3.9 Snow and ice
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1. INTRODUCTION

The Qinghai-Tibet Plateau (QTP) is known as the
Asian water tower, with an average altitude of more than
4000 meters [1]. It is bounded by the Pamir Plateau in the
west, Hengduan Mountain in the east, the southern end of
the Himalayas in the south and Kunlun Altun Mountain,
Qilian Mountain in the north [2]. The QTP is a high
terrain and thus receives more solar radiation energy than
lower elevation areas [3]. The Chinese mainland climate
is affected by the South Asian and East Asian monsoons,
resulting in a diversity of climates in different regions,
such as the rainy climate in China's southern part of the
Yangtze River and drought in Northwest China [4]. In
addition, the QTP has many glaciers, lakes, groundwater
and surface rivers, making the QTP a super water tower in
the plateau area, which affects the water system layout of
all of Asia [5]. The QTP is a region with a large amount
of permafrost at high latitudes [6]. As a key component of
the Earth's cryosphere, permafrost plays an important role
in the surface energy balance, carbon and water cycles,
terrestrial ecosystem, and hydrological system [7]. In
recent years, with global warming, permafrost
degradation has accelerated [8], and degradation has had
an impact on the environment and the energy and material
balance. Therefore, it is very important to monitor the

permafrost status on a large scale for a long time series [9].

Traditional measurement methods of permafrost
deformation include GPS [10], leveling surveys [11], and
drilling [12]. However, due to the harsh environment of
the QTP, these methods cannot monitor permafrost on a
large scale [8]. The multitemporal interferometric
synthetic aperture radar (MT-InSAR) technique is a useful
tool to map ground deformation [13]. MT-InSAR has
been used to monitor the freeze-thaw cycle of permafrost
[14-32], and to retrieve the thickness of the active layer
[33-38] and permafrost degradation [39-42]. In these
studies, some researchers have been committed to
monitoring permafrost for a long time. Zhang [8] used
Sentinel-1, ENVISAT and ERS-1 data to evaluate the
ground deformation of permafrost and the risk along the
Qinghai-Tibet Railway (QTR) from 1997 to 2018. The
results show that the estimated deformation rate ranged
from —20 to +10 mm/year and most of the QTR appeared

to be stable. Daout [43] used ENVISAT and Sentinel-1
data to construct the spatial and temporal dynamics of
permafrost deformation in the northeastern QTP from
2003 to 2019. The results show that pervasive subsidence
of the permafrost of up to ~ 2 cm/year, increasing by a
factor of 2 to 5 from 2003 to 2019. However, because the
C-Band SAR data are easily affected by the region’s
vegetation and the atmosphere, the results may be affected
by spatial and temporal decorrelation. The ALOS Phased
Array type L-band Synthetic Aperture Rada (PALSAR) is
preferred for ground subsidence monitoring in areas
covered by vegetation and where there is a high rate of
ground deformation [44]. Therefore, in order to improve
the coherence of targets, we used L-band datasets to
monitor the ground deformation of permafrost from 2007
to 2021.

The ground deformation process of permafrost is
complex. With tectonic activity, erosion, and
sedimentation all interacting in the QTP [45], it is difficult
to accurately describe the freezing and thawing cycle of
permafrost. Therefore, research has attempted to
understand the deformation characteristics of permafrost.
The sinusoidal model [46,47] and degree-day model
[8,48] were used to describe the seasonal variation in the
ground surface due to up-down deformation cycles of
permafrost. However, it remains controversial which type
of model is better at describing seasonal deformation [49].
To extract the temporal characteristics of permafrost
directly from the SAR data, Wang [49] directly converted
the network of interferograms into a deformation time
series without a preset deformation model. Then, the
long-term deformation velocity and seasonal deformation
were extracted. However, for seasonal deformation, Wang
assumed that the highest terrain elevation occurred from
January—February, and the lowest elevation occurred from
August—October. Wang also averaged the intra-annual
deformation value. The average intra-annual deformation
may smooth the features of the permafrost deformation. In
addition, using prior knowledge may not be suitable for
application to the QTP with spatial heterogeneity. In this
study, we proposed a long-term deformation velocity and
maximum seasonal deformation model without any prior
knowledge to directly extract the deformation features of
permafrost.
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To reveal the status of the permafrost, we extracted
time series deformation directly. First, we used 66 scenes
of ALOS data (2007-2009), 73 scenes of ALOS-2 data
(2015-2020) and 284 scenes of Sentinel-1 data (2017-
2021) to reveal the spatial and temporal permafrost
deformation in the northern QTP. Second, thermal
collapse of permafrost were detected. Finally, we revealed
the relationship between the maximum seasonal
deformation and the long-term deformation velocity.
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1. INTRODUCTION

The Greenland Ice Sheet has been losing mass
dramatically due to the glaciers’ acceleration, thinning,
and retreating, increasing its contribution to sea level rise
[1,2]. Glacier retreating is one of the processes that
control the recent speedups of Greenland’s tidewater
glaciers. As a glacier retreats, it accelerates to compensate
for the loss of downstream buttress.

At many marine-terminating glaciers in Greenland, their
termini have been undergoing strong fluctuations at
seasonal, inter-annual, and decadal timescales. A detailed,
quantitative assessment of terminus variations can help to
understand the mechanisms that control such variations.
Conventionally, the terminus positions are delineated
manually from remote sensing imagery. But manual
practices can be labor-intensive and time-consuming
when processing a big volume of images taken over
decades and over large area such as Greenland.

This study aims to automatically delineate the terminus
positions of Greenland glaciers by applying a deep
learning architecture to multi-sensor and multi-temporal
satellite images, including PALSAR-2 data. The L-band
SAR images from PALSAR-2 promise high enough
spatial resolution for delineating glacier termini and the
penetration through clouds.

2. RESEARCH ACHIEVEMENTS

Our key achievement was to integrate seven remote
sensing datasets (including ALOS-1 & -2) into a single
deep learning network, DeepLabv3+. The network
architecture is illustrated in Figure 1. We automated the
delineation of the calving fronts of the Jakobshavn Isbre,
Kangerlussuaq, and Helheim glaciers using Envisat,
TerraSAR-X, Landsat-8, Sentinel-1 & -2, and ALOS-1 &
-2 images. We successfully applied the network to ALOS-
2 images without using them to train the network. Such a
successful  application  showed our  method’s
generalization on L-band SAR images. We also proved
the network’s generalization on different glaciers and data
types. The promising results for images with light cloud
and shadow also attested to the robustness of our method.
The integration of seven remote sensing datasets offers us
sub-weekly calving front datasets. The high-temporal-
resolution multi-sensor remote sensing imagery enables
detailed investigations of seasonal and interannual calving
front variations and large calving events. The increased

accuracy, generalization, and robustness of the deep-
learning method demonstrate that our method has the
potential to be applied to many other tidewater glaciers
both in Greenland and elsewhere in the world, using
multi-temporal and multi-sensor remote sensing imagery.
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Fig. 1 Architecture of DeepLabv3+. The details of the
architecture are described in [3].

3. RESULTS

The averaged uncertainty of our method is 86 meters for
all the datasets used and 75 meters (7.5 pixels) for ALOS-
2 images only. We produced a total of 1965 calving
fronts at the three largest outlet glaciers of Greenland. Fig.
2 shows examples of network-delineated calving fronts in
the test set. Most of our results show a high-degree
agreement with manual delineation, even for images with
light cloud coverage (e.g., Fig. 2¢).

The integration of the seven datasets enabled us to
produce sub-weekly calving front datasets of all three
glaciers. High temporal resolution enables detailed
investigations of calving front variations. For instance, we
could directly obtain the number and the date of large
calving events from the time series. Moreover, we could
reliably capture the seasonal and interannual variations
with high temporal resolution.

Jakobshavn Isbra’s two branches underwent three-phase
interannual variations with strong seasonality. The time
series of Kangerlussuaq’s calving front variation shows
strong interannual and seasonal variations, and its
seasonality also changes interannually. At Helheim, the
time series has two phases: 2002-2011 and 2013-2020.
The retreat rate of the second phase was double the first
phase, and the second phase has strong seasonal variations.
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Fig. 2 Examples of deep-learning-delineated calving
fronts (red line) in the test set. Background image of
(d) is an ALOS-2 SAR image taken in June 2015.
Modified from [3].
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1. INTRODUCTION

Rock glaciers are debris-ice landforms widely distributed
in the mountainous periglacial realm worldwide [1]. They
serve as important indicators for permafrost which is
defined by its underground temperature and invisible in
most other cases, especially for regions such as the
Tibetan Plateau where in-situ observations are limited in
spatial coverage due to the harsh and remote environment.
Surface kinematics of rock glaciers, which manifests the
characteristic permafrost creep process occurring at depth,
has become an accessible and quantifiable feature with
the application of remote sensing methods.

This study extends the use of Interferometric Synthetic
Aperture Radar (InSAR) from measuring ground
subsidence to quantifying rock glacier motions in
permafrost regions in Tibet and Nepal where periglacial
landforms are still not well studied. Based on the InSAR-
observed surface kinematics, we further classified the
geomorphological type of a puzzling landform in central
Tibet and also inferred ground ice content stored in rock
glaciers in Khumbu Valley, Nepal.

2. RESEARCH ACHIEVEMENTS

Through two InSAR-based studies, we have not only
mapped surface motions at selected rock glaciers but also
gained quantitative insights into the geomorphology and
rheology of permafrost creeping.

The first study, as published in [2], aimed to address a
long-standing  issue  concerning geomorphological
classification from a kinematic perspective. A group of
periglacial landforms consisting of several lobes were
discovered in the East Kunlun Mountains of China 30
years ago [3] but were ambiguously classified as rock
glaciers and later as gelifluction deposits [4]. We revisited
the previous research question centering on the
classification of the periglacial landforms near Jingxian
Valley, in a way that integrates the kinematic and
geomorphologic features of the landforms. We employed
InSAR to ALOS-1 PALSAR and ALOS-2 PALSAR-2
images to quantify the temporal and spatial variations of
the downslope creeping velocities (Figure 1). We also
conducted geodetic measurements, in-situ field surveys,
and excavated test pits to provide supplementary
geomorphological information. By critically analyzing the
influences that the mechanical processes imposed on the

landform and piecing our observations together, we
identified the landform as a debris-mantled-slope-
connected rock glacier, with gelifluction processes
occurring on the surface as small-scale and discrete
events.

20090806-20090921 20160721-20160929

20090621-20090806

Fig. 1 Velocity maps of one lobe at the Jingxiangu
Rock Glacier, showing the temporal and spatial
variations of the downslope velocities as estimated
from InSAR. The brown circles mark the locations of
the two test pits. Figure modified from [2].

The second study, published as a discussion paper and
still under review in [5], investigated the potential water
storage of the rock glaciers situated in Khumbu Valley,
Nepal by developing a velocity-constrained model to infer
their ice contents. We adopted a rheological model based
on adaptations of Glen’s flow law and assumed a
homogeneous two-layer structure for rock glaciers that
consists of an ice-free active layer and an ice-rich
permafrost core. The velocity constraints applied to the
model were derived from InSAR measurements using
ALOS-1/2 PALSAR-1/2 images (Figure 2). The inferred
ice fraction of the studied rock glaciers in Khumbu Valley
ranges from 71.0% to 75.3%. Extrapolating from our
findings in Khumbu Valley, the total amount of water
stored in rock glaciers could be ~10 billion m® over the
Nepalese Himalayas.
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Fig. 2 Velocity field maps show the average movement
rate of the coherently moving parts of five rock
glaciers (purple outlines) in Khumbu Valley. The
boundaries of the landforms delineated in previous
inventorying work are in red polygons. The
background is the Google Earth Images. RG: rock
glaciers. The figure is modified from [5].
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Table 1) Orbit and acquisition dates of PALSAR-2

data

Orbit Date Local Time Referential snowless day
Descending 2015/2/3 11:30

Descending 2016/3/1 11:30

Descending 2017/2/28 11:30

Descending 2017/111/7 11:30 YES
Descending 2018/1/30 11:30

Descending 2018/2/27 11:30

Descending 2019/2/26 11:30

Descending 2020/2/25 11:30

Ascending 2015/3/15 23:30

Ascending 2015/11/22 23:30 YES
Ascending 2018/1/28 23:30

Ascending 2018/3/25 23:30

Ascending 2019/2/24 23:30

Ascending 2020/2/23 23:30

HEROBIMGHRIE L, s RFRE - HHEF
WRGERT WABIT DY 7L & A NFEE S A X
( https://platform.nhdr.niigata-u.ac.jp/~snow-map/ ) @
ERRICERA SN TWD L D02 HWET, 1ERBEO
BAHIEHAME & BLHE R S OfE (Fig 1) 2508k S
N7zt D THY, PALSAR-2 B H 24 CETr,

B EH S o F IR B AR T 5720,

JAXA B A e A + of) g 8 (10m f#
B [2018~2020 A] (ver21.11)) % AT L7=[8],

F 7 BUHF A A O S & B 2 R T 5 720,
JAXA ALOS 2 EK# i3 €7 /L (DSM) "ALOS
World 3D - 30m (AW3D30)" (ver. 3.2)% AF L72[9],

SOICKBREDHEEREE IG5 2 D22 B RET 5
e, [IRTFHART L TRM] B2
PALSAR-2 B H DY H LR HIZOWT, BEKE,

HER, KJUROFHE#REZ AF L7 (Table2) .

Table 2) Meteorological data provided by the Japan

Meteorological Agency
BEETR 2EETR
HERAREL Date Orbit (cm) (cm)

BIH YA #IH XA &=
-0.793  2015/2/3 Desc 2 67 62 -5
-0.781 2018/1/28 Asc 9 3 58 b5 -3
-0.712  2016/3/1 Desc 2 13 2 12 10
-0.617 2020/2/23 Asc 0 0 0
-0.597 2019/2/24 Asc 0 0
-0.539 2017/2/28 Desc 0 0 0 0 0
-0.527 2018/1/30 Desc 18 45 55 94 39

-0.52  2015/3/15 Asc 0 0 13 -4

-0.411 2019/2/26 Desc 0 0 0
-0.361 2018/3/25 Asc 0 0 0 0 0
-0.208 2018/2/27 Desc 1 0 87 8 -2
-0.033  2020/2/25 Desc 0 0 0 0 0

fEkE ®E &&

TEEIfREL Date Orbit (mm) SR KR
AR %A (CC (C

-0.793  2015/2/3 Desc 0.5 0 -02 24
-0.781 2018/1/28 Asc 5.5 0.5 -1.2 103
-0.712  2016/3/1 Desc 225 6 -1.1 38
-0.617 2020/2/23 Asc 45 115 37 69
-0.597 2019/2/24 Asc 1.5 0 19 24
-0.539 2017/2/28 Desc 0 0 -29 -12
-0.527 2018/1/30 Desc 165 255 -33 82
-0.52 2015/3/15 Asc 4 0 -1.8 15.8
-0.411 2019/2/26 Desc 0 0 1.2 117
-0.361 2018/3/25 Asc 0 05 48 9.1
-0.208 2018/2/27 Desc 3.5 0 -31 76
-0.033 2020/2/25 Desc 3 9 41 97
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Fig. 2) Processing flow of SAR-based snow-depth
estimation
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Glaciers are considered key indicators of climate
change due to their sensitive reaction to even small
climatic changes. The Tibetan Plateau (TP) hosts the
largest glacier concentration outside the polar regions, it is
the water tower of China and several countries in Asia,
and glacier change in the TP play an important role in
their production and daily lives.

To study the applicability of full polarimetric
synthetic aperture radar (SAR) data to identify alpine
glaciers in the central Himalayas, six polarimetric
decomposition methods were used to obtain 20
polarimetric characteristic parameters based on the
Advanced Land Observing Satellite 2 (ALOS-2) Phased
Array type L-band Synthetic Aperture Radar (PALSAR)
data. Object-oriented multiscale segmentation was
performed on a Landsat 8 Operational Land Imager (OLI)
image prior to classification, and the vector boundaries of
different types of training samples were selected from the
segmented results. We performed a support vector
machine (SVM)-based classification on the characteristic
parameters from each polarimetric decomposition. All 20
parameters were then screened and combined according to
different requirements: the degree of separability of
different types of training samples and the type of
scattering mechanisms. The results show that the
classification accuracy of the incoherent decomposition
characteristics based on the covariance matrix is the best,
reaching 87%, and it can exceed 91% after adding the
local incidence angle to the suite of classifiers. Eventually,
more than 93% accuracy was achieved using a
combination of multiple polarimetric parameters, which
reduced the misclassification between bare ice and rock.
We also analyzed the use of controlling factors on the
accuracy of alpine glacier identification and found that the
polarimetric information and aspect of the glacier surface
are the most important factors. The former is the main
basis for identification, but the latter will confuse the
feature distributions of different categories and cause
misclassification.

Distinguishing debris-covered glaciers from debris-
free glaciers is difficult when using only optical remote
sensing images to extract glacier boundaries. According
to the features that the surface temperature of debris-
covered glacier is lower than surrounding objects, and
higher than clean glaciers, glacial changes in the Yigong
Zangbo basin was analyzed on the basis of visible, near-
infrared and thermal-infrared band images of Landsat TM
and OLI/TIRS in the support of ancillary digital elevation
model (DEM). The results indicated that glacier area
gradually declined from 928.76 km? in 1990 to 918.46

km? in 2000 and 901.51 km? in 2015. However, debris-
covered glacier area showed a slight increase from 63.39
km? in 1990 to 66.24 km? in 2000 and 71.16 km? in 2015.
During 25 years, the glacier length became shorter
continuously with terminus elevation rising up. The area
of moraine lakes in 1990 was 1.43 km?, which increased
to 1.98 km? in 2000 and 3.41 km?in 2015. In other words,
the total area of the moraine lakes in 2015 is 2.38 times of
that in 1990. This increase in moraine lake area could be
the result of accelerated glacier melt and retreat, which is
consistent with the significant warming trend in recent
decades in the basin.

