme
Convection	New Tiedtke	Convection	Grell-Freitas
Microphysics	WSM6	Microphysics	Thompson (non-aerosol aware)
Land surface	Noah	Land surface	Noah
Boundary layer	YSU	Boundary layer	MYNN
Surface layer	Monin-Obukhov	Surface layer	MYNN
Radiation, LW	RRTMG	Radiation, LW	RRTMG
Radiation, SW	RRTMG	Radiation, SW	RRTMG
Cloud fraction for radiation	Xu-Randall	Cloud fraction for radiation	Xu-Randall
Gravity wave drag by orography	YSU	Gravity wave drag by orography	YSU

New Tiedtke convection scheme is NOT scale-aware

Grell-Freitas convection scheme is scale-aware

Init: 2019-05-01 00z from GFS analysis 24-h forecast: valid 2019-05-02 00z

Observed brightness temperatures From GOES16-ABI channel 13

NCAR UCAR

Init: 2019-05-04 00z 24-hour forecast: valid 2019-05-05 00z ABI Ch13

A single day-1 cold-start forecast of 24-h accumulated precipitation

A single day-1 cold-start forecast of 24-h accumulated precipitation

Concluding Remarks

- MPAS-JEDI is MMM's new-generation community DA system with advanced features using satellite observations for DA or model evaluation, computationally successful for a global 7.5km DA setting
 - Release 2.0 this Spring/Summer and the 1st tutorial this Fall
- Using a proper physics package is important to gain from 7.5km setting
- Will likely be able to run MPAS-JEDI at 3-4km resolution with NCAR's new HPC Derecho's arrival later this year.

