EarthCARE Workshop 2022, Online, Feb 16–18, 2022

EarthCARE Modeling Workshop 2022 – Wrap-up of DAY3 –

K. Suzuki (AORI), R. Forbes (ECMWF), T. Michibata (Okayama U.), H. Kawai (MRI), M. Zhao (GFDL), A. Gettelman (NCAR), C. Golaz (LLNL), and J Mülmenstädt (PNNL)

Rapporter: T. Michibata (tmichibata@okayama-u.ac.jp)

- Workshop Goals
- Day3 Wrap-up
- Scientific Questions and Open Discussions

Workshop Goals (Day1–Day3)

Key questions/issues arising from GCMs or climate modeling: Uncertainties of GCMs related to clouds/convection. Lessons from past COSP analysis on CMIP models and new initiatives.

► Analysis:

Talks on topical analysis studies will be encouraged, including new research initiatives using Doppler cloud radar: e.g. global view of vertical motions/mass flux.

Satellite simulators:

Overview of existing satellite simulators and tasks for analysis of ECARE using simulators

► Assimilation:

Assimilation is a significant part of the satellite-modeling collaboration.

► Field campaigns:

Solidifying ECARE outcomes w/ field measurements for observations and modeling collaborations.

Discussions on sciences connected to NASA/AOS (or ACCP), which is planned for launch around 2030, including possible collaborations with EarthCARE.

Kentaroh Suzuki (AORI/The University of Tokyo)
Use of satellite observations for constraining aerosol-cloud-precipitation processes in climate models

Science Questions:

- How can process signatures of aerosol-cloud-precipitation interaction be identified in satellite observations?
- What combination of observables? How to combine them?
- How can they serve as metrics/diagnostics for process "fingerprint"?
- How useful are these metrics/diagnostics to evaluate/constrain global models?
- How do the process signatures link to macroscopic/large-scale impacts on climate?
- How can new capabilities of EarthCARE advance model diagnostics/constraints in terms of these questions?
- MODIS-CloudSat combined PDF diagram (CFODD)
- linkage of the process realism to climate forcing
- Dynamics-microphysics coupling from satellite? Yes: Land / Ocean difference
- ACI in a GCRM; how realistic

Richard Forbes (ECMWF)

Improving global weather prediction: the role of spaceborne radar and lidar

- Global NWP models where are we heading?
- 10 DYAMOND models; There is still much uncertainty in the global characteristics of forecast models
- Operational ECMWF global IFS 9km
- beyond 10 days; extending the forecast range
- microphysical param increasing in complexity
- multi-moment microphysical parameterization
- stochastic perturbation of total tendencies (SPPT)
- source of uncertainty in parameterization (SPP)
- Challenge: to use Doppler to constrain vertical velocity at storm-scale

oving global weather prediction

Hideaki Kawai (MRI)

Examples of possible evaluation of GCMs using cloud radar and lidar satellite data

- cloud-top height of mid-latitude low clouds
- frequency of marine fog occurrence CALIPSO seem well capture the fog
- various improvements in cloud processes MRI model
- SLF is improved by using CALIPSO data, contributes to well representation of SO radiation
- improving ice fall velocity

Ming Zhao (GFDL)

A study of atmospheric river (AR), tropical storm (TS), and mesoscale convective system (MCS) associated precipitation and extreme precipitation in present and warmer climates

- Atmospheric river, GFDL 50 km highreso simulation
- Storm detection, Mesoscale convective systems
- % of annual precipitation from AR, TS, and MCS days
- % of extreme precipitation days also well captured
- precipitation intensity averaged from all AR, TS, and MCS days

- Andrew Gettelman (NCAR/CESM) Confronting global models with observations of clouds and precipitation
 - What are major issues for cloud and precipitation
 - How can EarthCARE help?
 - Model-Data fusion
 - New method; machine learning
 - WRF (4km) and 3km simulation with MG3 against PRISM observation
 - Major issues
 - cloud phase
 - size distribution
 - dynamics-microphysics coupling (vertical structure)
 - aerosol activation (ACI)
 - precipitation formation (frequency & intensity)
 - SOCRATES in-situ flight over SO: CAM6 too little ice, high climate sensitivity
 - dynamics
 - precipitation frequency: machine learning can help to reduce precipitation bias
 - to constrain microphysical relationship between Re and precipitation.

Chris Golaz (LLNL/E3SM) Learning from models that won't

- E3SMv2: lower ECS and smaller ERFaci, improved against v1, but historical temperature record

- single forcing ensemble to separate the model uncertainties
 - GHG, Aerosols, Everything else (other)
- Models should understand both GHG positive forcing and negative aerosol forcing

Johannes Mülmenstädt (PNNL)

What model resolution is required to parameterize clouds, and how can observations tell us when we're there?

- All models are wrong, but some are useful
- negative LWP response to increased Nd from AMSR
- process fingerprints in Nd-LWP: dLWP/dt via entrainment and precipitation
- effects of turbulence on cloud adjustment
- Nd-LWP funny relation in CMIP6; why?

Summary and Next Steps

Advances in Observations

- new variables in ECARE (e.g., doppler velocity, lidar ratio)
 - vertical motion, ice particle types, aerosol types (Day 1: H. Okamoto)
- improved detection sensitivity, better detection of optically thin clouds
- collocated information on CF, height, and radiation (Day 2: J.-L. Dufresne)
- Advances in Modeling and Evaluation
 - assumption of precipitation fraction and CFAD (Day1: T. Hashino)
 - ECARE in COSP (UV lidar?)
 - single forcing ensemble to separate the model uncertainties (Day 3: C. Golaz)
 - Nd-LWP relation: subgrid representation; resolution (Day 3: J. Mülmenstädt)
 - machine-learning approach to reduce precipitation bias (Day 3: A. Gettelman)

Obs-Model Synergies

- Geophysical Variable Maps (Day2: G. Feingold)
- resolution gaps, scale-aware/definition-aware comparison
- process-oriented diagnostics; emergent constraint (Day 3: K. Suzuki)
- radar and lidar synergy to evaluate models (Day 3: R. Forbes, H. Kawai)
- subgrid heterogeneity, vertical overlap
- how to constrain future extreme precipitation change using models and present-day satellite record? (Day 3: M. Zhao)

EarthCARE Workshop Day3: Questions

- How can we improve model biases by ECARE data and instrument simulator?
- How to use Doppler velocity of the ECARE in GCMs?
 - Dynamics-microphysics coupling from satellite?
 - Yes: Land / Ocean difference

- How can process signatures of aerosol-cloud-precipitation interaction be identified in satellite observations?
- What combination of observables? How to combine them?
- How do the process signatures link to macroscopic/large-scale impacts on climate?

Discussion and Comments

- Need to discuss about including EarthCARE function to the simulator with relevant researchers
- Importance of impact on weather prediction (along with climate impact)