At the same time, by applying the method of SAR
interferometry to X-band synthetic aperture radar (SAR)
image of COSMO-SkyMed, detailed motion patterns of
five glaciers in the Parlung Zangbo River basin, Tibetan
Plateau, in January 2010 have been derived. The results
indicate that flow patterns are generally constrained by
the valley geometry and terrain complexity. The
maximum of 123.9 m yris observed on glacier No.1 and
the minimum of 39.4 m yr? is found on glacier No.3. The
mean values of five glaciers are between 22.9 and 98.2 m
yr. Glaciers No.1, No.2, No.4 and No.5 exhibit high
velocities in their upper sections with big slope and low
velocities in the lower sections. A moraine lake
accelerates the speed of mass exchange leading to a fast
flow at the terminal of glacier No.3. These glaciers
generally move along the direction of decreased elevation
and present a macroscopic illustration of the motion from
the northwest to the southeast. The accuracy of DEM and
registration conditions of DEM-simulated terrain phases
has certain effects on calculations of glacier flow
direction and velocity. The error field is relatively
fragmented in areas inconsistent with the main flow line
of the glaciers, and the shape and the uniformity of glacier
are directly related to the continuous distribution of flow
velocity errors.

APPENDIX

[1] Guo-Hui Yao, Chang-Qing Ke*, Xiaobing Zhou,
Hoonyol Lee, Xiaoyi Shen, Yu Cai. Identification of
alpine glaciers in the central Himalaya using fully
polarimetric L-band SAR data. IEEE Transactions on
Geoscience and Remote Sensing, 2020, 58(1): 691-703.
doi: 10.1109/TGRS.2019.2939430.
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1. INTRODUCTION

The warming of the global climate has become an
indisputable fact of climate change. Under the influence
of rising global temperature, the frequency of
precipitation and the melting of glaciers are accelerated,
resulting in increased flow of rivers, which in turn triggers
sea level rise. In China, a large number of glaciers are
retreating, the frequency of glacier jumps has increased
sharply, and geological disasters such as glacier collapse
and glacial lake collapse have occurred frequently.

The areas where glaciers are distributed are usually
steep in terrain and difficult to reach by manpower, so
long-term on-site dynamic monitoring cannot be
completed. The emergence of advanced remote sensing
satellites can obtain glacier movement information with
high resolution, global coverage and low-cost technology,
and has become an important means of glacier movement
monitoring. Optical images obtained by Earth observation
satellites are commonly used data sets in glacier
monitoring. Compared with traditional methods such as
field measurements, they have a wider coverage, shorter
revisit periods and lower costs. Many researchers used
optical imaging early to measure surface displacement,
glacier topography and velocity[1].Optical remote sensing
technology is relatively mature, but it cannot overcome
the limitations of weather conditions such as dependence
on light and cloud and rain. In contrast, Synthetic
Aperture Radar (SAR) can observe day and night without
the limitation of cloud and rain in glacial regions.
Currently, techniques for monitoring glacier movement
based on SAR data include offset tracking, DINSAR
(Differential Interferometric Synthetic Aperture Radar),
and MAI (Multi-Aperture Interferometry) [2-8].

In 2016, two major natural disasters occurred near Aru
lake in Tibet, China. Glacier surging occurred in two
glaciers of nameless mountain on the west side of Aru
Lake, and part of the collapsed ice entered Aru lake, that
had caused serious damage to the lives and property of the
local people and the fragile ecological environment of the
surrounding areas. Some studies have shown that the
collapse of the two glaciers is inconsistent with the glacier
surging, which is manifested as a cycle between the
stationary period and the active period[9]. This may

indicate that these glaciers are now transitioning from
cold bases to hotter glaciers due to warming conditions in
the region. The phenomenon also threatens the stability
of similar glaciers that are widely distributed on the
Qinghai-Tibet Plateau. Therefore, the monitoring of
glacier movement is of great significance to the
monitoring and early warning of the Aru region and even
the entire Qinghai-Tibet Plateau. The study intends to use
ALOS PALSAR-1/2 L-band and COSMO-SkyMed-X-
band SAR data, mainly using offset tracking technology,
and to evaluate the surface motion characteristics of the
two glaciers before and after surging, and evaluate the
applicability in glacier surging monitoring.

2.1. STUDY AREA AND DATASET

2.1.1 Study area

Aru region, located in the northern Tibetan Plateau,
is an administrative division of Tibet Autonomous Region,
and geographical coordinates are 78 123°40°’E-861 11’
51" * E and 29 40" 40 N-357742" 55" ' . Aru
region is high in elevation, the altitude ranges from
3862.5 m to 6606.9 m, with an average elevation of
5450.6 m. The climatic conditions are dry and cold and
the annual rainfall is small and the temperature difference
between day and night is large (In august, the daytime
temperature is above 10°C while dropping below 0°C in
night-time). In July and September 2016, ice avalanche
occurred in the two glaciers of hameless mountain located
in the west of Aru Lake. Part of the collapsed glacier body
entered Aru Lake. Figure 1 shows the location of the two
collapsed glaciers.
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Aru Lake

Fig.1. Google Earth image of the two glaciers next to
Aru lake. (The glaciers are marked with red lines.
The ID of the northern one is 524120009, and the ID
of southern one is 52412007)

2.1.2 Data

ALOS PALSAR-1/2 were launched by Japanese
Space Agency in 2006 and 2014, respectively. The two
satellites are equipped with L-band sensors, including
single, dual and full polarization modes. In this study,5
ALOS images, collected in 2008, 2009 and 2015 - before
the glacier surging-, and 2 images collected in 2018 - after
the glacier surging - were used including reference and
slave image. ALOS PALSAR-1 images were acquired in
high-resolution mode (4.68 m in range and 3.15 m in
azimuth), and the polarization mode is HH. Regarding
ALOS-2 images, they were acquired in strip mode (4.29
m in range and 3.78 m in azimuth) and the polarization
mode is HH. Image registration and geocoding were
assisted by a 5-meter resolution DSM (digital surface
model), calculated from the Chinese ZY-3 stereo images.
In Table 1, the main parameters of ALOS PALSAR-1/2
data used in this paper are listed.

Table 1. Main parameters of ALOS PALSAR-1/2 data

Table 2. Main parameters of COSMO-SkyMed

Orbit Reference Slave image  Perpendicular Time
direction image data data baseline(m) baseline(d)
Ascending 20190920 20190921 -424.5729 1
Ascending 20190920 20190929 -899.6587 9
Ascending 20190929 20191006 719.5999 7

Reference Slave

Sensor - h . . Perpendicular Time

type |r[1j‘|;gee |Z1;gee Ascending/Descending baseline(m) baseline(d)
PALSAR1 20081126 20090111 Ascending 4455 46
PALSAR1 20090111 20090226 Ascending 164.1 46
PALSAR2 20151008 20151217 Ascending 160.6 70
PALSAR2 20180531 20180726 Ascending 24.9 56

COSMO-SkyMed consists of four LEO low-Earth
orbit medium-sized satellites launched by the Italian
Space Agency (Agenzia Spaziale Italiana, ASI), each with
a microwave high-resolution synthetic aperture radar X-
band sensor operating at 9.6 GHz, The wavelength is 3.1
cm, and it has the function of left and right vision. It has
better resolution and better ground displacement sampling
rates up to 176.25 MHz than longer wavelength systems.

The scattering characteristics of the ice surface are
unstable, and when two SAR images are separated for a
long time, the decorrelation phenomenon is usually
serious. Therefore, data with a smaller time baseline was
selected to improve its coherence, and the interferometric
data of 20190920-20190921 were selected for DInSAR
processing.

3. METHODS AND PROCESS
3.1 offset tracking technique

The offset tracking technique was used to obtain the
movement of the glacier surface in both range and
azimuth directions [10]. In general, the accuracy of offset
tracking technique can reach more than 1/10 of the pixel
resolution of SAR image [11]. Thus, for ALOS data with
about 7 m resolution in ground range, the calculation
accuracy is better than 1m.

The core algorithm of offset tracking technique is the
normalized cross-correlation algorithm, which generally
includes the offsets of terrain, ionosphere, orbit and
glacier movement[4,12-=F—! B2RITHB RO £H
Ao .

The ionospheric offset is related to latitude and sensor
wavelength. Aru region is located in a low latitude area,
and the spatial scale of ionospheric variation is small,
compared with the glacier area, so it can be ignored[14].
The offset caused by the terrain is related to the time
baseline and topographic relief. In this study, the terrain is
steep, so the influence of topographic relief needs to be
considered. Firstly, the master and slave image
registration lookup table was established based on the
track information of the external DEM (digital elevation
model) and SAR images, and then the master image and
the slave image obtained based on the initial lookup table
were cross-correlated for registration. Then, the offset
caused by the terrain of the study area was introduced into
the lookup table to further refine it. This method can
reduce the offset error caused by inaccurate track
positioning and improve the accuracy of offset tracking in
topographical relief areas[15-16]. The accuracy of
registration can be evaluated by analysing the coherence
of master-slave images with interferometric fringes.
Therefore, interferograms and coherence images are
generated.

7 ALOS PALSAR scenes were used. Since the area
covered by the images was different, there was a need to
crop them all around the location of the two glaciers.
Then the external DEM was used to assist the SAR image
pairs’ registration. The interferograms were generated
from all image pairs in order to check the reliability of the
registration and analyse the possibility to detect the
glacier movement with InNSAR and MAI. Finally, based
on cross-correlation calculation of image pair’s intensity,
the surface flow of the 2 glaciers in different periods were
measured and analysed by creating 2-Dimensional
velocity diagrams which were modulo of azimuth and
range displacement based on offset tracking method.

3.2 D-InSAR
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Differential Synthetic Aperture Radar Interferometry
(Differential InNSAR, DInSAR) is used to monitor small
changes in the Earth's surface topography on the order of
a few centimeters or less in the satellite line-of-sight (LOS)
and provide accurate measurements related to various
geophysical phenomena. kinematic data. For example,
tectonic and volcanic activity, land subsidence, ice sheet
and glacier movement, and landslides are involved. The
two-orbit differential method is one of the most
commonly used methods in differential satellite-based
interferometry, which involves analyzing the phase
difference between two SAR images from two separate
flight trajectories and eliminating them using a digital
elevation model (DEM). Terrain effects.

Ideally, the two imaging of the ground object by the
antenna are located in the same spatial position, but in
practice, the technology cannot achieve the exact same or
repeated orbit platform and parameter settings for the two
repeated imaging of the antenna. Therefore, when
obtaining the interference pair of two SAR images, it is
necessary to perform image registration, generate an
interferogram, and obtain the upward change of the radar
line of sight according to the change of the phase
difference in the interferogram, so as to obtain the change
of the terrain information.

4. RESULTS AND ANALYSIS

4.1 offset tracking technique

Through differential interferometry of the PALSAR-
1/2 image pairs (Table.l), 4 interferograms were
generated (see Fig.2). At the first glance the fringes in all
interferograms were very clear. The interferometric
fringes of flat terrain are straight, while the
interferometric fringes of mountain area are distributed
along the terrain trend, which were in line with the actual
interferometric fringe characteristics. It can be stated that
the registration of all the image pairs are accurate enough
to be used for DINSAR, MAI and offset tracking. But the
fringes disappeared on the glaciers in all interferograms,
which means that the coherence on glaciers were poor and
the phase based INSAR and MAI methods can’t be
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Fig. 2. The interferograms generated using
PALSAR-1/2 image pairs

The differential interferogram (SAR coordinate
system) of the 1-day time baseline is generated during the
DINnSAR process, with poor coherence and only obvious
phase information at the tail of the glacier. It can be seen
from the figure that the shadow situation caused by terrain
fluctuations in the study area is serious, and this
phenomenon occurs in the data of the ascending and
descending orbits.

Fig.3. 20190920-20190921

4.2 Analysis of offset tracking results
4.2.1 PALSAR- 1/2 results

Based on the offset tracking technique, PALSAR- 1/2
images were used to obtain the displacement
characteristics of the two glaciers from both range and
azimuth direction. The two-dimensional velocity field of
the 2 glaciers, in four time periods, were calculated and
the results are shown in Fig.3.

From Fig.4 (a-d), it can be concluded that: (1) glacier
574120009 shows a maximum movement velocity in
2008-2009, of about 5 cm/d, being the maximum
movement velocity in 2015 of about 20 cm/d, and the
maximum movement velocity in 2018 of about 5 cm/d;
(2) glacier 524120007 shows a maximum movement
velocity of about 7 cm/d, in 2008-2009, and the
maximum movement velocity was of about 12 cm/d,
reached in 2015. In 2018 the maximum movement
velocity was about 7 cm/d; (3) comparing with the
velocities before the glacier surging, the ones after the
glacier surging are significantly increased.

The results show that the glaciers’ movement
velocity accelerate as the monitoring period approaches
the ice avalanche date. After the glaciers surging in 2016,
the glaciers’ movement returns to the relatively low
velocity as before the surging. That’s to say the velocities
before the glacier surging are significantly increased and
significantly decreased after the glacier surging. These
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conclusions show that glaciers” movement velocity can be
used as a valuable indicator to find and monitor surging
glaciers.
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Fig.4. Representation of the 2-Dimensional velocity

diagram of the 2 glaciers near Aru Lake

4.2.2 COSMO-SkyMed

The COSMO-SkyMed data is processed by the
DINSAR method. After selecting the SAR image, the
cross-correlation algorithm is used to perform refined
registration first to generate the interferogram. A
differential interferogram is generated by subtracting the
topographic phase simulated by the DEM from the
original interferogram.As shown in Figure3, the
differential interferogram is displayed as a contour map
composed of fringes, containing changes in surface
motion in terms of glacier motion information. In order to
suppress the decorrelation noise, a multi-view operation is
performed to process the interferogram, and then a least-
squares-based interferogram filter is performed. The
stable rock area near the glacier is selected as the
reference point, and the phase unwrapping is performed
by the minimum cost flow (MCF) algorithm to generate
For the results in the LOS direction, the SAR coordinate
system is finally converted into geographic coordinate
system data for further analysis, as shown in Figure 5.

The 20190920-20190929 interferometric pair based
on DEM-assisted offset tracking technology is compared
and analyzed for the daily average velocity results in the
LOS direction and the 1-day displacement results of
DInSAR. According to Figures 5 and 6, it can be seen
that both methods detect glacier movement, and the
maximum LOS velocity of the glacier detected by the
offset is 25 cm/d, which is mainly distributed in the
middle and upper ends of the glacier, and the glacier's
maximum LOS velocity detected by the offset is 25 cm/d.
The high-value area of speed fits well with the area with

large terrain slope. The maximum displacement of the
glacier detected by DINSAR in one day is 6 cm, and the
displacement is mainly distributed at the end of the glacier,
indicating that the glacier is still expanding.
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Figure 6 20190920-20190921DINnSAR results
5. REFERENCES

The snow cover on the upper part of the glacier is
obvious, so the ground reflection on the upper part of the
glacier is strong, and its coherence is poor. Therefore,
only the information of the tail end of the glacier is
obvious in this DINSAR survey. The deviation of the
results of the two methods is due to the fact that the offset
is averaged based on the results of 9 days. Therefore, the
glacier movement rate in the figure is smaller than that
obtained by the DInSAR method, while the result
obtained by the offset tracking technique is smaller. The
detection results of the tail of DINSAR also verified that
the glacier is constantly moving and flowing into Lake
Alucuo. From the accumulation fan formed at the tail end
and the ice blocks floating in the Alu Co Lake below it, it
can be concluded that the glacier movement is very active
and the flow is rapid, and the ice blocks and meltwater
formed by the glacier movement enter the Alu Co Lake.
Therefore, the floating ice and meltwater of the glacier
become the main water source of Alu Co Lake. During
the melting period of the glacier, a large amount of ice-
water mixture was formed and the water flow was
injected into the lake, and the water level of the lake rose.
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When the water level of Alucuo Lake rose, the ice blocks
in the lower part of the glacier fell off and melted, causing
the glacier to melt faster and the flow rate to increase.

5. CONCLUSION

The migration tracking technique was applied to 3
ALOS PALSAR-1 and 4 ALOS-2 PALSAR-2 images to
monitor the surface motion before and after the avalanche
that occurred on two glaciers near Lake Aru in 2016.
Two main research conclusions can be drawn:
(1) Offset tracking technology is more suitable for
monitoring glacier movement than D-INSAR technology.
(2) Before the glaciers surging in 2016, the maximum
movement rate of the 2 glaciers’ surface increased from 5
cm/d and 7 cm/d to 20 cm/d and 12 cm/d, respectively.
After the events, the movement velocity of the glaciers
decreased. The maximum glacier movement velocity in
2018 decreased to 5 cm/d and 7 cm/d, close to the
monitoring results of 2008 and 2009.

Based on the COSMO-SkyMed data and offset tracking
technology in September-October 2019 to detect the flow
velocity changes of the Alucuo Glacier, DInSAR
detection was carried out on the COSMO-SkyMed data of
the 1-day time baseline and the ALOS-2 data of the 14-
day time baseline. The results show that the Alucuo
Glacier moves at an average flow rate of 8 cm/day from
late September to early October, and the highest regional
movement rate can reach 22 cm/day; From the front of
the glacier to the tongue of the glacier, the area with the
largest flow velocity is spatially consistent with the area
with the largest terrain slope.

