K&C Phase 4 – Status report

Detection of Biomass and Structural Change using Japanese L-band SAR, Australia

John Armston1,2,5, Richard Lucas1,3,6, Peter Scarth1,2, Anthea Mitchell3,7, Peter Bunting6, Stephen Roxburgh4, Keryn Paul4, Stuart Phinn1

1Joint Remote Sensing Research Program, University of Queensland
2Qld Department of Science, Information Technology and Innovation
3University of New South Wales
4CSIRO Sustainable Ecosystems
5University of Maryland, USA
6University of Aberystwyth, Wales
7NSW Office of Environment and Heritage

Science Team meeting #24
Tokyo, Japan, January 29-31, 2018
Project outline and objectives

Objectives

1. Improvement of large area woody extent, height, cover, and above-ground biomass mapping using PALSAR-1 and PALSAR-2 mosaics

2. Determine if changes in woody structure due to processes of clearing, regeneration, fire and thickening may be detected using combined Landsat and PALSAR-1 and PALSAR-2 time-series

Supports K&C thematic drivers

Carbon cycle science – products are to be input to carbon data assimilation schemes, carbon offsets research and national reporting frameworks

Environmental Conservation – regional mapping at a scale relevant to land management and State Government vegetation management policy
Objective 1

Improvements to large area woody extent, height, cover, and above-ground biomass mapping using PALSAR-1 and PALSAR-2 mosaics

1. Australian vertical profile product improvements
 o ICESat GLAS vertical profile processing update
 o Validation using TERN AusCover Supersites

2. Completion of the Australian biomass plot library
 o TERN Auscover plot measurement spatial database
 o Biomass assessment and error propagation

3. Development of an Australian above ground biomass map
Segmentation of continental Landsat persistent green vegetation cover and ALOS PALSAR-1 HH/HV mosaics (Phase 3)
Australian Vegetation Structural Formation Product (Phase 3)

Significantly improved detail and accuracy compared with existing mapping.
Australian Vertical Plant Profile Products (Phase 4)

H_{peak}

$H_{0.95}$

Cover (10-30m)

Cover (>30m)
5 km × 5 km
TERN AusCover Supersites

ALS Data Products:
- Height percentiles
- Cover \((1-P_{\text{gap}})\)
- Vertical Plant profile \((F_{\text{app}})\)
- Above Ground Biomass (TBC)
Validation of Revised Vertical Plant Profile Products
Provision of ALOS PALSAR strip data

Queensland Biomass Library (2009)

NASA PACRIM Injune (2000)

Queensland/NSW Biomass Map (2011)

JRSRP (2007)

Australian Biomass Map (2017)

Landsat PG, ALOS HH and HV 50 m mosaic (2009)

JRC Global Biomass Map

Australian Biomass Change (2018)

Australian Biomass Restoration (2017)
The TERN AusCover Australian Plant Biomass Library

Source project
- Ausplot Forest Monitoring Network (Aus)
- CATER (Qld)
- Cobar Penepaln biomass study (NSW)
- CSIRO Environmental Plantings (Aus)
- Cyclone Monica (NT)
- DSITI RSC (Qld)
- Forestry Corporation Commercial Estate (NSW)
- Forestry Tasmania Lidar (Tas)
- Herbarium - Biocondition (Qld)
- Herbarium - Brisbane City Council (Qld)
- Herbarium - Bunya Mountains (Qld)
- Herbarium - Cali1 (Qld)
- Herbarium - Cali2 (Qld)
- Herbarium - Gidgee (Qld)
- Herbarium - Glennlnes (Qld)
- Herbarium - Grid (Qld)
- Herbarium - Mulga drought (Qld)
- Herbarium - NQ dieback (Qld)
- Jarradale thinning experiment (WA)
- NATT (NT)
- NFPP (Qld)
- NT Bushfires - Cape York (NT)
- NT Bushfires - Kimberley (NT)
- NT Bushfires - Three parks (NT)
- OEH Forest Monitoring Program (NSW)
- SMAPEX (NSW)
- TERN Supersite Network (Aus)
- TRAPS (Qld)
- UNSW redgum study (NSW)
- UQ brigalow habitat study (Qld)
- UQ brigalow regrowth - Dwyer (Qld)
- Victorian Forest Monitoring Program (Vic)
- WAPW South West Forests (WA)
- Wog Wog Fragmentation Experiment (NSW)

1,073,837 hugs of 839,866 trees
1,467 tree species
15,706 plots from 16,391 observations across 12,663 sites

