AMSR2による陸域水循環の観測と解明

小池俊雄(東京大学)

観測波長の多様化

陸域水循環観測に有利なマイクロ波

誘電特性:水を感じやすい。

陸域水循環観測に有利なマイクロ波電磁波の伝播原理

マイクロ波放射伝達理論

陸域水循環観測に有利なマイクロ波

誘電特性:水を感じやすい。

波長~雪粒,葉:定量評価

エネルギー原は太陽光ではない →夜間センサ,日周変化

マイクロ波放射伝達理論

マイクロ波放射伝達モデル

Identification of the Radiative Transfer Equation by the SMEX02 Data Sets

Identification of the Radiative Transfer Equation by the SMEX02 Data Sets

Removing the Effect of Physical Temp.

 $Tb = e \times T$

Index of Soil Wetness(Koike, 1996)

$$ISW = \frac{T_{B36H} - T_{B10H}}{\frac{1}{2} \left(T_{B36H} + T_{B10H} \right)}$$

Polarization Index(Shimonetta, 1998)

$$PI = \frac{T_{B10V} - T_{B10H}}{\frac{1}{2} \left(T_{B10V} + T_{B10H} \right)}$$

Look-up table;

- Soil moisture: range of 0.000– 0.600 m³m⁻³, step size of 0.001 m³m⁻³;
- □ Vegetation water content: range of 0.000-1.800 kg/m², step size of 0.001 kg/m²;
- □ Fractional vegetation coverage: range of 1-100%, step size of 1%; and
- □ Soil and vegetation physical temperature: 293 K (fixed).

Seasonal Variation of the Soil Moisture in the Tibetan Plateu 6G Mv(%) tibet_D 2003SEP-lost

JAXA Satellite Monitoring of Agrometeorological Information (JASMAI)

本ホームページでは、衛星観測から得られる様々なデータを利用して、土壌水分、日射量、地表面温度、積雪域などの穀物・農作物の生育にかかわる情報を、国・地域ごとに可視化して提供しています。

モニタリングの対象は、主に、海外の大規模な穀倉地帯です。下記の地図より、対象エリアをクリックしてご覧ください。

Information

2012/08/24	Windsat土壌水分データを更新しました。
2012/08/24	モニタリングの対象エリアに、インドを追加しました。
2012/08/06	地域別時系列グラフの北米エリアに、カナダーオンタリオ州を追加しました。
2012/07/20	衛星による農業気象情報のモニタリングページ(試作)をオープンしました。

※本ホームページは Firefox14 / Internet Explorer8 で動作確認しています。 これ以外のブラウザでは、正しく表示されない可能性があります。

Copyright @2012 Japan Aerospace Exploration Agency, Earth Observation Research Center All rights reserved.

XA EORC

Monitoring area

- North America
- Mexico
- South America
- China
- North-East China
- Indo
- Russia & Ukraine
- Europe

- <u>Contents</u>
- Distribution map (15days, monthly)
- Time series graph (10days)

Product

- Soil moisture (AMSR-E/Windsat/AMSR2)
- Snow cover(MODIS)
- Surface temp.(MODIS)
- Solar radiation(MODIS)

Distribution map (15days, monthly)

Time series graph (10days)

マイクロ波放射伝達モデル

マイクロ波放射伝達理論

物体からの熱放射と<mark>散乱</mark>によりエネルギーが射出される.

物体の熱放射による射出

ds

散乱

物体に流入する放射エネルギーは、伝播中に存在する 物体により一部は吸収され、一部は物体により散乱さ れることにより伝播中に減衰する.

物体の吸収による消散

物体の散乱による消散

大気(層0)- 積雪層(1)-土壌(層2)の3層構造を考える:

土壌放射エネルギーは積雪からの熱放射と共に、その伝播過程で積雪により吸収され減衰する.

土壌放射エネルギーは雪粒子による散乱により減衰する。同時に雪粒子の散乱によりエネルギーが射出される。

雪面からは,前者による直達 放射輝度と後者による散乱放 射輝度が,放射され,この両 放射輝度の和が,人工衛星に 搭載されたマイクロ波センサ に輝度温度として受信される.

マイクロ波輝度温度

人工衛星のマイクロ波センサにより計測される輝度温度は、周波数帯により大きく異なる.

1980年代の積雪衛星プロダクトの研究者は, 大きく異なる周波数特性を利用し,2つの周 波数の輝度温度の差から積雪量を推定する手 法を検討.

(Koike, et al, 2000)

植生の影響評価

$$T_{b} = T_{bsnow} e^{-\tau c/\mu} + (1 - \omega c)(1 - e^{-\tau c/\mu})T_{c}$$
$$NDVI \rightarrow LAI \rightarrow W_{c} \rightarrow \tau c$$
$$T_{c} = T_{snow}, \quad \omega c = 0$$

Fraser in Colorado

受動型マイクロ波衛星データに基づく 積雪衛星プロダクトによる北半球積雪深の長期推定

1992年から1999年までの積雪分布

AMSR2 Validation Site : Siberia

This site started in 2001 as the AMSR/AMSR-E validation site. Since then, the site is maintained by the University of Tokyo in the cooperation with the Institute for Biological Problems of Cryolithozone.

Snow Cover (December, 2012)

JAXA/EORC RESTEC

MODIS / Snow Cover Extent (December, 2012)

Ascending

AMSR2 Snow Depth (December, 2012, Descending)

AMSR2 Snow Depth (December, 2012, Ascending)

low

high

Component of the estimation method for the evaluation of snow distribution over the Tibetan plateau

Decision criteria for the apparent snow cover based on 19, 37 and 89GHz

Comparison with the estimated snow distribution and MODIS's snow cover area over the Tibetan Plateau

マイクロ波放射伝達モデル

衛星による降水観測

Integrated Field Campaign in Fukui

MicroRainRadar

Satellite

3D Doppler Radar

Aircraft measurements

Snow Particles and balance

Radiosoundings

Automatic WeatherStation

Ceilometer

Radiative Transfer Model and Algorithm

Radiometers

Lookuptable – Measurements

マイクロ波放射計(TMI)によるチベット高原の降水

データ同化による熱・水蒸気のフローの算定

- 陸面データ同化システム: 0.5度グリッド
- 入力データ
 - 全球降水 GPCP: 1度グリッド
 - 全球放射 ISCCP: 2.5度グリッド
 - 米国数値気象予報再解析: 1.5度グリッド
- 葉面積指数: MODIS
- マイクロ波放射輝度温度:
 AMSR-E

チベット高原の顕熱/潜熱比(ボーエン比) の空間分布の季節変化

LDASUT

上空から見る降雨・温位(4月)

Page 12

上空から見る風の収束・前線の形成(4月)

Experiments

TRMM (Obs.)

Assimilation (qv,qc,qs,qi)

No assimilation

- No assimilation \rightarrow poor simulation of the event
- Simulates the event \rightarrow wrong place
- Persistent overestimation NW ~(32E,0N)

- Assimilation improves fore cast
- Spatial pattern similar to observed(TRMM)
- Quantitatively: still a way to go

Assessment of accuracy

The black line on **b**) and **d**) shows the assimilation time (23:10 UTC 4th April, 2004)

2/5/2013

AMSR2による陸域水循環の観測と解明

小池俊雄(東京大学)