REFERENCES

[1] Luckman A, Quincey D, Bevan S. “The potential of
satellite radar interferometry and feature tracking for
monitoring flow rates of Himalayan glaciers,” Remote
Sensing of Environment, 111(2-3): 172-181, 2007.
[2] Goldstein R M, Engelhardt H, Kamb B, et al.
“Satellite radar interferometry for monitoring ice sheet
motion: application to an antarctic ice stream,” Science,
262(5139): 1525-1530, 1993.
[3] Gray A L, Mattar K E, Vchon P W, et al. “InSAR
Results from the RADARSAT Antarctic Mapping
Mission Data: Estimation of Glacier Motion using a
Simple Registration Procedure,” Geoscience and Remote
Sensing Symposium Proceedings. IGARSS '98. 1998 IEEE
International, 1998, 3: 1638-1640, 1998.
[4] Zhou Chunxia, Deng Fanhui, Ai Songtao, et al.
“Determination of Ice-flow Velocity at the Polar Record
Glacier and Dalk Glacier Using DINSAR,” Geomatics and
Information Science of Wuhan University, 39(8): 940-944,
2014.
[5] Li J, Li ZW, Wu L X, et al. “Deriving a time series
of 3D glacier motion to investigate interactions of a large
mountain glacial system with its glacial lake: Use of
Synthetic Aperture Radar Pixel Offset-Small Baseline
Subset technique,” Journal of Hydrology, 559: 596-608,

2018.
[6] Mouginot J, Rignot E, Scheuchl B, et al.
“Comprehensive Annual Ice Sheet Velocity Mapping
Using Landsat-8, Sentinel-1, and RADARSAT-2 Data,”
Remote Sensing, 9(4):364, 2017.
[7] Wang Sisheng, Jiang Liming, Sun Yongling, et al.
“Evaluation of methods for deriving mountain glacier
velocities with ALOS PALSAR images:A case study of
SKyang glacier in central Karakoram,” Remote Sensing
for Land and Resources, 28(2): 54-61, 2016.
[8] Zhang Xiaobo, Zhao Xuesheng, Ge Daging, et al.
“Motion Characteristics of the South Inilchek Glacier
Derived from New C-Band SAR Satellite,” Geomatics
and Information Science of Wuhan University,44(3): 429-
435, 20109.
[9]Gardelle J, Berthier E and Arnaud Y. “Slight mass
gain of Karakoram glaciers in the early twenty-first
century. Nat.Geosci., 5(5), 322-325, 2012.
[10] Strozzi T, Luckman A, Murray T, et al. “Glacier
motion estimation using SAR offset-tracking procedures,”
IEEE Transactions on Geoscience and Remote Sensing,
40(11): 2384-2391, 2002
[11] Haemmig C, Huss M, Keusen H, et al. “Hazard
assessment of glacial lake outburst floods from Kyagar
glacier, Karakoram mountains, China,” Annals of
Glaciology, 55(66): 34-44, 2014.
[12] Li J, Li Z, Zhu J, et al. ~ “Deriving surface motion
of mountain glaciers in the Tuomuer-Khan Tengri
Mountain Ranges from PALSAR images,” Global and
Planetary Change, 101: 61-71, 2013.
[13] Deng fanghui, Zhou Chunxia, Wang Zemin, et al.
“Ice-flow Velocity Derivation of the Confluence Zone
of the Amery Ice Shelf Using Offset-tracking Method,”
Geomatics and Information Science of Wuhan University,
40(7): 901-906, 2015.
[14] Wegmuller U, Werner C, Strozzi T, et al.
“lonospheric Electron Concentration Effects on SAR
and INSAR,” IEEE International Conference on
Geoscience & Remote Sensing Symposium. IEEE, 2007.
[15] GAMMA Remote Sensing. Differential
Interferometry and Geocoding Software — DIFF&GEO
(Geocoding and Image Registration),” Switzerland:
GAMMA Remote Sensing AG, 2008.
[16] Wang Qun, Fan Jinghui, Zhou Wei, et al.
“ Research on the DEM-assisted offset tracking
technique applied to glaciers movement monitoring,”
Remote Sensing for Land and Resources, 30(3): 167-173,
2018.

APPENDIX

[1] Wang. C., Fan. J., Wang. Q. , Yuan. W. , &
Sousa. J. J.. “Use of I-band sar data for
monitoring glacier surging next to aru lake,”

568



Procedia Computer Science, 181(8), 1131-
1137, 2021.

[2] WANG Qun, ZHANG Yunling, FAN
Jinghui, FU Yuhao. “Monitoring the Motion of
the Yiga Glacier Using GF-3 Images,”
Geomatics and Information Science of Wuhan
University, 45(3): 460-466, 2020.

569



3.10 Polar research

570



ADVANCING INFORMATION EXTRACTION ON ARCTIC SEA ICE USING A
MULTI-SENSOR AND MULTI-TEMPORAL INTEGRATED APPROACH

PI No.: ER2A2N013
Torbjorn Eltoft!, Malin Johansson'

"UiT The Arctic University of Norway

1. INTRODUCTION

The overall objectives of this project are:

1) Improving sea ice type classification and geophysical
parameter retrievals for operational and scientific
applications. This implies studies of synthetic aperture
radar (SAR) signature changes for different sea ice types
due to variations in meteorological and environmental
conditions, with focus on ALOS-2 and ALOS-4 SAR
systems in comparison to Sentinel-1;

2) Separation of thin ice from oil slicks utilizing the good
signal to noise ratio of L-band SAR

3) Studying the surge initiation phase of the glacier
Kongsvegen on Svalbard.

The motivation fro this study is founded in the climate
changes enfolding in polar areas. In the light of a
changing Arctic regime towards an environment with
thinner sea ice, a longer melt season and potentially
higher sea ice drift velocities with increased sea ice
deformation, time series using L-band SAR are here used
for seasonal sea ice studies. A changing Arctic climate
regime with longer melt seasons, thinner sea ice and
changes in the sea ice composition requires further studies
into SAR-based sea ice classification and geophysical
parameter retrievals. The longer penetration depth of L-
band SAR has already been established to be beneficial in
sea ice classification, where it has been shown to be of
general benefit for characterizing sea ice surfaces and
classifying sea ice into ice types. It improves
discrimination between first year ice (FYI) and multiyear
ice (MYI), and it improves detection and characterization
of leads and thin ice areas. L-band SAR has also been
found to be beneficial for monitoring early and advanced
sea ice melt. This is in particular important for operational
sea ice mapping.

In this project we have identified polarimetric and textural
parameters that can help improve sea ice classification
during different environmental conditions and incidence
angles. During the MOSAIC drift study, overlapping C-
and L-band images were acquired and the sea ice
characterization capabilities compared to identify
complementarity of the two frequencies.

In addition, the well monitored areas on Svalbard, and in
particular Kongfjorden and the surrounding glaciers such
as Kongsvegen, allow for studies of SAR capabilities of
monitoring a cryosphere system from glacier to sea ice

and open ocean. The satellite monitoring of the upcoming
surge of Kongsvegen is of specific importance from a
climate change perspective. The ongoing high resolution
in-situ monitoring of the glacier and its surroundings,
combined with the collection of ALOS-2 satellite data,
provides a unique opportunity to observe a Svalbard
glacier surge from the start for the first time.

2. DATA

Multi-channel SAR observations over ice infested areas
north of Svalbard and in the Fram Strait were acquired.
Thanks to a much appreciated flexibility from JAXA, we
were able to acquire data over the MOSAIC sea ice drift
study, and over the Belgica bank area to overlap one of
the Nansen Legacy cruises in 2021. In total, 60 ALOS
scenes were ordered and received for the project. These
consisted of 18 quad-pol scenes, 16 dual-pol scenes and
26 ScanSAR wide-swath, dual-pol scenes. Most of the
scenes were acquired during the MOSAIC cruise
(September 2019 — October 2020).

In-situ data, including meteorological observations, and
sea ice and snow data, was collected during the MOSAiC
drift campaign, and these data was used to interpret
observations made in the overlapping C- and L-band SAR
images.

In-situ ground-based field data of glacier movement,
meteorological and mass balance data were collected from
the Kongsvegen glacier and nearby glaciers as a part of a
mass-balance monitoring program conducted by the
Norwegian Polar Institute. Glacier mass balance has been
measured since 1987 and velocity data along the centre
line of Kongsvegen started in 2004. Since the early 1990s,
ice-penetrating radar surveys were conducted to complete
existing bed topography maps and to document changes
in the thermal structure. In 2018, an expanded monitoring
system was set up, which included five continuously-
logging GNSS receivers, installed at ca. 3 km intervals
along the glacier centreline, a 330-m long borehole,
drilled to the glacier bed and instrumented with a
thermistor string, basal water pressure sensor, and
cameras to monitor the front. Year-round meteorological
data are also available from the Ny-Alesund Research
Station in Kongsfjorden.
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3. METHODOLOGIES

A machine learning method was used in [Al, A4 and A6].
The method relies on fully polarimetric SAR images and
consists of two steps; first 18 polarimetric features are
extracted, and thereafter, patches for training/validation of
the artificial neural network (ANN) classifier are
identified. Regions of interest (ROIs) were identified
manually by using in-situ data as well as overlapping
optical images to find suitable areas. A detailed
description of the ANN is available in [1]. The methods
classify the observed sea ice scenes into four different
classes, i.e., open water and nilas (OW), YI, smooth
FYI(SFYI), and rough first year/multiyear ice (RFYMYT).

In [A2] the segmentation method outlined in [6,7] were
used to segment the fully-polarimetric ALOS-2 PALSAR-
2 images. The segments were subsequently classified by
sea ice expert at the Ice Service at the Meteorological
Institute of Norway.

For [A3,A5,A7,A9,A12], the ROIs were identified
manually, and where possible, the first MOSAIC ice floe
was included in the analysis. The sea ice types of interest
here were open water and nilas (OW), YI, smooth
FYI(SFYI), and rough first year/multiyear ice (RFYMY]).
The evolution of the SFYI and RFYMYI ice were
followed from the freeze-up to the early melt season
stages, and the YI and OW classes were labelled when
these were found.

For [A10-Al1l], were ROIs identified manually in
spatially and temporally overlapping Sentinel-1 and
ALOS-2 PALSAR-2 images. The ROIs are then used to
retrain the method developed in [5] to classify different
sea ice types in both L- and C-band SAR images.

In [A13], the InSAR module in the ESA’s SNAP program
was used for the interferometric study.

4. SUMMARY OF RESEARCH FINDINGS

In total, 1 scientific journal paper, 2 international
conference proceeding paper, 2 conference presentations,
and 4 conference posters have been published based on
the research in this project. In addition, the ALOS-2
PALSAR-2 data have been a basic data source for one
MSc thesis. Two ongoing publications, where data from
this project has been instrumental, are soon to be
submitted (incl. [A3]) and the part of this work will also
be presented at the ESA Living Planet 2022 conference in
May 2022. We appologice for the delay in the
publications that were in part a consequence of the Covid-
19 pandemic. Below are some research results, where the
high-lights are pesented in terms of the paper abstracts.

The first objective of this proposal has been addressed
using fully polarimetric images from the MOSAiC and N-
ICE2015 expeditions as well as overlapping Sentinel-1
and ALOS-2 PALSAR-2 images from the Arctic Ocean.

In [A1], we employ an artificial neural network (ANN)-
based sea ice type classification algorithm on a
comprehensive data set of ALOS-2 PALSAR- 2 fully
polarimetric images acquired with over a range of
incidence angles and different environmental conditions.
The variability of the data makes it ideal for making novel
assessment of the robustness of the sea ice classification,
investigating the intraclass variability, study the seasonal
variations, and assess the incidence angle effect on the sea
ice classification results. The images coincide with two
different Arctic field campaigns in 2015: the Norwegian
Young Sea Ice Cruise 2015 (N-ICE2015) and the
Polarstern’s (PS92) Transitions in the Arctic Seasonal Sea
Ice Zone (TRANSSIZ). We find that it is essential to take
into account seasonality and intraclass variability when
establishing training data for machine learning-based
algorithms. Moderate differences in incidence angle are
possible to accommodate by the classifier during the dry
and cold winter season.

An important finding was also that the incidence angle
dependency for a set of different sea ice types in L-band
SAR images are the same across different regions of the
Arctic; including sea ice from the Canadian Arctic
Archipelago [2], [3], the area north of Svalbard [A1], and
the Sea of Okhotsk [4]. The implication of this is that
overlapping in-situ data and satellite images from
different regions of the Arctic can be used to establish
training datasets. This is a cost-saving finding.

MOSAiC expedition:

In September 2019, the German research icebreaker Po-
larstern started the largest multidisciplinary Arctic expedi-
tion, the MOSAIC (Multidisciplinary drifting Observatory
for the Study of Arctic Climate) drift experiment. Being
moored to ice floes in the high Arctic for a whole year,
thus including the winter season, the main goal of the
expedition is to better understand and quantify relevant
processes within the atmosphere—ice—ocean system that
impact sea ice, ultimately leading to improved climate
models. Satellite remote sensing, especially using multi-
frequency synthetic aperture radar (SAR), plays a major
role to achieve this goal. The expedition has two major
objectives related to SAR based remote sensing of sea ice;
on the one hand, to have a large coverage, and on the
other hand, to make radar observations that encode as
much sea ice information as possible. A comprehensive
set of C- and L- band SAR images were acquired during
the course of MOSAIC.

In [A3, A5, A7-A9, Al2], we evaluate the effects of
seasonal changes on C- and L-band backscatter from three
different sea ice types, i.e., Young Ice, Smooth Ice and
Rough/Deformed Ice, and study how these changes affect
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the performance of sea ice type retrieval of an established
algorithm. Areas of deformed, smooth and young sea ice
were observed in the vicinity of R/V Polarstern and were
included in the year-long time series of SAR scenes. For
both frequencies, a change in all polarimetric channels
can be observed during the early melt season. This is first
noticeable in the C-band images and later also seen in the
L-band images. The later observation in L-band compared
to C-band, is probably caused by the frequencies different
penetration depth and volume scattering sensitivity.

An oral presentation of the work was given as a solicited
talk during EGU 2021 [AS5]. Here different polarimetric
features and their evolution from the freeze-up to the early
melt season are investigated. The MOSAIC floe consisted
of two parts, one part that was deformed and had high
backscatter, and another part which had a high proportion
(>60%) of refrozen melt pond coverage. As has been
shown before, the separation between smooth and
deformed sea ice is larger in L-band compared to C-band
SAR, though once the temperature approaches 0° C, the
difference is reduced.

Comparing the different sea ice types, we observe that
during the freezing season there is a larger difference in
the co-polarization channels between smooth and
deformed ice in L-band compared to C-band. Similar to
earlier findings, we observe larger differences between
young ice and deformed ice backscatter values in the L-
band data than in the C-band data. Moreover, throughout
the year the HV-backscatter values show larger
differences between level and deformed sea ice in L-band
than in C-band. The L-band data wvariability is
significantly smaller for the level sea ice than for the
deformed sea ice, and this variability was also smaller
than that observed for the overlapping C-band data. Thus,
L-band data could be more suitable to reliable separate
deformed from level sea ice areas.

Within the L-band images, a noticeable shift towards
higher backscatter values is observed in the early melt
season compared to the freezing season for all
polarimetric channels, though no such strong trend is
found in the C-band data. The change in backscatter
values is first noticeable in the C-band images and later
followed by a change in the L-band images, probably
caused by their different penetration depth and volume
scattering sensitivities. This change also results in a
smaller backscatter variability.

The polarization difference (PD; VV-HH on a linear
scale) shows a seasonal dependency for the smooth and
deformed sea ice within the L-band data, whereas for the
C-band data, no such trend is observed. For the L-band
data, the PD variability is reasonably small for all ice
classes in the freezing season, with a significant shift
towards larger variability during the early melt season.
However, during the early melt season period the mean
PD values remained more or less constant. However, once

the temperatures reached above 0°C both the variability
and the mean values increased significantly.

Overall, our results demonstrate that the C- and L-band
data are complementary to one another and that through
their slightly different dependencies on season and sea ice
types, a combination of the two frequencies can aid
improved sea ice classification. The availability of a high
spatial and temporal resolution dataset combined with in-
situ information ensures that seasonal changes can be
fully explored. This work will also be presented on the
ESA Living Planet Sympositum in May 2022 [Al2], a
manuscript presenting this work will soon be submitted
[A3].

Newly formed sea ice and oil spills

Newly formed sea ice allow light penetration into the
underlaying water and aid primary production. The good
noise floor of the ALOS-2 PALSAR-2 images enabled
high accuracy identification of deformed and level sea ice
as well as newly formed sea ice areas. During the N-
ICE2015 expedition significant numbers of ALOS-2
PALSAR-2 images were collected and this enabled a time
series analysis overlapping in-situ data collected
analysing the biological productivity in the water mass
around the campaign. SAR images were segemented
using the method outlined in [6,7] and subsequently were
the percentages of the different ice types estimated and
combined with the in-situ data were the effect of open
water and deformed ice areas influence on the biologicaly
productivity investigated and presented in [A2].

During the MOSAIC expedition had thin ice just started
to form around the MOSAIC floe when the expedition
started. Differences in new ice polarimetric signatures
between the two frequencies are currently being
investigated as, e.g., the PD show significantly different
values for the C and L-band images. Improved knowledge
about the polarimetric signature of newly formed sea ice
is a part of addressing the objective two to supplement
ongoing work first presented in [8] about separation
between newly formed sea ice and oil spills.

