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When are models good enough?

All models are wrong, but some are useful

Box (1976); Carslaw et al. (2018)
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The “inverted v” in Nd–L
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Interpretation: precip suppression at low Nd , enhanced evaporation at high Nd ; partial
cancellation, but evaporation wins

Gryspeerdt et al. (2019)
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Process fingerprints in Nd–L space
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There’s no v in GCM
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This is what we should expect, based on process scales

Wood (2012); see also: Michibata et al. (2016); Zhou and Penner (2017); Sato et al. (2018)
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But there’s UPCAM: global model with correct regime dependence

Terai et al. (2020); see also: Michibata et al. (2016); Zhou and Penner (2017); Sato et al. (2018);
Mülmenstädt and Wilcox (2021)
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A funny thing happened on the way to CMIP6

A. Ackerman and J. Quaas (priv. comm.)
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Multiple CMIP6 models have a descending Nd–L branch
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Gettelman, Gryspeerdt, Ming, Quaas,
Zheng)

I This is the case whether or not we
“expect” enhanced evaporation based
on the model physics

I Having a model that (at least
qualitatively) matches observations
allows us to formulate and test
hypotheses about the cause of the
relationship
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Why?
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Does CCN sorting by PBL thickness explain the descending branch?
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this confounding

I And explores the meteorological phase
space in general

I And can establish causality
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Precip/evap partitioning matters for cloud feedback, too (maybe)
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radiative flux measurements at the top of 
the atmosphere, neither uniquely constrain 
cloud property changes nor the feedback 
mechanisms involved, so climate models 
can help understand these sensitivities. 
Writing in Nature Climate Change, Johannes 
Mülmenstädt and colleagues2 demonstrate 
that correcting a prevailing rain bias present 
in most models grossly influences cloud 
feedbacks by affecting the predicted lifetime 
and water content of low clouds.

Cloud property changes are not the only 
factors governing cloud feedbacks. Also 
important is the initial base state upon 
which those changes occur, including how 
much cloud water content is frozen or liquid. 
Warm clouds (with liquid water) are more 
reflective in the atmosphere than cold clouds 
(ice and mixed-phase) for the same amount 
of water, and they have a stronger cooling 
effect. As the atmosphere warms, clouds 
shift to contain more liquid water, increasing 
their reflectivity and causing a negative or 
counteracting feedback to warming. Models 
in the Coupled Model Intercomparison 
Project Phase 5 (CMIP5) underestimated 
warm clouds in the base state due to too few 
supercooled, liquid-topped mid-latitude 
low clouds, especially over the Southern 
Ocean3,4 (Fig. 1). Removing this bias from 

the present-day climate in CMIP6 models 
was achieved by adding more cloud water in 
liquid form, which reduced the magnitude 
of the cooling feedback related to a phase 
shift. As a result, the climate sensitivity of 
models increased4.

However, CMIP models continue to 
misrepresent other cloud behaviour. Warm 
clouds produce ‘warm rain’ — lighter rainfall 
derived from liquid water processes — and 
are less efficient at precipitation, so they 
have a longer atmospheric lifetime relative 
to clouds that rain more often. Although the 
effect of warm rain on low-cloud feedbacks 
has mostly been ignored, the appearance of 
unambiguous global measurements of warm 
rain frequency from CloudSat5 has brought 
attention to the topic. These observations 
show a general model bias of too much light 
rain6,7, which affects the water retained in 
clouds and their albedo. Other studies have 
also demonstrated acute sensitivity of the 
radiative properties of low clouds to light 
rains8,9. Golaz et al.8, for example, describe 
how the ability of one model to reproduce 
the observed twentieth-century warming 
is undermined when removing the model 
warm rain bias to match observations. When 
warm rain frequency was reduced, the water 
content of clouds was enhanced and a more 

exaggerated influence of aerosol on cloud 
albedo resulted, creating a substantially 
cooler twentieth century. Mülmenstädt 
and co-authors2 correct this process in an 
atmospheric model by modifying it to have 
a lower probability of warm rain, to better 
match observations. The modification 
led to longer-lived clouds and therefore a 
negative (cooling) cloud lifetime feedback 
about three times larger than the default 
configuration (Fig. 1). Importantly, this 
exposed a compensating bias as large as 
the climate sensitivity differences between 
CMIP5 and CMIP6, demonstrating the 
basic influence of precipitation on low-cloud 
feedback and climate sensitivity through its 
influence on cloud water budget.

Cloud feedbacks are complicated because 
there are many properties that contribute 
to them, and many of these operate on 
scales too small to be explicitly simulated 
by climate models. These range from 
changes to the fractional area that a cloud 
occupies in a model grid cell to the heights 
they rise above the surface, their depth in 
the atmosphere, changes to the amount 
of water suspended in them and whether 
this water shifts from solid to liquid. In 
most respects, these properties define the 
overall condensed water budget of clouds. 

• Increased supercooled cloud (liquid) water
• Too frequent warm-cloud precipitation
• Cloud lifetimes too short
• Enhanced cloud albedo
• Weak negative phase (ice-to-water) feedback

• Increased supercooled cloud (liquid) water
• Less frequent warm-cloud precipitation
• Cloud lifetimes longer
• Enhanced cloud albedo
• Weak negative phase (ice-to-water) feedback
• Large negative cloud lifetime feedback

• Too little supercooled cloud (liquid) water
• Too frequent warm-cloud precipitation 
• Cloud lifetimes too short
• Cloud albedo too low
• Large negative phase (ice-to-water) feedback
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Fig. 1 | Schematic of cloud feedback processes. Base-state cloud processes, representative of clouds over the Southern Ocean, are shown for CMIP5 (left), CMIP6 
(middle) and Mülmenstädt et al.3 (right). In CMIP5, too little cloud liquid water in the base state led to a large phase shift and large negative (cooling) feedback 
with warming. In CMIP6, the amount of liquid water in clouds was increased closer to observed values, causing a less strong phase shift and weaker cooling 
feedbacks with warming. Mülmenstädt et al. further decreased the probability of warm cloud precipitation, which increases cloud lifetime to an extent that can 
offset the change in cooling feedbacks between CMIP5 and CMIP6.

Stephens (2021); Mitchell et al. (1989); Tsushima et al. (2006); Mülmenstädt et al. (2021)
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Summary

I Models (LES, SRM, GCM, whatever) are good enough when they contribute
significantly to the overall (multiple lines of evidence) understanding

I I used to think (based on process scales) that it was impossible for GCMs and
borderline for SRMs to be good enough for evaporation processes

. I should learn to
be more optimistic!

I Observational constraints on models are great, but so are model “constraints” on
observations

I Urgently needed observations: partitioning between precip, evap, (precip evap)

See also: Mülmenstädt and Wilcox (2021)
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