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When are models good enough?

All models are wrong

Box (1976); Carslaw et al. (2018)



When are models good enough?

All models are wrong, but some are useful

Box (1976); Carslaw et al. (2018)



The “inverted v’ in Ny—L
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Interpretation: precip suppression at low Ny, enhanced evaporation at high Ng; partial
cancellation, but evaporation wins

Gryspeerdt et al. (2019)



Process fingerprints in Ny—L space
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There’s no vin GCM
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Dipu and E. Gryspeerdt (priv. comm.); see also: Michibata et al. (2016); Zhou and Penner (2017); Sato et al.

(2018)
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This is what we should expect, based on process scales
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Wood (2012); see also: Michibata et al. (2016); Zhou and Penner (2017); Sato et al. (2018)
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But there’s UPCAM: global model with correct regime dependence
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Terai et al. (2020); see also: Michibata et al. (2016); Zhou and Penner (2017); Sato et al. (2018);
Mulmenstadt and Wilcox (2021)



A funny thing happened on the way to CMIP6
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Multiple CMIP6 models have a descending Ny—L branch

L (in cloud, kg m—2)
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E3SM and GISS both produce
descending branch

Checking in other GCMs (with
Ackerman, Bauer, Dipu, Fridlind,
Gettelman, Gryspeerdt, Ming, Quaas,
Zheng)

This is the case whether or not we
“expect” enhanced evaporation based
on the model physics

Having a model that (at least
qualitatively) matches observations
allows us to formulate and test
hypotheses about the cause of the
relationship



Multiple CMIP6 models have a descending Ny—L branch
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» E3SM and GISS both produce
descending branch

» Checking in other GCMs (with
Ackerman, Bauer, Dipu, Fridlind,
Gettelman, Gryspeerdt, Ming, Quaas,
Zheng)

> This is the case whether or not we
“expect” enhanced evaporation based
on the model physics

» Having a model that (at least
qualitatively) matches observations
allows us to formulate and test
hypotheses about the cause of the
relationship



Why?
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Does CCN sorting by PBL thickness explain the descending branch?
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> Slopes are consistent with precip/evap
process signature

> But there confounding by meteorology:
thin PBL co-occurs with high CCN

> This explains part of the negative slope
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Does CCN sorting by PBL thickness explain the descending branch?
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Slopes are consistent with precip/evap
process signature

But there confounding by meteorology:
thin PBL co-occurs with high CCN

This explains part of the negative slope,
but not all of it

Global model (GCM, GSRM) represents
this confounding

And explores the meteorological phase
space in general

And can establish causality

11/13



Precip/evap partitioning matters for cloud feedback, too (maybe)

Weak reflected Enhanced reflected Miilmenstédt et al. Enhanced reflected
sunlight sunlight sunlight

* Increased supercooled cloud (liquid) water

* Less frequent warm-cloud precipitation

* Cloud lifetimes longer

« Enhanced cloud albedo

* Weak negative phase (ice-to-water) feedback
« Large negative cloud lifetime feedback

* Too little supercooled cloud (liquid) water * Increased supercooled cloud (liquid) water

* Too frequent warm-cloud precipitation * Too frequent warm-cloud precipitation

* Cloud lifetimes too short * Cloud lifetimes too short

 Cloud albedo too low * Enhanced cloud albedo

+ Large negative phase (ice-to-water) feedback * Weak negative phase (ice-to-water) feedback




Summary

» Models (LES, SRM, GCM, whatever) are good enough when they contribute
significantly to the overall (multiple lines of evidence) understanding

> | used to think (based on process scales) that it was impossible for GCMs and
borderline for SRMs to be good enough for evaporation processes
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be more optimistic!

See also: Milmenstadt and Wilcox (2021)
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Summary

» Models (LES, SRM, GCM, whatever) are good enough when they contribute
significantly to the overall (multiple lines of evidence) understanding

> | used to think (based on process scales) that it was impossible for GCMs and
borderline for SRMs to be good enough for evaporation processes. | should learn to
be more optimistic!

> Observational constraints on models are great, but so are model “constraints” on
observations

> Urgently needed observations: partitioning between precip, evap, (precip evap)

See also: Milmenstadt and Wilcox (2021)
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