Overlapping Sentinel-1 and ALOS-2 PALSAR-2:

In [A10, All] overlapping Sentinel-1 and ALOS-2
PALSAR-2 images have been used to identify sea ice
types for sea ice classification. The work is investigating
complementarities through the wuse of these two
frequenceies, and the work was first presented on the
Arctic Science Summit Week in Tromse in 2022 and will
also be presented during the ESA Living Planet
conference in May 2022.

InSAR on Svalbard:

In recent years, in-situ measurements on Kongsvegen, a
surge-type glacier located in the Kongsfjorden area on
Svalbard, have shown an acceleration in the flow speed of
the glacier. This part of the work addresses the third
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objective of the proposal. This could indicate the onset of
a surging event, which in that case would present the
opportunity to study the dynamics of a glacier surge using
remote sensing techniques, with in-situ data for reference.
In [A13] the acceleration of Kongsvegen using InSAR,
Multiple-aperture InSAR (MAI) and offset tracking was
investigated. ~ Velocity = measurements from the
combination DInSAR - MAI are then compared to in-situ
data as well as to offset tracking measurements. For
image pairs, where InSAR measurements are not possible
due to phase decorrelation, offset tracking is attempted as
a back-up. Data from 2015, 2018 and 2019 was available,
and the evolution of flow speeds over time could therefore
be evaluated. The image pairs from 2018-2019 were
acquired with 14 days separation in time, while the 2015
image pairs were acquired with 28 and 42 days of
separation. Due to the longer separation in time, the 2015
image pairs decorrelated in time. In addition, a pair
acquired in the summer of 2018 decorrelated as a result of
surface melting on the glaciers.

For the image pairs from 2018-2019, the InSAR
measurements were in good agreement with the in-situ
data, as they also indicated an acceleration of the flow
speed on Kongsvegen. The offset tracking results based
on these pairs overestimated the velocity magnitudes, but
also showed an increase over time. Similar to the InSAR
estimates, the offset tracking failed to produce reasonable
results for the images from 2015 image pairs, likely
because of the large temporal baseline and the lack of
surface features on Kongsvegen. Overall, InSAR could be
used to measure the flow speed of Kongsvegen
successfully, but more data with a short temporal baseline
is needed for an in-depth analysis.

6. SUMMARY

In accordance with the described objectives, the research
has contributed to improved understanding of monitoring
capabilities of Arctic sea ice using C- and L-band SAR
data. The multi-polarimetric, multi-sensor approach has
been shown to have some complementary capabilities,
which combined will improve sea ice monitoring. More
specifically, the research indicates that combined C- and
L-band SAR data can provide;

- Improved sea ice classification methodologies that can
separate FYI and MYI, locate ridges and leads, and
provide sea ice characterization of relevance to science
and industry.

- Improved sea ice classification across seasons
considering  variations in  meteorological  and
environmental conditions

- Efficient approaches for multi-frequency and multi-
sensor data fusion with respect to sea ice classifications

The project has had participation of PhD and PostDoc
scolars and in that respect been important for building
competence to this exiting discipline.
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1. INTRODUCTION

The deformation process of (sub-) arctic and alpine lands
underline by ice-rich permafrost caused by the melting of
massive ground ice, known as thermokarst, alters the local
land use and affects the local socio-economy. In order for
local residents to adapt to landform changes including
ground subsidence, inundation, and thermos-hydrological
erosions, knowledge about the deformation rates and
spatial distribution of the phenomena is essential.

This research project aims to provide information on
spatio-temporal variation in thermokarst and freeze/thaw-
related deformation to local stakeholders in arctic and
alpine permafrost regions experiencing rapid climate
warming. In order to generate the map of spatio-temporal
thermokarst deformation, we employ a DInSAR
(Differential Interferometry Synthetic Aperture Radar)
technique, in a wide range of permafrost regions.
Objectives in this project are to 1. Measure the spatial
variation in seasonal and inter-annual surface
displacement associated with active layer and permafrost
dynamics by DInSAR, 2. Validate the spatio-temporal
information on surface deformation by conducting field
surveys, 3. Reduce uncertainty in radar remote sensing of
permafrost degradation, and 4. Provide spatio-temporal
information on thermokarst to local stakeholders.

Below, we report four case studies of the InSAR-
Thermokarst analyses from Alaska, Siberia, and
Hokkaido.

2. NORTH SLOPE, ALASKA

To better understand the nature of DInSAR signals over
changing permafrost lands, we investigated surface
displacement caused by frozen ground dynamics and
thermokarst development triggered by a tundra wildfire in
Alaska. The Anaktuvuk River Fire (ARF) combusted
surface vegetation and organic mat of the tundra region
underlain by variously ice-rich permafrost in 2002. High-
precision GNSS survey, thaw depth, and surface moisture
were measured along 60 — 200 m transects at three

representative sites in ARF during snow-free seasons in
2017 — 2019. The three sites were located in the
northernmost fire boundary, the central area, and the
southernmost of the ARF burn scar underlain by
differently ice-rich permafrost. High-resolution (~1 m)
DInSAR signals by UAVSAR depicted enhanced seasonal
thaw settlement not only in the burned area but also a liner
pattern development of larger subsidence in unburned
areas, which coincides with slightly concaved linear
micro-topography at Site N (Fig. 1). Significant
thermokarst subsidence and seasonal thaw settlement were
measured along a Yedoma hill slope both by ground
survey and DInSAR at Site M. The intensive permafrost
degradation on the slopes was also confirmed by frozen
ground coring and optical image analysis. The ground
measurements of surface displacement were aligned well
with DInSAR displacement using UAVSAR and ALOS2
data except for the anomaly subsidence along the troughs
of ice-wedge polygons at earlier thermokarst stages. Less
intensive ground surface displacement was observed at
Site S, underlain by less ice-rich permafrost. Our results
indicate that seasonal thaw settlement was governed
mainly by spatial variation in soil frost-susceptibility and
thermokarst subsidence by ground ice distribution.

s [Postfire 10th |

[Postfire 10-14th

ALOS-PALSAR ALOS2 SM1 ALOS2 SM1
year) 160813 - 170812 (1 year)

Fire 2007 8 - 5 016 > 2017

2016-2020 (SBAS)

Figure 1. InSAR results of ALOS-PALSAR and
ALOS2 over the northern edge of the Anaktvuk
River Fire occurred in 2007 on the North Slope,
Alaska. Green areas indicate stable land, while

reddish color indicates thermokarst subsidence.

576



3. MAYYA, CENTRAL YAKUTIA
3.1 L-band SAR analysis

Mayya is located on the right bank of the Lena River and
40 km southeast of Yakutsk. Mayya area consists of forest,
deforested areas for farming, mainly in the 1970s, and
alasses. Alas is the final geomorphological stage of old
thermokarst development. Mayya is representative of
residential areas where thermokarst development has been
reported in Central Yakutia.

We  used  ALOS/PALSAR  (2007-2010)  and
ALOS2/PALSAR2 (2015-2018) data to investigate
ground subsidence caused by thermokarst development.
GAMMA software [l1] was wused to generate
interferograms and apply stacking treatment weighted on
the length of the summer period between two SAR data
acquisitions. Assuming surface displacement consisted
only of vertical components, the line of sight (LOS)
change was converted to vertical displacement.

We detected ground subsidence with a rate of 1-4 cm/yr in
both PALSAR and PALSAR-2 results (Fig. 2). Most
subsidence signals are found in numerous open areas
(deforested areas), and the PALSAR-2 results clearly
show the spatial distribution of the subsidence
corresponding to the visible observation of thermokarst
development in high-resolution optical images. The
subsidence rate varied with time and location.

3.2 Field observation

To validate our InSAR results, we performed leveling
surveys within five 30 x 30 m areas, in which about 35
permanent survey stakes were installed and their heights
were measured in September 2017 and 2018 (Fig. 3).
Areas A, C, and E showed a clear subsidence trend with a
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Fig. 2 Surface deformation map in Mayya derived
from ALOS2/PALSAR?2 data acquired from 2015
to 2018. The positive and negative values mean
uplift and subsidence, respectively. The cross
marks the reference point of InSAR. The star
indicates the area of ground observation shown in
Fig. 3.
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Fig. 3 (left) Locations of field surveys near Mayya;
(right) Surface deformation by GPS and optical
leveling in 2017 and 2018. The values show the
mean and two standard errors (95 % confidence
interval).

rate of 3-5 cm/yr, and we confirmed the occurrence of
polygonal ground deformation that suggests thermokarst
development of ice-wedge polygons. On the other hand,
the other two areas (B and F) showed negligible surface
displacement from 2017 to 2018. While the overall
tendency of the subsidence measured in situ is in harmony
with the InSAR result (Fig. 2) quantitatively, the
significant subsidence signals at areas A and E were not
measured by our InNSAR. We revisited and repeated the
same field survey in September 2019, and found
significant inter-annual surface subsidence in all surveyed
areas ranging from 3-10 cm/yr. InSAR analysis including
2019 SAR acquisitions is underway, and the ground truth
will be compared with the InSAR in the next step.

We also visited other sites with significant subsidence
signals in the interferograms at the end of September 2018.
The two large subsidence signals were found in alasses.
The subsidence signals could be caused by ground
consolidation settlement associated with surface soil
desiccation under recent dry climate conditions. However,
judging from the occurrence of the polygonal ground
depression at the central areas of alasses, it is possible that
thermokarst subsidence is still in progress.

This study was published as a result of this project in
Planets and Space [2].

4. BATAGAIL NE SIBERIA

Batagay is located in the midstream of the Yana River, NE
of Sakha Republic. The area is underlain by at least 50-80
m thick of ice-rich permafrost as its interior structure is
revealed on the headwalls of a huge thaw slump
(Batagaika Megaslump; [3]). Recent wildfires burned an
extensive area near Batagay, which triggered prominent
thermokarst processes due to the surface disturbance by
the fires. Furthermore, a heatwave with unprecedented
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high temperature persisted during late June 2020, resulting
in substantial increases in fire activity above the Arctic
Circle [4][5]. Large wildfires and following thermokarst
gathered attention from residents, especially land
managers and the forestry industry.

Batagay region experienced wildfires in the last decade.
We set two areas of interest, AOI1 and AOI2. AOI1
includes a fire scar burned in July 2014 over 35 km?. The
2019 fire again burned a portion of the 2014 fire scar. We
set study sites B14 (381 m asl.) and U14 (254 m asl.) at
burned and unburned areas with gentle slopes near the
southern edge of the 2014 fire burn scar, respectively.
AOI2 consists of two fire scars burned in the 2018 and
2019 summers. Sites B19 and U19 were set at burned and
unburned areas in the south-eastern edge of the 2019 fire
burn scar divided by a firebreak line.

4.1 Satellite remote sensing analyses

InSAR analysis to generate ground deformation maps over
the post-wildfire area was performed by [6]. For this area,
we used L-band HH-polarized SAR images of
ALOS2/PALSAR2 (2015-2019) and C-band VV-
polarized SAR images by Sentinel-1 (2017-2018).
Focusing on the seasonal ground deformation in 2017-
2018, we stacked Sentinel-1 interferograms to set the
temporal coverages to be nearly identical with ALOS2
interferograms and compared to each other. On the other
hand, to estimate the cumulative satellite LOS
displacement in the post-wildfire area, we used Small
Baseline Subset (SBAS)-type time-series analysis, using
50 quality ALOS2 InSAR images taken in 2015-2019.

To investigate ground surface changes, we also used
optical satellite images. Five snow-free and cloud-free
Landsat8 images (Collection2) acquired during 2014-
2018 were used to generate the 2014 fire perimeter based
on dNBR (difference normalized burn ratio; Miller and
Thode, 2007). To identify newly formed gullies and active
layer detachment after the 2014 fire, we used changes in
the panchromatic band of Landsat8 images (Fig. 4).
Pansharpened images of Pleiades-1 (7 Jun 2019),
WorldView2 (6 Jun 2020), and WorldView3 (28 May
2020) were used to observe gully development and water
drainage in the area of 2018 and 2019 burn scars.

4.2 Field measurements

We conducted fieldwork campaigns in three consecutive
thawing seasons during 2019-2021. In late September
2019, we visited AOI1 and measured relative height, soil
moisture, ground temperature, and thaw depth along a 30
m transect at B14. Additionally, thaw depths were
measured at burned and unburned areas near an unburned
patch within the 2014 burn scar and U14. The same field
measurements at B14 were conducted at B19 and U19.

Soil pits were dug for descriptions of soil horizons,
volumetric water content measurements by a TDR probe
(Hydrosense, Campbell Sci.), and soil sampling for
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Figure 4. Time series of high-resolution optical
images (Landsat8) over a burn scar by Fire 2014
(AOI1). Upper right map shows InSAR line of
sight surface deformation map derived from
ALOS2-PALSAR? data acquired on 30 Jul 2016
and 29 Jul 2017 [6]. The positive (reddish colors)
and negative (blueish colors) values indicate
subsidence and uplift, respectively. The contours
are elevation in 20 m interval. Areas of gully
formations and active layer detachment during 12
Jun 2015 and 8 Aug 2015 are shown as black
polygons in the upper right map.

laboratory analyses from the active layer at B14, Ul4,
B19, and U19.

4.3 L-band and C-band SAR analyses

We detected seasonal deformation from 2017 to 2018,
whose magnitude and spatial patterns of the tendencies of
subsidence and uplift were consistent in both InSAR
results using different satellite data regardless of the
season (Fig. 4). In particular, Sentinel-1 short-term InSAR
images revealed detailed seasonal surface displacement
(thaw settlement and frost heave) from the beginning of
thawing to the end of freezing. L-band ALOS2 data
detected long-term deformation. The results indicated that
thaw settlement in the first year reached up to 15cm in the
LOS direction and was continuing even three years after
the fire. The calculated time series indicated that
cumulative subsidence has been greater than 30 cm since
October 2015 at the area of greatest deformation and the
rate of subsidence decreased in the 2018 summer.

4.4 Changes in thaw depth and soil moisture

Average thaw depths at burned and unburned areas of the
2014 fire were 123-124 cm and 45-49 cm, respectively.
As a 5-year cumulative consequence of the 2014 and 2019
fires, we found about 2.5 times deeper thaw depth in
burned areas. Our soil pit survey at the 2014 burned site
confirmed a shift of carbon accumulation in the soil
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profile, indicating recent active layer thickening at burned
sites. The volumetric soil water content profile in late
September 2019 at the burned sites was about 10-20 %
higher than that at unburned.

At B19, average thaw depths in September were 78, 117,
and 132 cm in 2019, 2020, and 2021, respectively, while
those at U19 were 66, 71, and 80 cm. Although there was
a significant (14 cm) increase in the thaw depth at the
unburned site, the increase at the burned site was about
fourfold (54 cm). 5-15 % higher soil moisture was
recorded at B19 from late 2019 through 2020 than at U19.
However, in late 2021, surface soil moisture at B19
became slighter drier than at U19, probably because of
dry weather in the 2021 summer and the deepening of the
active layer at the burned site.

This remarkable difference in near-surface physical
conditions can be attributed to vegetation and organic mat
removal due to wildfire. The impact had been prominent
only about one and a half months after the fire. The
difference in late-summer thaw depths between U19 and
B19 kept increasing in the first two years after the fire.
The complex behavior of soil moisture changes at our
sites is unclear because of data gaps. However, higher soil
moisture conditions in the deeper active layer persisted
after the fire.

4.5 Gullies and active layer detachment

In the 2014 burn scar, more than 20 locates of gully
formations or active layer detachment were identified
from landsat8 images taken during the 2015 summer. The
ground surface erosions were detected as significant
increases in reflectance between 12 Jun and 8 Aug in
2015, about a year after the 2014 fire. Further
development of the surface erosions was not noticeable.
The gully formations occurred linearly along valley lines.
Old gully features were prominent on the NE-facing
slopes, and newly-formed gullies were found
predominantly on the same slopes within the fire scar. The
area of predominant gully formation coincides with the
larger seasonal or interannual subsidence areas measured
by ALOS2 InSAR after the fire. It is probable that the
increases in soil moisture and thaw depth after the fire
triggered active layer detachment leading to gully
formation predominantly on the NE-facing slopes
underlain by relatively ice-rich permafrost.

Unlike the natural gully formations in the 2014 burn scar,
fire-fighting activities against the 2018 and 2019 fires
triggered severe gully erosions. Both 2018 and 2019 fires
in AOI2 were stopped by firebreak lines encompassing the
burning areas. The fire suppression activities created new
roads to access the burning areas by removing surface
tundra and forests. The firebreak lines removed all

vegetation and organic matters on the ground surface with
a width of a few meters. These bare ground lines acted as
drainage lines for surface water, especially during
snowmelt seasons. The surface runoff, particularly parallel
to the slope, rapidly eroded the firebreak lines and roads,
as shown in Figure 3.

Relatively small erosions in 2020 summer escalated in the
2021 thawing season, and massive ground ice was
exposed in the lower gully walls. In the 2021 fall (two
years after the 2019 fire), the depth of a newly developed
gully between the 2018 and 2019 burn scars was deeper
than 3 meters. The massive ice layer begins at about 1.5 m
depth in this area. Moreover, highly ice-rich permafrost
extends more than 50 meters, as observed in Batagaika
headwalls. The new erosion gullies could trigger the
second Batagaika formation because the Batagaika was
started from a small-scale erosion of an automobile road
for forestry activities in the past.

In the high-resolution optical images, we identified a
number of overflooding flows along with concaved reliefs
on the slope on 28 May 2021 when the snow has
completely melted. The overflow transferred a significant
amount of sediment and water towards the valley bottom,
where we found newly emerged ice-wedge polygon
textures due to enhanced erosion. The combination of
wildfire and fire suppression activities may cause
significant changes in permafrost ecosystems through
changing the natural runoff and erosion regimes.

