

Johannes Mülmenstädt

Pacific Northwest National Laboratory February 18, 2022

PNNL is operated by Battelle for the U.S. Department of Energy

All models are wrong

Box (1976); Carslaw et al. (2018)

All models are wrong, but some are useful

Box (1976); Carslaw et al. (2018)

The "inverted v" in $N_d - \mathcal{L}$

Interpretation: precip suppression at low N_d , enhanced evaporation at high N_d ; partial cancellation, but evaporation wins

Gryspeerdt et al. (2019)

Process fingerprints in N_d - \mathcal{L} space

(b) entrainment

Gryspeerdt et al. (2019); Glassmeier et al. (2019); Hoffmann et al. (2020)

There's no v in GCM

Dipu and E. Gryspeerdt (priv. comm.); see also: Michibata et al. (2016); Zhou and Penner (2017); Sato et al. (2018)

This is what we should expect, based on process scales

Wood (2012); see also: Michibata et al. (2016); Zhou and Penner (2017); Sato et al. (2018)

But there's UPCAM: global model with correct regime dependence

A funny thing happened on the way to CMIP6

A. Ackerman and J. Quaas (priv. comm.)

Multiple CMIP6 models have a descending N_d - \mathcal{L} branch

- E3SM and GISS both produce descending branch
- Checking in other GCMs (with Ackerman, Bauer, Dipu, Fridlind, Gettelman, Gryspeerdt, Ming, Quaas, Zheng)
- This is the case whether or not we "expect" enhanced evaporation based on the model physics
- Having a model that (at least qualitatively) matches observations allows us to formulate and test hypotheses about the cause of the relationship

Multiple CMIP6 models have a descending N_d - \mathcal{L} branch

- E3SM and GISS both produce descending branch
- Checking in other GCMs (with Ackerman, Bauer, Dipu, Fridlind, Gettelman, Gryspeerdt, Ming, Quaas, Zheng)
- This is the case whether or not we "expect" enhanced evaporation based on the model physics
- Having a model that (at least qualitatively) matches observations allows us to formulate and test hypotheses about the cause of the relationship

Why?

Does CCN sorting by PBL thickness explain the descending branch?

- Slopes are consistent with precip/evap process signature
- But there confounding by meteorology: thin PBL co-occurs with high CCN
- This explains part of the negative slope

Does CCN sorting by PBL thickness explain the descending branch?

- Slopes are consistent with precip/evap process signature
- But there confounding by meteorology: thin PBL co-occurs with high CCN
- This explains part of the negative slope, but not all of it

Does CCN sorting by PBL thickness explain the descending branch?

- Slopes are consistent with precip/evap process signature
- But there confounding by meteorology: thin PBL co-occurs with high CCN
- This explains part of the negative slope, but not all of it
- Global model (GCM, GSRM) represents this confounding
- And explores the meteorological phase space in general
- And can establish causality

Precip/evap partitioning matters for cloud feedback, too (maybe)

Large negative cloud lifetime feedback

- Models (LES, SRM, GCM, whatever) are good enough when they contribute significantly to the overall (multiple lines of evidence) understanding
- I used to think (based on process scales) that it was impossible for GCMs and borderline for SRMs to be good enough for evaporation processes

- Models (LES, SRM, GCM, whatever) are good enough when they contribute significantly to the overall (multiple lines of evidence) understanding
- I used to think (based on process scales) that it was impossible for GCMs and borderline for SRMs to be good enough for evaporation processes. I should learn to be more optimistic!

See also: Mülmenstädt and Wilcox (2021)

- Models (LES, SRM, GCM, whatever) are good enough when they contribute significantly to the overall (multiple lines of evidence) understanding
- I used to think (based on process scales) that it was impossible for GCMs and borderline for SRMs to be good enough for evaporation processes. I should learn to be more optimistic!
- Observational constraints on models are great, but so are model "constraints" on observations

See also: Mülmenstädt and Wilcox (2021)

- Models (LES, SRM, GCM, whatever) are good enough when they contribute significantly to the overall (multiple lines of evidence) understanding
- I used to think (based on process scales) that it was impossible for GCMs and borderline for SRMs to be good enough for evaporation processes. I should learn to be more optimistic!
- Observational constraints on models are great, but so are model "constraints" on observations
- Urgently needed observations: partitioning between precip, evap, (precip evap)

See also: Mülmenstädt and Wilcox (2021)

Box, G., 1976: Science and statistics. Journal of the American Statistical Association, 71 (356), 791-799. doi:10.2307/2286841.

