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COSP: proxies for (coarse-resolution) model assessment
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COSP: proxies for (coarse-resolution) model assessment
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COSP: proxies for (coarse-resolution) model assessment

Observing system
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COSP: proxies for (coarse-resolution) model assessment

Observing system
Scale-matching ~ characterization  Summarization
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Observing system proxies map model state to observables

|.e. for clouds:
From cloud state ¢ (2), rel’i""(z)
to (potentially multi-variate) observable f(z,r,,Z, ...; Ax, Ay, Af)

via radiative properties 0’1(2), wg(Z),ﬁﬂ(Z),

Mapping seeks to account for e.g. masking, sensitivity, ...



Proxies and simulators

See also:
simulators for sensor design (e.g. ECSIM) or mission design (OSSEs)
forward operators in data assimilation

Notes:
Some observables (e.g. radiative fluxes) don’t use proxies
Comparisons to active sensors tend to be closer to instrument signals

Summaries may be multi-faceted (definitional, multi-variate, ...)



Optical depth
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Proxy precision and underlying uncertainty

Some quantities are well-measured™
0
T = J o(2)dz
TOA
Some observational estimate are hard to/not worth replicating in detail
=1
P = J P(z)o(2)dz
TOA

Some biases are hard to anticipate
r, = F7'(F(r(2), P(2)))

Some comparisons are most easily made in observation space
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Data assimilation for understanding uncertainty budgets

Data assimilation is effective when observations are unbiased® and conditional
uncertainties are known

1 1
F@x0) = —(6%) B1(0%)) + Y (Hi5x, — d) R (Hjox, — d,)

Efforts to quantify uncertainty for data assimilation might inform proxies/operators
for other contexts
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From COSP to km-scale models

Innovation is endless - experience suggests enabling experimentation and iteration
At resolved scales:

What is required for ergodicity to defeat limited sampling?

To what extent can vertical motion and microphysics be unfolded?
At unresolved scales:

Can confidence in observations and/or models be categorized!?

Effort spent in mapping model to observations can be targeted (observing system
proxy is not always the largest source of uncertainty)

What lightweight proxies for km-scale models?