5. DAISETSU MOUNTAINS

The occurrence of mountain permafrost has been reported
at the summit areas of mountains in the Daisetsuzan
National Park, Japan (e.g., [7] [8]). While some field
investigations on freeze-thaw-related phenomena have
been conducted in this mountain area (e.g., [9][10] [11]),
wide-range investigation on ground-surface displacement,
especially targeting inter-annual changes, has never been
done. There is increased attention to the consequences of
climate warming on the mountain environment due to the
changes in frozen ground status.

As a preliminary analysis, we used 13 ALOS2 images
obtained from 2014 until 2019 for the target area, and 78
interferograms were examined to further analyze ground-
surface displacement. The interferograms from the pair
images, including snow cover, showed significant
decorrelation. Five images obtained in the late summer
(Aug—Sep) were selected because they only produced high
coherence (> 0.5) interferograms in the majority of the
target area and were used to extract areas with marked
displacement areas within the targeted national park area.
The five images were stacked to calculate the average
line-of-sight displacement during five years (2014-2019).
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Figure 5. Stacked interferogram over the Daisetsuzan
National Park. The seven rectangles are the areas of
marked ground surface displacement persistently
observed during 2014-2019.

Seven areas were identified as areas containing active
slope movements or ground-surface displacement

presumably related to permafrost changes, as shown in Fig.

5. Considering the ALOS2 observation direction and look
angle, the measured displacement indicates down-slope
movement of the ground. The displacement rates ranged
1-4 cm/year depending on the location and the movement
persisted during the observation period. Permafrost
distribution in the Daisetuzan was only confirmed at wind-
swept sites on the summit areas of the mountains.
However, the moving slopes we found were located at a
height of a several hundred meters lower than the summit
areas. Although these moving slopes are slow-moving
landslides, the consistent displacement indicates
occurrences of perennially frozen ground in the moving
slopes, which may be interpreted as periglacial mass
movement such as frozen debris lobes or rock glaciers.

To wvalidate the InSAR-measured ground-surface
displacement, we started precise GNSS surveys at some
selected sites aiming a long-term in-situ observation.
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1. INTRODUCTION

The Michigan Tech Research Institute has used ALOS-1/
PALSAR-1 and ALOS-2/PALSAR-2 data acquired via the
Research  Agreement with the Japan Aerospace
Exploration Agency for analysis of fire related variables
of fuel moisture in the soil, fuel loads in the woody
aboveground biomass (which are confounding factors for
soil moisture retrieval) as well as mapping land cover
ecotypes to determine vulnerabilities of different
ecosystem types to wildfire. Research is funded by two
NASA grants which are ongoing (NASA SUSMAP NRA#
NNX16AN09G and NASA ABoVE NRA#
80NSSC19M0107). The work on soil moisture retrieval
during the timeframe of this data grant was limited due to
COVID restrictions on travel. Without travel to field sites
to collect data and to download dataloggers that are
deployed in both Alaska and Alberta, Canada was
restrictive. Given that soil moisture is a time sensitive
variable that must be matched up to satellite overpass
collections, the data we have analyzed to date is small, but
the work is ongoing and access to sites in Canada is now
open for summer 2022 when we will be downloading our
dataloggers and collecting additional data in Northwest
Territories Canada (NWT) and Alberta Canada.

Work has been focused on developing L-band SAR
algorithms to map and monitor soil moisture, to produce
soil drainage maps from a time series of L-band SAR, to
retrieve fuel loads via biomass retrievals and to
understand vulnerabilities of uplands versus lowlands in
wildfire vulnerability. We also created calibrations for the
Campbell Scientific Hydrosense handheld CS620 probes
and Datalogger probes CS616 and CS625 to the soils of
our study sites in Alberta, and Northwest Territories,
Canada and Alaska. The Campbell Scientific Hydrosense
handheld water content reflectometer (soil moisture)
probes have built in calibration to a loam mineral soil.
Organic soils of the Boreal-Arctic have characteristic low
bulk density and the default loam calibration typically
underestimates actual soil moisture condition. For that
reason, we carefully harvested soil samples of 2.5 gallon
size to use in a laboratory setting to develop gravimetric
based calibration algorithms specific to the boreal and
arctic organic soils [after 1]. These calibrations required
wetting and drying of the samples over several months as

they dried to capture a range of moisture to calibrate the
probes. The completed probe calibrations were then
shared with the NASA Arctic and Boreal Vulnerability
Experiment (ABoVE) science team for use with the SAR
data collected over the ABOVE western boreal-arctic
North America study area via a report. They are provided
as a separate document.

2. CREATING SOIL DRAINAGE MAPS FROM SAR

Drainage maps of the boreal and arctic region are of
interest for a wide range of applications including
susceptibility to wildfire, fire behavior and fire effects.
We focused on C-band for burned sites which no longer
have forest canopy and L-band for the unburned forested
areas. Using Sentinel-1 data of fire scars we used
methods of [2] to map drainage in the region that had
experienced canopy replacing (crown) fires, exposing the
ground surface. Sentinel-1 C-band was suitable for this
application, given its high repeat cover of the study area.
For the forested areas, we focused the ALOS-1/PALSAR-
1 data. We selected imagery over an Alaska study area to
develop similar methods to map drainage in unburned
forests and wetlands. The methods rely on a time series of
SAR data in a principal component analysis [after 2]. The
new PCA images are then used to compare the loadings of
each input image date to rainfall patterns to determine
which PC image appears related to moisture/drainage.
The PC image most related to rainfall patterns is then
level sliced to create relative drainage maps.

Applying the methods to a time series of ALOS-2 L-
band data proved difficult over the NWT study area, due
to a lack of time series L-band data availability for a given
year in Canada. We therefore focused on Alaska where
PALSAR-1 data are abundant. In our initial assessment,
we found aboveground biomass as a confusing factor in
the L-band PCA analysis for creating a drainage map. We

Palsar-1 winter Palsar-1 normalized composite

Palsar-1 composite

Fig. 1. Multi-date PALSAR composite (left), winter
PALSAR image (center), normalized PALSAR
composite (right).
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therefore, normalized the PALSAR summer data, by
ratioing it with a winter scene when the ground was frozen
and backscatter should be due primarily to forest biomass
(Fig. 1).

We then ran principal components analysis on the
multi-date input PALSAR stack from summer 2010, each
having been ratioed with the winter scene for
normalization. The PC-4 normalized component appeared
to be responding to 6-day cumulative rainfall from the
nearby rain gauge (Fig. 2). This area is a complex of open
fens, bogs, treed fens, floodplain white spruce, upland

Palsar-1 vs in-situ precipitation
12.00
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8,00 S

6.00

— 8
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5/26/2010 6/14/2010 6/24/2010 7/11/2010 7/30/2010

PC4  —Normalized PCA cumulative ppt

Fig. 2. Plot of PC-loadings from time series of ALOS-1
data over Bonanza Creek Alaska by date. Also shown is
the 6-day cumulative rainfall leading up to each image
date.

conifer, aspen and old burn scars (Fig. 3, Multi-date
PALSAR and Sentinel-1 land cover classification of the

Bonanza Creek study area). We then created a
preliminary drainage map product from the PC-4 image
(Fig. 4). The image appears to have a good deal of
speckle and areas of very low biomass (e.g. sedge fens)
appear to be confused as high drainage, likely due to more
specular reflection in the high water, no vegetation spring
stage (Fig. 4). The complex landscape of Bonanza Creek

open fen

treed fen

deciduous
coniferous
sparse

Fig. 3. Multi-date PALSAR and Sentinel-1 land cover
classification of the Bonanza Creek study area

is challenging and a true test of the capability of the PCA
and L-band approach. It appears that the L-band is
working for capturing drainage in the forested areas
(uplands and bogs), but the low biomass, herbaceous

sedge fens and emergent wetlands are not captured
properly. This may be due to high rainfall in one of the
input images during the overpass collection. A longer
time series of input images (only 5 were used for Fig. 4)
may reduce speckle and improve the drainage map
product.

Our next steps are to apply the methodology to a
longer time series for the Bonanza Creek study area and
also to apply it to a purer forested region. This work
continues through the next year (April 2023), but
proposals to continue beyond next year are also under
review. In addition, for these more complex regions
functional PCA should be analyzed to investigate the
dominant modes of variation.

Fig. 4. Preliminary L-band derived drainage map (right)
of the Bonanza Creek LTER region, near Fairbanks, AK
compared to a natural color high resolution image (left).

3. MONITORING SOIL MOISTURE IN BOREAL
NORTH AMERICA

For L-band, we have completed an initial algorithm
development for soil moisture retrieval for the area near
Fort Providence, NWT, wusing 25 field samples
(representing 40 x 50 m areas) of burned and unburned
sites. Table 1 lists the ecotypes sampled and whether
there

Table 1. List of sampled sites in NWT, CA for soil
moisture and biomass

Ecosystem | # Burned |# Burned | # Unburned | # Unburned

Type soil biophysical| soil biophysical
moisture moisture

Fen 21 21 8 4

Bog 13 13 10 5

Upland 9 9 5 4

Lowland
15 15 1 0

Conifer

Total 58 58 24 13

was soil moisture or biophysical data collected.
Using polarimetric decompositions and parameters
allows for the dominant scattering mechanisms to be

2
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In situ 12 cn VMC

isolated to better retrieve soil moisture from a surface
under a vegetation canopy than backscatter alone [3]. For
the L-band soil moisture retrieval we focused on two of
the polarimetric decompositions used for C-band by [3]:
Cloude-Pottier (CP) [4] and the non-negative eigenvalue
decomposition NNED decomposition [5]. In addition, we
evaluated the Neumann decomposition [6]. We used the
NNED decomposition [5] because it corrects the
overestimation of volume scatter of the Freeman Durden
decomposition due to negative eigen

80 R?=0.8387
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Predicted 12 cm VMC
VMC =-22.8242+(185.78039*NNED_Surface)+(53.521114*CPEntropy)+(-0.25463*NeumanDelta)
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Fig. 5. Predicted vs. actual soil moisture plot for L-band
SAR at burned and unburned NWT sites (top).
Application of the polSAR algorithm to the 2017 and
2019 image dates for the Fort Providence study area
(bottom).

100

values. NNED produces estimates of surface, double
bounce and volume scatter. CP produces entropy (H),
anisotropy (A) and alpha (o) parameters, which are not
assigned to any given dominant scattering component but
are representative of the complexity of the targeted area.
The Neumann decomposition was developed for
describing the morphological characteristics of vegetation
for crop classification and has three polarimetric
parameters (3], T, @s). It is similar to the Cloude-Pottier
(CP) decomposition in that it produces 2 outputs that have
similar physical meaning to CP-H and CP-a. However,
[6] uses a generalized volume scattering model to describe
the morphological vegetation traits; the particle scattering
anisotropy 6 and the degree of orientation randomness .
The third parameter, the phase of the particle scattering
anisotropy s, iS related to the particle orientation
direction. 7t is an indicator of the degree of scattering
randomness, similar to CP-H.  These polarimetric
parameters were used in a multi-linear regression to
retrieve 12 cm surface volumetric soil moisture (VMC),
we found the best fit for the model using the parameters
CP-H, Neumann — § and Van Zyl surface with an adjusted
R2 of 0.84:

VMC = 22.8242 + (185.78039(NNEDsurface) +
(53.521114*CP-H) + (0.25463* Neumann3)

A plot of the predicted vs. actual soil moisture is
presented in Fig. 5, along with the output maps from
application of the model to the 2017 and 2019 UAVSAR
data collections. This analysis shows great promise and
we have many more images to evaluate. The L-band data
from UAVSAR and PALSAR-2 are under further
investigation. We recently received soil moisture data
from September 2019 from colleagues at Canadian Forest
Service, that are coincident to the NASA UAVSAR
September 2019 airborne campaign. Our field data from
August 2019 were of little value since soil moisture is
time sensitive. The results of the L-band and C-band soil
moisture analyses will be reported at the NASA ABoVE
Science Team Meeting (STM8) in May 2022 and the
NISAR conference this fall (August 30-September 2,
2022).

4. L-BAND ANALYSIS OF UAVSAR AND
PALSAR-2 FOR BIOMASS MAPPING

This biomass work was done in cooperation with P.
Siquiera, NASA  ABoVE Co-I on grant
80ONSSC19M0107. As mentioned in the introduction, field
data have been limited due to COVID. Using 14 of the
field collected biomass sites in 2019 in NWT, we used the
in situ biomass data (Fig. 6) to relate to the co- and cross-
polarized radar cross-section (RCS) plotted over time.
This was done for both UAVSAR and PALSAR-2. The
pre-processing of the UAVSAR RCS data was a non-
trivial process. Measures of the RCS collected in terms of

3
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Vv [dB]

Vi [dB]

c®, were converted into units of y° [7] in order to remove
the effects of area projection and to normalize for the
effects of incidence angle in the UAVSAR data, before
they could be compared to PALSAR-2.

Results from the time series dependencies for these
varying areas, over the time of observation are shown in
Fig. 7. In this figure it can be seen that there is variation
in the RCS, mostly likely due to changes in soil moisture,
and time of year (early through late summer). Because the

UAVSAR: Provi&

| 0 Great Slave Lake
'%!. { 0 20 40km

Figure 6. Map of study area plots near Great Slave
Lake, NWT. UAVSAR 2019 flightlines and ALOS-2
PALSAR-2 imagery are shown for comparison.

ZF20-VAL1 ZF20-VAL201

ZF20-VAL26 ZF20-VAL200

201707 201807 201907 202007 200107 201707 201807 201907 202007 202107

Figure 7. Time-series of RCS values for 4 areas
showing both UAVSAR (red) and ALOS-2 (black) data.

vegetated areas of the Great Slave Lake region of the
NWT are relatively sparse, the variations in conditions of
the ground surface have a greater effect on RCS than they
would be in higher biomass areas. This makes the region
more challenging for remote sensing of aboveground
biomass (AGB), but is a good test-site for low biomass
analysis with microwave sensors such as ALOS-2 or
NISAR.

Table 2. Summary of L-band SAR data collected for the
Great Slave Lake region. The first six rows of the table
refer to ALOS-2 data collections with the bottom two
rows being from UAVSAR.

Tile ID 2017 2018 2019 2020 2021
001000 13 Jul 12 Jul 11 Jul 9Jul

001001 3Jul 2 Jul 1 Jul 29Jun 31 May
001002 13 Jul 12 Jul 11 Jul 9Jul

001003 4 Jul 30 Jun

001004 24 Jun 23 Jun

001005 24 Jun 23 Jun

Behcho 14 Jun,9Sep 22 Aug 5 Sep

Provid 14 Jun, 9 Sep 21,22 Aug 4,5 Sep

For biomass retrieval algorithm development, we have
explored different methods for dealing with the variability
of RCS due to varying soil moisture. We found that
simple averaging made the best relationships between
RCS and ground validation measures of AGB (Fig. 8).
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AOA: Small
=== 0.691%In(x):16.805 R?= 0339
x

AOA: Small
--- 0.684%Inix)16.326  R? = 0.558
x

-1a x X _o-oY g%

15 o
Sox x
x i
16 *x
L x
17
18
o AOA: Medium AOA: Medium
= -== 0.551"In{x)-16.260 R! = 0.228 x --- 0.539"In(x)-15.657  R? = 0.680
13 x X
=7 N A Ky
— . £ P e %
Y L -
T ¥ x _X- %%
Q -
> 5] &% x

AA: Large AOA: Large

=== 0.452°n(x)}15.756  R? = 0202 === 0.448In(x)-15.240 R = 0642

-13 x x

""""""" x T
SR

e %

"""""""""

0 40 60 B0 100 120 140 0 0 40 &0 80 100 120 140

AGB [Mg/ha]

Fig. 8. Examples of the empirical curve-fit relating
AGB (x) to the radar cross section, y°, for the different
sized Areas of Aggregation (0.1, 2.5 and 14 ha) for
varying combinations of the ground validation data
collected for the Great Slave Lake region.

While polarimetric data could likely result in an
improved model, given the likelihood of dual polarization
data into the future on a global scale, the 2-band algorithm
provides a coefficient of determination of 0.68, with
outliers removed. Outliers from the fit can be attributed to
particularly low regions of AGB (and hence a heightened
sensitivity to surface roughness and soil moisture). After
removing those regions from the parameterization of the
model and the assessment, the overall curve fit that relates
AGB to y° is much improved, with the best fit appearing

4
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for regions that had a medium-sized Area of Aggregation
(2.5 ha).

With the analyzed data thus far, and using the empirical
relationship between AGB and y° derived from this
study, the parameterized curve was applied to collected
data by ALOS-2 data specified in Table 2. Using a
mosaic of collected scenes averaged over time, a map of
AGB was created for the region (Fig. 9). The methods
and map are in review at JSTARS [8]. These data are
being uploaded onto the ABoVE science cloud so that
other researchers can access the provided estimates of
AGB and it will be archived on the NASA ORNL DAAC.

Legend
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Figure 9. A map of AGB values derived from ALOS-2
data and sorted into 20 Mg/ha bins for the Great Slave
Lake region of Canada’s Northwest Territories. Shown
too are the location and values of AGB for the 14 test
sites used in the analysis [8].