Carslaw, K. S., L. A. Lee, L. A. Regayre, and J. S. Johnson, 2018: Climate models are uncertain, but we can do something about it. Eos, 99. doi:10.1029/2018EO093757.

- Glassmeier, F., F. Hoffmann, J. S. Johnson, T. Yamaguchi, K. S. Carslaw, and G. Feingold, 2019: An emulator approach to stratocumulus susceptibility. Atmos. Chem. Phys., 19 (15). doi:10.5194/acp-19-10191-2019.
- Gryspeerdt, E., T. Goren, O. Sourdeval, J. Quaas, J. Mülmenstädt, S. Dipu, C. Unglaub, A. Gettelman, and M. Christensen, 2019: Constraining the aerosol influence on cloud liquid water path. Atmos. Chem. Phys., 19 (8), 5331–5347. doi:10.5194/acp-19-5331-2019.
- Hoffmann, F., F. Glassmeier, T. Yamaguchi, and G. Feingold, 2020: Liquid water path steady states in stratocumulus: Insights from process-level emulation and mixed-layer theory. J. Atmos. Sci., 77 (6), 2203–2215. doi:10.1175/JAS-D-19-0241.1.
- Michibata, T., K. Suzuki, Y. Sato, and T. Takemura, 2016: The source of discrepancies in aerosol-cloud-precipitation interactions between gcm and a-train retrievals. Atmos. Chem. Phys., 16 (23), 15413–15424. doi:10.5194/acp-16-15413-2016.
- Mitchell, J., C. Senior, and W. Ingram, 1989: Co2 and climate a missing feedback. Nature, 341 (6238), 132-134. doi:10.1038/341132a0.
- Mülmenstädt, J., M. Salzmann, J. E. Kay, M. D. Zelinka, P.-L. Ma, C. Nam, J. Kretzschmar, S. Hörnig, and J. Quaas, 2021: An underestimated negative cloud feedback from cloud lifetime changes. Nature Climate Change, 11 (6), 508–513. doi:10.1038/s41558-021-01038-1.
- Mülmenstädt, J. and L. J. Wilcox, 2021: The fall and rise of the global climate model. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 13 (9), e2021MS002781. doi:10.1029/2021MS002781.
- Sato, Y., D. Goto, T. Michibata, K. Suzuki, T. Takemura, H. Tomita, and T. Nakajima, 2018: Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model. Nature Commun., 9, 985. doi:10.1038/s41467-018-03379-6.
- Stephens, G. L., 2021: The cooling of light rains in a warming world. NATURE CLIMATE CHANGE, 11 (6), 468-470. doi:10.1038/s41558-021-01056-z.
- Terai, C. R., M. S. Pritchard, P. Blossey, and C. S. Bretherton, 2020: The impact of resolving subkilometer processes on aerosol-cloud interactions of low-level clouds in global model simulations. J. Adv. Model. Earth Syst., 12 (11), e2020MS002274. doi:10.1029/2020MS002274.
- Tsushima, Y., S. Emori, T. Ogura, M. Kimoto, M. J. Webb, K. D. Williams, M. A. Ringer, B. J. Soden, B. Li et al., 2006: Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: a multi-model study. Clim. Dynam., 27 (2-3), 113–126. doi:10.1007/s00382-006-0127-7.

Wood, R., 2012: Stratocumulus clouds. MONTHLY WEATHER REVIEW, 140 (8), 2373-2423. doi:10.1175/MWR-D-11-00121.1.

Zhou, C. and J. E. Penner, 2017: Why do general circulation models overestimate the aerosol cloud lifetime effect?: A case study comparing cam5 and a crm. Atmos. Chem. Phys., 17 (1), 21–29. doi:10.5194/acp-17-21-2017.