The TERN AusCover Australian Plant Biomass Library

AGB allometric model
- Fresh Weight (FW)
- %MC
- Dry Weight (DW)
- Allometric model
- Predicted AGB

BGB allometric model
- Fresh Weight (FW)
- %MC
- Dry Weight (DW)
- Stem diameter
- Allometric model
- Predicted BGB

Allometric model functional types:
- Single stemmed acacia trees
- Multi-stemmed acacias and mallees
- Eucalypt trees
- Other trees – high wood density
- Other trees – low wood density
- Shrubs

Plot-based biomass
- Plot biomass (t DM)
- Plot area error

Site-based biomass
- Site biomass (Mg DM ha⁻¹)

Sampling error

[Images and diagrams related to Australian Plant Biomass Library are present but not transcribed.]
The TERN AusCover Australian Plant Biomass Library
Number of satellites supporting regional to global biomass mapping

<table>
<thead>
<tr>
<th>Optical</th>
<th>C-band</th>
<th>L-band</th>
<th>P-band</th>
<th>Spaceborne lidar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landsat-7</td>
<td>ERS-1 SAR</td>
<td>JERS-1 SAR</td>
<td>BIOMASS</td>
<td>ICESAT GLAS</td>
</tr>
<tr>
<td>Landsat-8</td>
<td>ERS-2 SAR</td>
<td>ALOS PALSAR</td>
<td></td>
<td>ICESAT-2</td>
</tr>
<tr>
<td>Sentinel-2</td>
<td>RADARSAT-1</td>
<td>ALOS-2 PALSAR-2</td>
<td></td>
<td>GEDI ON ISS</td>
</tr>
<tr>
<td></td>
<td>RADARSAT-2</td>
<td>SAOCOM CONAE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentinel-1</td>
<td>NISAR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Development of an Australian above ground biomass map
Demonstration using Machine Learning Pipelines

Landsat:
- PG mean
- PG SD

PALSAR:
- HH mean
- HH SD
- HV mean
- HV SD

ICESat:
- ρ_g, ρ_v
- F_{cov} 0-5m
- F_{cov} 5-10m
- F_{cov} 10-30m
- F_{cov} 30m+
- F_{cov}
- RG SD
- $H_{0.25}$
- $H_{0.50}$
- $H_{0.75}$
- $H_{0.95}$
- H_{Mode}

<table>
<thead>
<tr>
<th>Lower</th>
<th>Upper</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>85</td>
</tr>
<tr>
<td>100</td>
<td>500</td>
<td>81</td>
</tr>
<tr>
<td>500</td>
<td>1000</td>
<td>283</td>
</tr>
<tr>
<td>1000</td>
<td>2000</td>
<td>420</td>
</tr>
<tr>
<td>2000</td>
<td>5000</td>
<td>731</td>
</tr>
<tr>
<td>5000</td>
<td>10000</td>
<td>2242</td>
</tr>
</tbody>
</table>

Total RMSE = 207 Mg/ha
Continental Above Ground Biomass Prediction
Continental Above Ground Biomass Prediction

- Demonstration of integrated ecological data science using K&C and TERN data, machine learning, and open source tools
- Vertical structure metrics help biomass estimation
- Field data is more critical than ever when using machine learning
- Add additional attributes as constraints (soil, climate…)
- Improve error propagation in prediction of AGB
- Challenges in implementation with temporally coincident PALSAR-2 and Landsat products
National Carbon Accounting System estimates of Maximum AGB (MaxBio)
The values at which aboveground biomass curves asymptote when modelling natural forest growth.

Modelled MaxBio - EO predicted =
Best areas for reforestation?
Objective 2

Determine if changes in woody structure due to processes of clearing, regeneration, fire and thickening may be detected using combined Landsat and PALSAR-1 and PALSAR-2 time-series.

1. Quantifying and understanding the response of terrestrial ecosystems to change
 - Injune Landscape Collaborative Project (ILCP)

2. Quantifying regrowth structure and AGB following clearing
 - Queensland and NSW SLATS (Qld DSITI and NSW OEH)
 - Evaluation of the use of Synthetic Aperture Radar (SAR) data for mapping woody regrowth in New South Wales

3. Impact of fire management on vegetation structure and fuel loads
 - Landscape scale fire experiment (Kapalga Station, Northern Territory)
Original Pilot Study Locations

- **Controlled burning at Lillimur, Victoria (DELWP, 2007)**
- **Injune Landscape Collaborative Project Queensland (DSITI, 2015)**
- **Cobar Peneplain Cypress Pine, NSW (Daryl Green, 2013)**
- **ILCP ecosystem change Quantifying woody regrowth Impacts of fire management**
- **Processed ALOS-2 L1.1 data**