Estimating Carbon Storage from Peatland Biomass

We assessed using the map of [8] versus field data in
estimating C storage in AGB for the study area peatland
sites. As a comparison in our calculations of C content
from field data vs. the map of [8] (fig. 9), Above ground C
estimates for treed fen were 8.87 Mg/ha from the field
data and 9.77 MG/ha from the model, for bog estimates
were 9.74 Mg/ha from the field data and 6.36 Mg/ha from
the model, and for shrub/open fen were 1.81 Mg/ha from
the field data and 35.17 Mg/ha from the model. While the
model worked well in peatland classes with high biomass
(e.g. treed fen and bog), the model was greatly
overpredicting in areas with low biomass (e.g. shrub/open
fen) where soil moisture is most strongly influencing
backscatter, as mentioned above. Fen peatlands are very
wet. This is a limitation in the biomass model that will be
further assessed with data collected in 2022. A separate
biomass retrieval algorithm may be needed for wetlands,
but it may also be a limitation of SAR in the summer.
Winter data when the ground is frozen may be a better
time to estimate biomass. One thing to note is that in Fig.
9, the first set of sites on the x-axis were burned in 2014

or 2015 (label starting “BS-*), thus the PALSAR-2 model
is measuring dead standing biomass in comparison to field
measurements of the dead standing biomass. Most of the
biomass is in the remaining boles, but they are no longer
transpiring/living. All site names that do not start with
“BS-” on the x-axis were unburned.

Bog AGC Model and Field Comparison
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Figure 13. Comparison of [8] modeled biomass (flue

bars) with high biomass classes treed fen and bog
showed a close match between field estimates (orange
dots) and the ALOS-2 biomass model. Note that the sites
labeled “BS-“ are burned sites and the biomass map of
[8] is measuring dead standing tree biomass.

5. BROADSCALE ASSESSMENT OF ECOSYSTEM
VULNERABILITY TO WILDFIRE

The broadscale assessment of 136 wildfires that
affected 3.3 M hectares in 2014 and 2015 in the Great
Slave Lake area of NWT, CA was made possible by the
integration of L-band ALOS-1 and 2 data in mapping land
cover ecotypes provided via this data grant (Fig.14 (top
left [9, 10]). This map was then intersected with a burn
severity map (Fig. 14 (bottom left) [11,12]) produced for
the organic soil layer (since all fires are crown fires) to
understand the effects of fire to the organic soil layer and
resulting seed beds. This allowed us to assess the
vulnerability of different ecosystems to wildfire across
gradients of ecoregion: Taiga plains ecoregion vs Taiga
shield; permafrost status: discontinuous vs. sporadic; by
fire year: 2014 vs. 2015; and season of fire (using a fire
progression map from MODIS after [13]): early, middle
and late (Fig. 14). It also allows us to understand the

5
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consumption and C loss from the wildfires via modeling,
such as CanFIRE [14].

Ecotype

B Marsh

. Swamp

B Open Fen
Treed Fen

N Bog
Deciduous

I Coniferous

Burn Severity

B Unburned
Singed
Light
Moderate

I Severe

Ecoregion
Taiga Shield
Year Taiga & Boreal Plain

Year
2014
2015

Season

B Early
Mid

B Late

Season

Burn Severity 9 0.

Fig. 14. Study parameters were parsed by ecoregion
consisting of Taiga plains and Taiga shield, year by the
2014 and 2015 wildfire perimeters, season by early,
middle, and late season fires, and by ecotype.

Wildfire and climate are drivers of change in boreal
ecosystems. Understanding the tipping point of drought
conditions at which the landscape becomes connected, and
peatlands are susceptible to wildfire with deeper burning
of the organic soil layers is important for understanding
the potential future effects of climate change and
projected increases in wildfire on peatlands.

In this study, we used empirical field data and remote
sensing to assess the vulnerability of the landscape [as 15]
to wildfire by exposure (defined by areas burned and
unburned islands by ecotype) and susceptibility (assessed
by evaluating severity of burn to the soil organic layers).

BSI by Ecotype

Severe Burn

Unburne

Open Fen Treed Fen Bog Deciduous Coniferous

Figure 15. Violin plot of burn severity by ecotype across
all 136 wildfires in the Great Slave Lake area of NWT,
CA.

While overall, we found open fens to be burning the least
severely and upland conifer the most severely (Fig. 15),
we found great differences in ecotypes burning and at
what severities within fire perimeters on the Taiga shield
and plains, which both reside in the same fire regime. The

rocky landscape, with greater topographic gradients and
shallow soils of the Taiga shield seemed to have reached
the threshold of drought conditions in 2014, where the
landscape became connected, and all ecotypes had high
susceptibility to wildfire. Everything was burning on the
Taiga shield in these extreme years, even emergent
wetland marshes. Despite having fragmentation by 42%
of the area by unburnable (water/exposed bedrock) cover
on the Taiga shield, there were few unburned islands and
on average >92% of the area within fire perimeters
burned. There was also consistency across ecotypes in
proportional area burned at the various fire severities (Fig.
16), with a dominance of light fire severity across
ecotypes, in all seasons and in both 2014 and 2015. In
contrast the wildfire on the Taiga plains affected large
areas, but fire severity within fire events was much
patchier than on the shield, and larger differences were
observed across seasons of fire (Fig. 16) and years of fire.

Figure 16. Plots of expected (grey bars) and actual
proportional area of each burn severity for each ecotype
by (A) Early season on the Taiga plains; (B) Early
season on the Taiga shield; (C) Mid-season on the Taiga
plains; (D) Mid-season on the Taiga shield; (E)Late
season on the Taiga plains; and (F) Late season on the
Taiga shield.
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1. INTRODUCTION

Permafrost, which accounts for 24% of the land area in
the Northern Hemisphere, exhibits great variability due to
repeated thawing and freezing depending on climate. The
seasonal freeze/thaw process of the permafrost active
layer has been a sensitive indicator of changes in climate
conditions. To understand the changes in the active layer,
spatially detailed monitoring methods such as optical and
Synthetic Aperture Radar (SAR) remote sensing
technologies have been extensively applied to the
observation of the permafrost environments.

Optical remote sensing has been mainly used to monitor
permafrost-related land cover information [1]. Optical
remote sensing has also been used to monitor changes in
the permafrost ecosystem. However, high-altitude areas
where permafrost is located are difficult to obtain optical
images except during the summer period. Synthetic
Aperture Radar, which enables continuous acquisition of
a wide range of images in all weather conditions, is
capable of effective monitoring of permafrost areas, so in
this study, topographic, geologic and hydrological
characteristics of permafrost can be identified and
monitored through the development of technologies using
optical data and polarimetric SAR data.

SAR observations have been actively used to observe
permafrost local environments and spatiotemporal
changes in the active layer. Due to the advantages of
periodic observations independent of cloud coverage and
solar elevation, early SAR applications focused on the
identification and detection of freeze/thaw states of the
active layer ecosystem with seasonal SAR backscatter
timeseries [2], [3].

Although both optical and SAR remote sensing
techniques have been widely used to retrieve and monitor
the unique ecological and periglacial features of
permafrost area, each method has its own challenges or
limitations. Permafrost regions have a long winter season
with low solar intensity and angle and a short and rapidly
progressing summer season. The geographical constraints
limit the acquisition of optical remote sensing data, and as
a result, it is often difficult to obtain appropriate data
corresponding to the regions and timing of interests. On
the other hand, SAR remote sensing has the advantage of
being able to continuously acquire data for high latitude
regions regardless of the season. Therefore, this study
aims to explore the possibility of combined interpretation

of optical and SAR data for identifying and understanding
spatiotemporal details of the short- and long-term changes
occurring in the permafrost active layer.

2. STUDY AREA AND DATA SETS

The selected study area is central Yakutian lowlands,
eastern Siberia (Fig. 1). The alluvial terraces of the Lena
River in eastern Siberia are composed of silty and sandy
loams, which has high ice content, and the study area has
been highly affected by thermokarst due to ice wedges [4].
The study site is covered with forests, shrublands, and
thermokarst landforms. Particularly, one of the distinct
features of the central Yakutian lowlands is the abundance
of thermokarst lakes. The red and black rectangle in the
Fig. 1 indicates Landsat and ALOS-1 PALSAR-1 data
coverages, respectively. and the white box is the location
of the main study area.

Fig. 1. Location of the study area and the topography
obtained from the Copernicus 30-meter global digital
elevation model (GLO-30).

3. ECOSYSTEM CHANGES IN OPTICAL DATA

In order to examine both land cover changes and
cryogenic processes throughout the thawing and freezing
periods, two Landsat data acquired during the summer
season in August 2006 (LS1) and 2007 (LS2). Previous
studies were focused only on the detection and area
change of thermkarst lake, but the study area has a
regional characteristic that it is very difficult to identify

588



changes in the ecosystem due to changes in the soil
environment unless changes in other land covers are
comprehensively considered. The method of using the
vegetation index of optical images is not easy to specify
temporal and spatial changes in the active layer ecosystem,
and thus, this study used the support vector machine
(SVM) classification approach that can appropriately
classify various topographical features and changes in the
region based on the spectral characteristics of optical
images. The change detection of Landsat data between
2006 and 2007 summer period was carried out to
minimize the effects of atmospheric or phenological
conditions in the interpretation of the bi-temporal data to
understand land cover changes as shown in Fig. 2(a) and
(b). To reduce errors related to classification performance
in the analysis of land cover changes, five classes with
distinct spectral characteristics in both data were selected
including dense forest (DF), sparse forest or shrub (SF),
grassland (Gr), barren or bare surface (BS), and water
(Wa).
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Fig. 2. SVM-based classification results for (a) LS1
(2006) and (b) LS2 (2007) data, and (c) areal
percentage of different land cover classes of the study
area.

Overall accuracy (OA) and Cohen’s kappa index (Kappa)
were used to evaluate the accuracy of each Landsat data
as shown in Fig. 2 (c). In order to assess the spatial
pattern of changes in these four main classes, a grid-based
analysis of the areal fraction of changes was applied as
shown in Fig. 3.

Fig. 3 shows the spatial change distributions for the four
main classes, Dpr, Dz, Dgr, and Dy, per 1 km? grid cell. In
the change analysis, riverine lowland areas with the
elevation below 100 m were masked to exclude land
cover changes related to the fluvial regime of the Lena
River. The gridded change distribution for DF class
exhibits that there were specific areas where the forest
areas were primarily reduced, and in some areas, the
forest coverage within the grid cell was rather expanded.
The DF class mainly decreased in the thermokarst terrace
on the right bank of the Lena River, while the SF class
increased in this region, which indicates that a significant
part of the dense forests was changed to the sparse forests
or shrublands in this area.
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Fig. 3. Grid-based spatial class changes (km2/ km2/yr)
over 2006-2007 for (a) DF, (b) SF, (c) Gr, and (d) Wa
classes.

4. CHANGES IN POLARIMETRIC SAR DATA

The data obtained in September 2006 (PA1) can be said to
have been obtained at the end of the thawing period, and
the data obtained in November 2006 (PA2) can be said to
have been obtained at the beginning of the freezing period.
The data obtained in March (PA3) and May 2007 (PA4)
can be said to be the end of freezing period and the
beginning of the thawing period, respectively. The status
of acquiring ALOS-1 PALSAR-1 data is shown in Fig. 4,
and is shown with meteorological data from the global
atmospheric reanalysis ERA-5 data of European Center
for Medium-Range Weather Forecasts (ECMWF).
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Fig. 4. Overall meteorological conditions during the
study period (red: Landsat, blue: PALSAR) and
PALSAR images of the main study area.
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The polarimetric SAR data with radiometric and
geometric correction can be represented in the form of the
covariance matrix [C]. In order to better clarify the
change in scattering processes associated with the frost
actions during winter, we have adopted additional
polarimetric parameters called HHVV correlation
coefficient ¥(HH.VV) that can provide additional
information on the microwave scattering mechanism. The
magnitude Prrvv can be a good indicator of signal
depolarization that varies from 0 for a completely random
signal to 1 for a pure single scattering. On the other hand,
the phase @urvv can be used to distinguish surface and
double-bounce scattering mechanisms [5] and can
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indicate dielectric properties of subsurface-layer of dry
soil [6]. In addition to v(HH.VV) | the polarimetric
correlation defined in the right (R) and left (L) handed
circular polarization basis has been also used as another
indicator of scattering characteristics. The magnitude of
y(BR,LL), i.e., prrir, has been proved to be an effective
parameter for estimating the roughness of scattering
surfaces regardless of the dielectric properties of the
scatterer [7]. On the other hand, the phase term ®rrr.. has
been found to be directly related to the local orientation
angle of the scattering surface [8].

The changes of HHVYV correlation and RRLL correlation
are shown in Fig. 5, and the Pearson correlation
coefficients between polarimetric parameters and optical
data and between polarimetric parameters and
meteorological data are summarized in Table 1.

ApgrrL
PA3-PA2

Apppyy®
PA3-PA2

PA3-PA2
Fig. 5. Changes of 2punvv, Apuuvv, and APrriL.

Table 1. Pearson correlation coefficients for the
relation of land cover changes in three polarimetric
parameters Puavv, umv, and Prrir.

Landsat-based land cover changes
Dpr Dgp Der Dwa
Apurvy 0.24 -0.24 -0.06 -0.04
APynvy 0.25 -0.06 -0.05
AprriL -0.20 -0.05 0.06

A decrease of purvv in Fig. 5 indicates an increase in the
level of depolarization in the signal [9]. The scattering
properties could be changed from single dominant surface
scattering in the early freezing period to an increase of the
stochastic scattering process from the frozen active layer
in the late freezing period. The decrease in ¢xzvw during
the freezing period can be interpreted as a decrease in the
effective dielectric constant of the active layer scatterers
[10]. Soil cryogenic process, such as increased frozen ice
content and the development of ice lenses, can be one of
the ground characteristics resulting in an increase in
signal depolarization. On the other hand, the increase in
preee during the freezing process indicates an increase in
the roughness of the scattering surface independently of
the change in dielectric properties of the scatterer.
Consequently, experimental results illustrate that

polarimetric SAR timeseries data acquired in the freezing
period may indicate the areas where the soil cryogenic
process actively occurred, and such areas can be linked
with changes in the ecosystem, such as reduction of forest
and expansion of shrub.

5. DISCUSSIONS

Changes in both the land cover and the winter scattering
characteristic, which can be experimentally identified
through Landsat and PALSAR data, showed distinctive
spatial patterns between the left and right terraces of the
Lena River as shown in Fig. 6. Fig. 6 (a) shows the SVM-
based classification results for Landsat data in 2002 and
2010, and Fig. 6 (b) shows the changes of Afrrr1 between
PA2 and PA3 acquisition time.
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Fig. 6. (a) SVM-based classification results for
Landsat data in 2002 and 2010, (b) changes of 2pzrw..

Among the land cover classes, increasing SF classes and
decreasing DF classes were found to be related to RRLL
coherence during the winter of 2006-2007 in both the left
and right terraces of the Lena River. As discussed earlier,
the RRLL coherence can be related to the
microtopography of the scatterer that could be attributed
or related to the patterned surface properties.
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(b) Left terrace (c) Right terrace
Fig. 7. Relationship between the winter changes in
polarimetric parameters and the changes in DF, SF,
Gr, and Wa classes for the (a) left and (b) right
terraces of the Lena River.
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6. CONCLUSION

In this study, we analyzed ecological and geo-cryological
dynamics in the central Yakutian region throughout the
summer and winter seasons between 2006 and 2007 by
using Landsat and PALSAR data obtained during the
summer and winter seasons, respectively. The optical data
with the advantage of being able to distinguish different
land covers through spectral response measurements were
used to elucidate ecosystem changes between consecutive
summers. The results of post-classification-based change
detection using Landsat data confirmed that vegetation
cover also changed significantly between 2006 and 2007
in the Yakutian lowlands, where lake area expansion had
been previously reported. To understand the effect of the
soil freezing process on ecosystem change, the radar
scattering characteristics in winter were evaluated
between the summer Landsat data acquisition period. We
analyzed scattering mechanism indicators from the SAR

data to highlight soil’s dielectric and roughness properties.

The result of analyzing the relationship between
information obtained from optical and SAR sensors
revealed that there was a significant correlation between
winter changes in scattering properties observed in SAR
data and summer land cover changes observed in optical
data. The scattering characteristics of winter soil were
found to be particularly related to the ecosystem changes
in areas that can be explained by the thermokarst
development process. Additional data from independent
sources, such as elevation data, meteorological data, and
long-term optical data, consistently supported the
relationship between the winter SAR observations and the
thermokarst-related ecosystem changes.

Based on these experimental results, information on the
soil cryogenic processes related to the distribution and
change of thermokarst landforms could be obtained
through SAR observations during the freezing period. It is
worth noting that polarimetric scattering mechanism
indicators played a decisive role in deriving information
about the permafrost process from the winter SAR data.
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1. INTRODUCTION

Ice sheets are acknowledged by WMO and UNFCCC as
an Essential Climate Variable (ECV) needed to make
significant progress in the generation of global climate
models. Information requirements include ice velocity
(IV), grounding line position (GP), Ice front position
(IP), all of which can be derived using spaceborne SAR
data [1,2].

We are funded through a NASA MEaSUREs project to
generate high-quality Earth Science Data Records
(ESDR) in Antarctica. To do so, we utilize
multi-mission spaceborne SAR data and, more recently,
optical data. Our primary information products are ice
velocity and grounding line position, but we also
provide ice front position as well as basin boundaries.
Our maps are provided continent-wide, though coverage
is limited by the data availability for the corresponding
observation period. A list of available products is
provided in section 4.

The primary objective of this report is to evaluate the
utility of ALOS-2 PALSAR-2 data for ice sheet
monitoring. We show the utility of L-band data for both
ice velocity and grounding line measurements and
evaluate limitations of the mission for this task. Our
experience with L-band SAR data is based on our
extensive work with ALOS PALSAR data acquired in
Antarctica between 2006 and 2010 in several
campaigns. We used all available data for our products.
For ALOS-2 PALSAR-2, we employed a more regional
approach. The primary reason for this is more regulated
access to high resolution stripmap data from the
mission. We have been working with JAXA to define a
number of key geographic areas for repeat pass data
collection to maximize the scientific impact of the data
acquisitions.

2. DATA

ALOS-2 PALSAR-2 has a 14-day repeat orbit, which is
advantageous over ALOS PALSAR as data correlation
is even higher, particularly for fast glaciers. The shorter
repeat will reduce the signal to noise ratio for
ionospheric noise, so ionospheric perturbations will
have a greater impact compared to longer repeat data,
especially in slow moving areas. No Antarctica-wide
interferometric acquisition strategy is in place for
ALOS-2, and access to stripmap data is somewhat
restricted due to a limitation on data quotas. Throughout
the project, we worked with JAXA to identify regions
of interest where a smaller number of acquisitions has a

high scientific impact given the sensor properties. We
focussed on fast glaciers to optimally use our data
quota. These areas are distributed around Antarctica and
include the Antarctic Peninsula (from an earlier project
phase), the Amundsen Sea Embayment, and the Getz
Coast in West Antarctica, as well as Totten and Denman
Glaciers in East Antarctica (from different RA
projects). We found for early ALOS-2 PALSAR-2 data
that the range displacement component is affected by
strong shifts in range direction, an issue that JAXA also
identified and subsequently resolved. None of the data
sets delivered to us in recent years are affected.

3. METHODOLOGY

The primary method to measure ice sheet velocity from
spaceborne SAR data is speckle tracking [1]. Clear
advantages of the method include its robustness and the
availability of 2-D measurements from a single data
pair. Using the method, we have published the first
continent-wide ice velocity map for Antarctica [2] and
an ice sheet wide ice velocity map of Greenland [3].
Our  processing infrastructure is  built on
well-established methods [2,5,8], more than 20 years of
expertise in the field, and long term funding through the
NASA MEaSUREs program to produce and provide
Earth Science Data Records for Antarctica. In recent
years, we started to integrate optical data processed with
feature tracking [8] into our ESDR production. For this,
we synergistically process SAR and optical data,
automatically calibrate the resulting velocity maps and
merge them to seamless, ice sheet wide products. This
approach allows us to provide annual mosaics of ice
motion in Antarctica (and Greenland) with all available
data acquired in a particular year [8].

A detailed description of our technical approach to
generate ice velocity maps is provided in [5,8]. We use
single look complex images in stripmap mode (CEOS
format at the processing level 1.1). To process ice
velocity, we derive displacement-offset maps from
successive PALSAR-2 pairs. The offset map is
calculated using ampcor from JPL’s ROI_PAC package.
The offsets are then converted to 2D velocities. To
reduce error and mitigate ionospheric artifacts, we
average multiple measurements from all available
sensors in the generation of the Antarctica-wide
reference ice velocity map. Less averaging takes place
for velocity maps covering shorter time periods, like
annual maps and, more recently, monthly maps.

A second, more accurate method to measure ice
velocity from spaceborne SAR is to utilize the
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sensitivity of the interferometric phase to displacement
in rage direction [9]. This approach has a more stringent
data requirement, as it requires data to be collected in
both ascending and descending direction. No single
mission to date provides such coverage, we achieve it
by mixing data from different sensors acquired over
multiple years. The resulting ice velocity product is
vastly more accurate compared to speckle tracking
based results, particularly in areas of slow ice flow. For
fast flowing areas, the method cannot be used, so we
generate a high-precision Antarctica-wide reference
map by combining phase-based velocity measurements
with tracking based maps. . Ionospheric perturbations
do affect the L-and interferometric phase, however, the
impact can be greatly reduced using a split band method
[10]. A detailed description of the reference ice velocity
map based on InSAR phase as well as method used to
produce it is provided in [11]

The grounding line of a glacier is the boundary where
the ice starts to float in ocean waters. The floating
section moves up and down with rising and falling tide.
The resulting vertical displacement can be measured
using a spaceborne SAR using double difference
interferometry [3,6,7]. The method requires the
availability of two interferometric pairs (generated
either with three consecutive acquisitions, or two times
two consecutive acquisitions). We have previously
shown the potential of ALOS PALSAR for grounding
line measurements [3], however, the shorter revisit time
of ALOS-2 PALSAR-2 is highly advantageous for this
application.
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Fig. 1: MEaSUREs Annual Antarctic Ice
Velocity Maps 2000-2020, V1 [8].
http://nsidc.org/data/NSIDC-0720

4. MEASURES EARTH SCIENCE DATA
RECORDS

Our efforts resulted in a number of ESDR’s that are
freely available for use:
http://nsidc.org/data/measures/data_summaries

e MEaSUREs Multi-year Reference Velocity
Maps of the Antarctic Ice Sheet, V1
http://nsidc.org/data/NSIDC-0761

(Note: link not yet active at the time of report submission)

e MEaSUREs Phase-Based Antarctica Ice
Velocity Map, V1
http://nsidc.org/data/NSIDC-0754

e MEaSUREs Annual Antarctic Ice Velocity
Maps, V1
http://nsidc.org/data/NSIDC-0720

e MEaSUREs Antarctic Boundaries for IPY
2007-2009 from Satellite Radar, V2
http://nsidc.org/data/NSIDC-0709

e MEaSUREs InSAR-Based Antarctica Ice
Velocity Map, V2
http://nsidc.org/data/NSIDC-0484

e MEaSUREs Antarctic Grounding Line from
Differential Satellite Radar Interferometry, V2
http://nsidc.org/data/NSIDC-0498

e MEaSUREs InSAR-Based Ice Velocity of the
Amundsen Sea Embayment, Antarctica, V1
http://nsidc.org/data/NSIDC-0545

e MEaSUREs InSAR-Based Ice Velocity Maps
of Central Antarctica: 1997 and 2009, V1
http://nsidc.org/data/NSIDC-0525

Our original continent-wide Antarctica ice velocity map
(NSIDC-0484) is based on speckle tracking of data
collected using ALOS/PALSAR along with
ENVISAT/ASAR, RADARSAT-1&-2, Sentinel-1a/b,
ERS-1/2, TerraSAR-X and Landsat-8. Based on our
expertise, we also produced a series of annual surface
ice velocity maps of the Antarctic Ice Sheet between
2000 and 2021 (NSIDC-0720), as shown in Figure 1
[5]. Both data sets were processed using speckle or
feature tracking and are published at the National Snow
and Ice Data Center (NSIDC). The latest generation
Landsat satellite (Landsat-8) proved to be a useful
addition to the suite of SAR satellites providing data for
our products. We process SAR and optical data in a
synergistic fashion, automatically calibrate, mosaic, and
integrate these data sets together into seamless,
ice-sheet-wide products.

The aforementioned products are solely based on
tracking methods (speckle tracking for SAR, feature
tracking for optical), which limits the accuracy on the
ice motion to about 10 m/yr, which impacts the
determination of flow direction in slow moving areas.
These limitations impact our ability to accurately define
drainage basins of glaciers in the region or to model and
understand the ice flow in slow moving areas.

The utilization of the InSAR phase allows us to measure
ice velocity much more accurately, particularly in slow
areas in the interior of the ice sheet. This advantage
comes at the cost of more stringent data requirements.
While speckle tracking provides 2d flow results from a
single pair, InSAR phase analysis requires data acquired
in ascending and descending orbits to combine two
range-only velocity vectors to form a 2d flow map [9]
[11]. We solved this issue by combining ascending and
descending InSAR phases from ALOS-2/PALSAR-2,
ALOS/PALSAR, ERS-1/2,

593



RADARSAT-2

ALOSIPALSAR

ERS & RADARSAT-1
-
-

ENVISAT/ASAR

Headin? (deiree)

0 90 180

1000 km
m—

Ice velocity (m/yr)
I |
<1 10 100 1000 >3000

Fig. 2: MEaSUREs Phase-Based Antarctica
Ice Velocity Map, V1 [11].
http://nsidc.org/data/NSIDC-0754
Contributions of the various missions are shown in
the top row.

Envisat/ ASAR, COSMO-SkyMed, RADARSAT-1/&-2,
and TanDEM-X/TerraSAR-X and achieve phase-based
ice velocity coverage for more than 71% of the area
[11]. In areas of fast flow on the coast, InNSAR phase
analysis is no longer possible due to phase
decorrelation. Due to the high signal, tracking-based
results have an excellent SNR for these regions and
combining tracking with phase-based results leads to
the most precise ice velocity reference map of
Antarctica to date (NSIDC-0754, see Figure 2).

Figure 3 shows the published grounding line product
[3,6,7] divided by sensor as well as by year of data
acquisition. All grounding lines were measured using
double difference interferograms by utilizing the
sensitivity of the interferometric phase to vertical
displacement due to tide lift of the floating portion of
the ice. Grounding mapping efforts are ongoing,
particularly using ALOS-2 PALSAR-2, Sentinel-1,
RADARSAT-2, and Cosmo SkyMED. We are also
shifting to measuring multiple grounding line positions
per year to account for tidal induced short term
variations of the grounding line position and define a
grounding zone.

5. ALOS-2 PALSAR-2 EXAMPLE RESULTS

In an effort to evaluate ALOS-2 PALSAR-2 data for ice
sheet monitoring, JAXA kindly agreed to acquire, on a
best effort basis, repeat pass interferometric data in
several key areas, where acquisitions with limited
geographic coverage still have significant scientific
impact. Figure 4 shows the distribution of the areas of
interest around Antarctica. We chose fast glaciers in
coastal Antarctica that undergo changes as observed in
[12]. Also shown in Figure 4 are ALOS-2 PALSAR-2
sample ice velocity maps, all with good correlation.
Figure 5 shows a double difference interferogram of
two adjacent frames in the Denman Glacier region. Data
correlation is excellent and the differential tide leads to
a vertical displacement of the floating portion of the ice
resulting in a dense fringe pattern that allows the
delineation of the InSAR grounding line position, which
is the upstream boundary of the dense fringes.

MEaSUREs
% Geounding Line

0/

Fig. 3: MEaSUREs Antarctic Grounding
Line from Differential Satellite Radar
Interferometry, V2 [3,6,7].
http://nsidc.org/data/NSIDC-0498
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A phase jump is visible between the two frames,
because they were processed separately. The area has a
complex grounding line, which was previously mapped
using COSMO SkyMed X-band SAR data with 1 day
repeat orbit [13]. The ALOS-2 PALSAR-2 example
shows excellent correlation and a grounding line signal
even on the trunk of Denman Glacier, an area that
suffers from decorrelation in 6-day Sentinel-1 C-band
data.

Figure 6 shows several example ALOS-2/PALSAR-2
double difference interferograms for Totten Glacier,
East Antarctica. Data acquisition was on a best effort
basis, so interferometric pairs are dispersed throughout
the year. We use all available interferometric pairs to
generate double difference interferograms, even though
a preferred way of doing so is with interferograms that
were acquired close in time (less than 6 months apart).
The examples show a difference in fringe patterns
depending on the acquisition dates used to form the
interferograms. Similar tide level differences between
the acquisitions can potentially limit the vertical
displacement of the ice thus resulting in no discernable
grounding line fringes.

6. SUMMARY AND CONCLUSIONS

We evaluate 14-day interferometric L-band SAR data
from ALOS-2 PALSAR-2 for their utility for ice sheet
monitoring. The higher correlation of L-band data
compared to data with shorter wavelength and
comparable temporal baseline makes PALSAR-2 an
excellent instrument to monitor land ice. For the data
we have available, tracking results show generally good
correlation. Grounding line measurements are possible.
The sensitivity of L-band data to vertical displacement
is smaller compared to C- or X-band data resulting in
fewer fringes for the same differential tide. The primary
benefit for L-band is the higher correlation compared to
higher frequency bands, however, phase decorrelation
on fast flowing areas can occur for some of the areas
where we have data (predominantly in West Antarctica).
Another (frequency band independent) limiting factor
for grounding line mapping are interferograms with
similar differential tides, resulting in no discernable
fringe pattern related to vertical displacement due to
tide. This risk can be mitigated by acquiring multiple
interferograms, not just two, the minimum needed to
form a double difference interferogram. We also find
that short term, tide related grounding line migration
patterns can be observed if multiple grounding line
measurements are available for a year. These aspects are
addressed by our request to JAXA to acquire multiple
interferograms in the course of a year for a given test
site. The developed acquisition plan (best effort InNSAR
acquisitions in targeted, high-impact areas), together
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with the examples shown, illustrates how ALOS-2
PALSAR-2 can be used for ice sheet monitoring under
the current BOS with high scientific impact. The
number of sites for acquiring multiple interferograms
per year could be increased to cover the grounding lines
for more glaciers around Antarctica.

ALOS-2 PALSAR-2 has the capability to collect data in
left looking mode, thus making it one of the few
missions able to collect data in Ross and Ronne ice
shelves, particularly the grounding zone regions of
these ice shelves. Collecting multiple interferograms in
a given year for these regions would contribute to the
sparse grounding line record for the area.

ALOS-2 PALSAR-2, under the BOS, collects stripmap
data collected in right-looking mode over large portions
of coastal Antarctica, geared towards geographic
coverage. Few InSAR acquisitions are available outside
the defined Areas of Interest defined for this and similar
projects. Given the excellent correlation for
tracking-based ice velocity generation, a comprehensive
collection of interferometric SAR data in Coastal
Antarctica would be an asset for ice velocity mapping.
Such a coverage would likely require an adjustment of
the BOS, but could be achieved by extending the time
frame allowed to achieve a full geographic coverage
with stripmap data to allow for 14-day repeat InSAR
data collection thus vastly improving the scientific
impact of stripmap data collected in Antarctica.
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1. INTRODUCTION

The Arctic sea ice is very sensitive to climate change and
its spatiotemporal changes influence the operation of the
Northern Sea Route [1-2]. Therefore, observation of the
changes in the Arctic sea ice is very important. In the high
latitude region, the spatiotemporal variations of sea ice are
small, whereas the variations of sea ice in the marginal ice
zone are very large [3]. Various characteristics of sea ice
such as size, thickness, surface roughness, and
distribution of melt ponds are rapidly changing from
spring to summer when sea ice melts (thaw-up phase) and
from autumn to winter when sea ice freezes (freeze-up
phase). Particularly, the Pacific Arctic Ocean, including
the East Siberian Sea, the Chukchi Sea and the Beaufort
Sea, is characterized by faster melting and freezing region
than the other Arctic regions [4].

Due to recent climate change, the transition periods of
Arctic sea ice is changing and the characteristics of sea
ice change accordingly. Thus, characterizations of sea ice
at the marginal ice zone during the transition periods in
the Pacific Arctic Ocean should be performed for
understanding the response of the sea ice due to the
climate change and for determining more economic
Northern Sea Route.

Polarimetric synthetic aperture radar (SAR) data can be
effectively used for characterizing sea ice because it
provides physical and structural information of the target.
Many studies have been conducted to analyze sea ice
using polarimetric SAR data. However, few studies for
sea ice in the marginal ice zone of the Pacific Arctic
Ocean during the transition periods have been performed.
This research aims to characterize sea ice in the transition
periods of the previously unexplored marginal ice zone of
the Pacific Arctic Ocean by using ALOS-2 polarimetric
SAR dataset and develop analytical techniques for the
generation of sea ice information. The objectives of this
research are 1) to classify sea ice types using the ALOS-2
polarimetric backscattering signals, 2) to characterize the
physical properties of sea ice such ice thickness, 3) to
develop the sea ice characterization models for ALOS-2
polarimetric SAR based on machine learning approaches,
and 4) to assess the accuracy of the derived sea ice
characteristics with in-situ measurements.

2. CLASSIFICATION OF SEA ICE TYPES

Accurate mapping of Arctic summer sea ice is necessary
to assist in safely conducting human activities and to
provide meaningful information related to climate change.
Since the 1970s, passive microwave sensors have made
observations of sea ice distributions based on distinct
microwave radiation properties between sea ice and open
water and have provided sea ice concentration data every
day with a grid size of ~25 km. The sea ice concentration
derived from the passive microwave sensors has been
used as a primary data source for ship navigation.
However, significant inaccuracies occur in the summer
season, especially in the marginal ice zone [5], so that
exhaustive verification of the accuracy is required.

SAR has been widely used to map sea ice because it can
provide high quality images regardless of weather
conditions and sun altitudes. Particularly, polarimetric
SAR can obtain various information on sea ice, which is
extremely useful for sea ice mapping.

In this research, we developed machine learning-based
sea ice classification models for ALOS-2 polarimetric
SAR data in Arctic marginal ice zone. Random Forest, a
rule-based machine learning approach, was used for the
model development. Random Forests generates a number
of bootstrapped samples from the original data and
constructs multiple  no-pruning classification and
regression trees [6]. A series of independent trees are
grown by a randomly selected subset of the training
samples and splitting variables of the tree, which can
solve classification and regression problems.