Mulga regrowth harvesting, Queensland (DSITI, 2014)

Early-dry season fire at Kapalga Research Station, Kakadu National Park, NT (B. McKaige, CSIRO)

Controlled burning at Lillimur, Victoria (DELWP, 2007)
1. **Airborne data acquisitions** - 2000, 2009 and 2015 (Lidar, HS, AIRSAR)
2. **Spaceborne data** - C-/L-band SAR/optical/ICESat
Quantifying regrowth structure and AGB following clearing

Lucas et al. (2014) RSE

Schmidt et al. (2015) RSE
Quantifying regrowth structure and AGB following clearing

Evaluation of the potential of L-band SAR for mapping areas of increasing woody cover in NSW (i.e. regrowth in previously cleared areas and new growth)

- The availability of ALOS-1/2 PALSAR imagery over NSW at moderate (25 m) and finer (~12.5 m) resolutions provides an opportunity to assess their performance in retrieving the AGB and detecting change in woody vegetation.

- Aim was to establish a relationship between L-band backscatter and above ground biomass (AGB) and invert this to model AGB for two time periods - relating the increase in biomass to an increase in woody vegetation cover.

Relationship between L-band backscatter and above ground biomass (AGB)

Australian Plant Biomass Library

Statewide Model

Brigalow Belt South Model

South Western Slopes
Mean difference in dB between 0.3 and 1.7 dB, with 13-100% difference in AGB predictions
Mean difference in dB between 0.3 and 1.7 dB, with 13-100% difference in AGB predictions.
Comparison of ALOS PALSAR and ALOS-2 PALSAR-2 Mosaics

HH:HV:HH (RGB) AGBD (Mg/ha) HH:HV:HH (RGB) AGBD (Mg/ha)

ALOS PALSAR 2008 ALOS-2 PALSAR-2 2016
Evaluation of the use of Synthetic Aperture Radar (SAR) data for mapping woody regrowth in New South Wales

Limitations:

- Effects of surface moisture variation on the observed backscatter in ALOS-1/2 PALSAR FBD and mosaic products
- Change analysis using FBD images detected a high number of false positives due to surface moisture conditions
- The lack of forest type information associated with biomass plot measurements, lack of uniformity in data collection, small plot size, temporal range and under-representation of forest types
- Lack of independent data for validation

Recommendations:

- Evaluate improvements in biomass estimation following normalization of L-band SAR against moisture content variation between swaths
- Compare the use of lidar to calibrate SAR images vs. modelling biomass using SAR alone for retrieval of AGB in regrowth forests
- Detecting new woody growth and regrowth in existing areas using multi-date SAR data

ALOS-2 PALSAR Fine Beam Dual (FBD) polarisation coverage (327 scenes) for NSW acquired between September and November 2016.
PALSAR/PALSAR-2 data access

- ALOS-2 PALSAR-2 mosaics for Australia
 - ALOS-2 PALSAR-2 strip data for Queensland / NSW in case of extension?

- Fine Beam Dual (FBD) data over selected case study sites
 - ALOS PALSAR and ALOS-2 PALSAR-2
 - Extend PALSAR-2 time-series to March 2019 in case of extension

- PALSAR/PALSAR-2 ScanSAR mosaics not required
Deliverables / Milestones

- Australian vertical profile metric maps (Complete)
- Australian Plant Biomass Library (Complete)
- Australian above ground biomass map (April 2018)

Additional deliverables by March 2019

- Above ground biomass and woody regrowth maps change maps using PALSAR-1/2 and Landsat/Sentinel time-series at Queensland and New South Wales sites
- Regional application of selected case study results – Queensland and New South Wales
- Validation of above ground biomass maps at nominated reference sites using TERN AusCover airborne lidar
- Journal publication (submit to K&C Special Issue in Remote Sensing – titles TBD)
K&C Phase 4 – Status report

Detection of Biomass and Structural Change using Japanese L-band SAR, Australia

John Armston¹,²,⁵, Richard Lucas¹,³,⁶, Peter Scarth¹,², Anthea Mitchell³,⁷
Peter Bunting⁶, Stephen Roxburgh⁴, Keryn Paul⁴, Stuart Phinn¹

¹Joint Remote Sensing Research Program, University of Queensland
²Qld Department of Science, Information Technology and Innovation
³University of New South Wales
⁴CSIRO Sustainable Ecosystems
⁵University of Maryland, USA
⁶University of Aberystwyth, Wales
⁷NSW Office of Environment and Heritage

Science Team meeting #24
Tokyo, Japan, January 29-31, 2018