A total of 24 ALOS-2 polarimetric (HH and HV) SAR
images over the Chukchi Sea in Arctic in September 2015.
Fig. 1 shows an example of the ALOS-2 SAR images of
the Arctic sea ice obtained on 15 September 2015. The
HH-polarized SAR images shows higher backscattering
signals for sea ice compared to the HV-polarized SAR
image. In the study area, there was no multi-year sea ice
and all sea ice was defined as first-year sea ice.
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Fig. 1. ALOS-2 HH- and HV-polarized SAR images of
Avrctic sea ice obtained on 15 September 2015

By helicopter survey of the Arctic expedition based on ice
breaking research vehicle (IBRV) ARAON operated by
the Korea Polar Research Institute (KOPRI) and sea ice
charts provided by the Russian Arctic and Antarctic
Research Institute, we constructed the reference samples
(pixels) for thick sea ice, thin sea ice, and open water
from the ALOS-2 SAR images. A total of 12,600 samples
(4200 thick sea ice, 4200 thin sea ice, and 4200 open
water) for HH- and HV-polarized backscattering
coefficient were selected. Eighty percent of the total
samples (3360 samples for each class) were randomly
selected and used as training samples, and the remaining
samples (840 samples for each class) were used as test
samples.

The HH- and HV-polarized backscattering coefficients
were used as the input variables for the Random Forest-
based sea ice classification model. Table 1 shows the
performance of the classification model. The developed
model’s performance was low, with the overall accuracy
of 75.2% and the Kappa coefficient of 62.9%. Fig. 2

shows the sea ice map classified from the SAR data of Fig.
1 based on the developed model.

Table 1. Performance of sea ice classification model
developed by using ALOS-2 HH- and HV-polarized
backscattering coefficients

eference Thick Thin Open Sum User’s
. X A
Classifie sea 1ce sea 1ce water CCul‘aCy
Thicksea 51 60 644 8328%
1ce
Thlil:esea 215 704 141 1060  66.41%
Open o
72 85 639 796  80.28%
water
Sum 840 840 840 2520
Producer’s o o300 83.81%  76.07%
Accuracy
Overall 75.94%
Accuracy
Kappa
2.869
coefficient 62.86%

I rhickice I hinice Open water
Fig. 2. A map of sea ice classification derived from the
model developed by using ALOS-2 HH- and HV-
polarized backscattering coefficients

We computed entropy, anisotropy, and alpha angle from
the ALOS-2 SAR images by using H-Alpha dual-
polarimetric decomposition method. The calculated
polarimetric  parameters and the backscattering
coefficients were used as input variables for classification
of sea ice types. The newly developed model showed
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much higher performance (overall accuracy of 89.8% and
Kappa coefficient of 84.6%, respectively) compared to the
model using only the backscattering coefficients (Table 2).
Fig. 3 shows the sea ice map for the SAR data of Fig. 1,
derived from the newly developed model.

Table 2. Performance of sea ice classification model
developed by using ALOS-2 polarimetric parameters
and backscattering coefficients

eference

Thick Thin  Open User’s
Sum

Classifis seaice seaice water Accuracy
Thl.c k sea 747 29 16 792 94.32%
ice
Thinsea ¢, 729 38 827  88.15%
ice
Open
33 82 786 901 87.24%
water
Sum 840 840 840 2520
Prod ¢
TOCUCEr'S  8893%  86.79% 93.57%
Accuracy
Overall 89 76%
Accuracy
Ka}.)l?a 84.64%
coefficient

I hick ice I i ice Open water
Fig. 3. A map of sea ice classification derived from the
model developed by using ALOS-2 polarimetric
parameters and backscattering coefficients

Table 2 and Fig. 3 demonstrates that the polarimetric
parameters of ALOS-2 SAR data much improved the
performance of sea ice classification compared when

using backscattering coefficients only. We could not use
full polarimetric ALOS-2 SAR data for developing the
Acrctic sea ice classification model ice because there were
no full polarimetric data for the marginal ice zone during
transition period. Nevertheless, if the full polarimetric
ALOS-2 data is obtained, it can be expected that the sea
ice mapping performance will be much better, and we
think that the ALOS-2 will greatly contribute to the field
of sea ice research.

3. BACKSCATTERING CHARACTERISTICS BY
SEA ICE THICKNESS

Radar backscattering can vary with changes in sea ice
thickness. Several studies have analyzed the variations in
backscattering  characteristics observed by SAR
depending on sea ice thickness changes. The previous
studies showed a meaningful relationship between the
backscattering and sea ice thickness. However, few
studies on snow-covered sea ice has been performed so
far.

In this study, we collected ALOS-2 polarimetric SAR
images of landfast sea ice in Barrow, Alaska, and
compared the backscattering characteristics of the sea ice
with its thickness. From January to April 2015, 8 dual-
polarimetric (HH and HV) and 2 full polarimetric ALOS-
2 SAR images for the landfast sea ice were acquired. The
image acquisition period corresponded to the sea ice
thaw-up phase (transition period). We used in-situ sea ice
thickness measured at the sea ice mass balance site
(71.37725° N, 156.55350° E) by University of Alaska
Fairbanks (Fig. 4). Fig. 5 shows a HH-polarized ALOS-2
SAR image of the study site obtained on 25 April 2015.
The red dot in Fig. 5 represents the location of sea ice
mass balance site shown in Fig. 4.

Fig. 4. A picture of sea ice mass balance site
(https://seaice.alaska.edu/gi/data/barrow_massbalance
/brw_2015/)
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Fig. 5. ALOS-2 SAR image for the landfast sea ice in
Barrow, Alaska. The red dot represents the location of
sea ice mass balance site

Fig. 6 shows the scatterplot between the in-situ measured
sea ice thickness and ALOS-2 backscattering coefficients
at HH-polarization. The ALOS-2 L-band backscattering
coefficient at HH-polarization strongly correlated with the
landfast sea ice thickness, showing a R? value of 0.933.
This represents that it can be possible to develop a model
for estimating sea ice thickness from the ALQOS-2
polarimetric data in the transition period.
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Fig. 6. Scatterplot between sea ice thickness and
ALOS-2 HH-polarized backscattering coefficient

Fig. 7 show the scatterplot between the in-situ measured
sea ice thickness and ALOS-2 backscattering coefficients
at HV-polarization, of which the value of R? was 0.019.
The landfast sea ice thickness could not be estimated from
the ALOS-2 HV-polarized backscattering coefficient.

A model for estimating sea ice thickness from ALOS-2
polarimetric data could not be developed in this research
because of a lack of ALOS-2 data capturing the sites of
field observations. Nevertheless, our results showed that

the ALOS-2 polarimetric data can be used to estimate
accurate sea ice thickness in the transition periods.
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Fig. 7. Scatterplot between sea ice thickness and
ALOS-2 HV-polarized backscattering coefficient

4. POSSIBILITY OF USING ALOS-2 DATA FOR
ESTIMATING CHANGES IN SEA ICE PHYSICAL
PROPERTIES

In this research, we analyzed the incidence angle
dependence of multiyear sea ice in the marginal ice zone
on the ALOS-2 L-band backscattering. We focused on the
marginal ice zone of the western Beaufort Sea, north of
Alaska. A sea ice drifter buoy with an integrated GNSS
positioning system and Argos satellite-based data
transmission system was installed on the surface of sea ice
floe during the field campaign on August 12, 2019. The
time and coordinates of the tracker on the ice floe were
used to select ALOS-2 PALSAR2 images that capture the
sea ice floe within its swath. However, there was few
ALOS-2 polarimetric SAR images for the ice floe. Instead,
we used Sentinel-1 dual-polarimetric SAR images, and
analyzed the incidence angle dependence of the C-band
backscattering coefficients of HH- and HV-polarization
by wusing a robust linear regression model. The
determinant coefficient and root mean square error
between the measured and calculated backscattering
coefficients were analyzed. Then, a polynomial regression
model to determine a temporal trend of the normalized
backscattering coefficients over the surface of multiyear
sea ice during the SAR observation period was
determined. Based on this result, we expect that ALOS-2
full-polarimetric SAR data can be used for analyzing the
temporal changes in sea ice physical properties.
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1. INTRODUCTION

Glacier flow rates are affected by changes in mass balance
gradient due to snowfall on the glacier surface, changes in
physical properties occurring inside and below the glacier,
and basal sliding [1]. Many studies have been conducted
on the observation of glacier flow rates due to changes in
mass balance gradients and physical properties due to snow
cover and erosion [2]. In addition, studies on flow rate
changes due to the basal sliding are receiving great
attention.

The flow rate change due to the basal sliding is greatly
affected by the water in the base. The pressure of thick ice
lowers its melting point, allowing liquid water to exist at
lower temperatures between the Antarctic ice and bedrock.
Molten water is an important factor in changing the flow
rate of glaciers. This is because the melt water reduces
friction between the ice and the bedrock, accelerating the
flow of the glacier [3, 4]. Molten water travels along the
topography of the bedrock, creating channels and being
stored in watersheds to form subglacial lakes. [5] suggested
that large subglacial lakes initiate rapid ice flow.

The study of subglacial lakes began with the discovery of
elliptical depressions in the ice sheet. The first subglacial
lakes were first discovered by Radio Echo Sounding (RES)
from 1968 to 1979 [6]. Interactions between the ice sheet
surface and subglacial lakes were unknown at the time of
discovery, but were analyzed in the 1990s [7]. Most
subglacial lakes were discovered using Ice-penetrating
Radio Echo Sounding and Satellite Altimetry techniques [8,
9, 10]. Observations of subglacial lakes using RES showed
that the intensity of the reflected signal from the subglacial
lake surface was much stronger and flatter than the
reflected signal from the bedrock due to the dielectric
constant.

Subglacial lake detection using satellite altimeter was
performed by detecting the flat surface of an ice sheet
appearing from above in a large subglacial lake, or by
detecting a sharp difference in altitude between the ice
sheet around a subglacial lake and the ice sheet above the
subglacial lake. Large subglacial lakes, such as Lake
Vostok, can be detected by optical satellite imagery
because the ice sheet surface is wide and flat. The
difference in altitude above subglacial lakes are caused by
changes in the water level below the ice sheets. The water
system at the bottom of the ice sheet is pressurized by the
thick ice above it. Changes in water level under these
pressure conditions can change the elevation of the ice

surface and can be observed from satellites [11]. The melt
water below the ice sheet is driven by hydraulic pressure to
discharge and rechange the subglacial lake, causing the
upper ice to fall or rises as the water level changes.

[12] found a total of 124 subglacial lakes in Antarctica
using the ICE-Sat radar altimeter. [12] defined an active
subglacial lake as a subglacial lake in which elevation
displacement occurs due to hydrological activity. However,
since RES and satellite altimeters measure using lines, it is
difficult to detect small subglacial lake between lines. Also,
when an altimeter detects the flat surface of the upper ice
sheet of a subglacial lake, the physical properties of the ice
sheet can make the surface appear flat, just as the low shear
stress at the bottom make the surface of the ice sheet appear
flat. In addition, the upper ice surface of subglacial lakes
less than 4 km in diameter may not be flat, limiting
detection [13].

The satellite Synthetic Aperture Radar (SAR) is very
effective for research in Antarctica, where access is limited.
In addition, it has the advantage of providing high-
resolution images in all conditions as it is not affected by
the illuminance of the sun and weather conditions.
Differential-interferometric SAR (DInSAR), one of the
SAR image processing techniques, can be applied to
measure ice displacement with cm accuracy. For example,
[14] calculated the exact flow velocity of the Campbell
Glacier Tongue using the DInSAR technique and tidal
correction. Since DInSAR technique also includes vertical
displacement, changes in the elevation of the glacier
surface can also be observed. [15] used InSAR to observe
changes in glacial surface elevation due to movement of
subglacial water. [16] determined glacial subsidence due to
drainage of subglacial lake, considering that displacement
using InSAR is in the Line-Of-Sight (LOS) direction.

In this study, DInSAR was applied to Cookgz, one of the
active subglacial lakes discovered by [12], to observe
discharge and recharge, and to analyze the 2D surface
change accordingly. The study area and data are described
in Section 2 and the study methods are presented in Section
3. The results were discussed in Section 4, and Section 5
concludes this report.

2. STUDY AREA AND MATERIALS

Stretching from the coast George V in East Antarctica to
Mount Prince Albert in West Antarctica, the Wilkes
Subglacial Basin of Wilkes Land is covered by an ice sheet
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1,400 km long, 400 km wide and 3 km thick. The Wilkes
Subglacial Basin was observed with airborne radar dataset
performed in the 1970s, and the deepest part of the basin is
deeper than 2100 m below sea level [17]. Of the entire
basin, the area observed in this study is approximately 100
km west of Talos Dome in East Antarctica. Near this area,
there is an Ice Divide that divides the direction of the ice
flow into three directions, and this area is included in Cook
Glacier. In particular, this area is drawing attention from
many researchers as drainage progressed rapidly from 2006
to 2008.

The study area is included in the list of active subglacial
lakes in Antarctica presented by [12]. [12] determined that
2.7 km3 of water drained from Cookg, from November
2006 to March 2008 using ICESat (Ice, Cloud and land
Elevation Satellite) laser altimeter data. A decrease in
height of 44 m was observed in track 227 and a decrease of
48 m in track 1325, which is approximately five times the
height decrease found in other subglacial lakes [12]. [9]
combined ICESat and CryoSat-2 data to construct a time
series for the elevation model and observed that the height
of the Cookg, upper surface decreased sharply from 2006
to 2008 at an average rate of 35 = 14 m/year and then
increased again to 5.6 = 2.8 m/year. [18] observed an
elevation decrease of about 70 m from November 2006 to
October 2008 through ICESat. They also found that an
elevation increase of about 13 m occurred when comparing
the October 2008 altitude with the SPOT5 DEM obtained
in February 2012 [18]. [19] show a decrease in elevation of
59.6 m from February 2006 to October 2008 due to
drainage, followed by steady increase at a rate of about 1.1
m/year from January 2011 to November 2016 using ICESat
and CryoSat-2 data.

This study observed Cookg, using satellite SAR images.
Since the satellite SAR system uses an active imaging
system using microwaves, it can acquire high-resolution
images of a large area in all weather conditions. In previous
studies, satellite altimeters were mainly used to check
changes according to lines. Satellite SAR imagery allows
the identification of two-dimensional structures by
analyzing images of the entire scene.

In this study, images from the Advanced Land Observing
Satellite (ALOS) Phased Array L-Band Synthetic Aperture
Radar (PALSAR) operated by the Japan Aerospace
Exploration Agency (JAXA) were used. ALOS was
launched on January 24, 2006 and operated until May 12,
2011. Its primary mission is land observation, and is used
for mapping, regional observation, disaster monitoring,
and resource surveys. ALOS has three sensors:
Panchromatic Remote Sensing Instrument for Stereo
Mapping (PRISM) for digital altitude measurement,
Advanced Visible and Near Infrared Radiometer type-2
(AVNIR-2) for precision land cover observation, and
PALSAR with L-band SAR (1.27GHz) for all-weather
land observation. As shown in Table 1., ALOS PALSAR
has Fine Mode, Scan SAR Mode, and Polarimetric Mode.
In this study, SAR images acquired in FBS(Fine Beam
Single polarization) mode were used, and level 1.1
SLC(Slant range single look complex) products acquired

in October 24, 2007, November 15, 2007, December 9,
2007, December 31, 2007, October 20, 2010, and
December 5, 2010 were used.
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Fig. 1 Study area

Table 1 ALOS PALSAR imaging acquisition modes

characteristics
Swath Spatial
Mode (km) resolution Polarization
(m)
Single
. FBS 70 10x10 (HH or VV)
ine
Dual
FBD 70 20%10 (HEHIVarVVAVE)
Single
Scan SAR 360 71-157x100 (HH or VV)
. . Quad-pol
Polarimetric 30 31x10 (HHHV/VHVY)

ScanSAR Mode

Polarimetic Mode (FB#1~#5)
Fine Beam (single/dual) Mode (FB#1~#18)

Fig. 2 ALOS PALSAR observation modes [20].

3. METHODS

A satellite SAR system can detect subtle differences by
observing the same object more than once. There are two
methods of observation. The first is a method of acquiring
images with a time difference using the repeated orbit of a
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single radar mounted on a single satellite. The second way
is to take images with two radars at the same time. In this
method, two radars can be installed on one satellite to take
images at the same time, or two satellites are equipped with
radars respectively and fly together. Most satellites such as
ALOS-1/2, ERS-1/2, Sentinel-1A/B, and COSMO-
SkyMed use repeated orbits, while TerraSAR-X and
TanDEM-X take images in parallel. In the method using
the repeated orbit, the displacement is represented by
fringes and can be considered as a concept of velocity.
When using two radars at the same time, it is mainly used
to generate global DEM by observing the altitude.

The geometry of the SAR Interferometry technique is
shown in Fig. 3. InSAR configuration is usually achieved
by imaging a target point P from two radar positions at
S; and S,. The distance between S; and S, is baseline,
B. The line passing through S, and perpendicular to the
slant range of S; iscalled B,. The height of S; from the
surface is H and the radius of the Earth is 7,. 8, is the
look angle, and ajp is the angle between the line
perpendicular to H and baseline B. If the slant ranges
from S; and S, to the target points P are R; and R,,
respectively, and the slant range difference between R;
and R, is AR, the interferometric phase ¢ can be
expressed as follows using the radar wavelengths A and
AR:

= ——AR 1
$=-- M
Phase represents a displacement of 2, and a single
fringe means displacement of % AR can be expressed as
follows by applying the second law of cosines:

AR = \/Rf +B2—2R,Bsin(6, —ag) —R;.  (2)

The elevation Z from the surface to the target point P is
calculated by the following equation:

z=\/(re+H)2+Rf—2R1(re+H)c0591—re. 3)

The height sensitivity of InNSAR can be expressed as

¢ o 4-_71' B
9z A Rysiné; (4)

This means the change of the interferometric phase
according to the amount of change in the elevation of the
surface. The height ambiguity indicated by single fringe in
InSAR can be expressed as follows:

0z _ AR;sinf
ap 2 B, ©)

If the perpendicular baseline becomes too large, coherence
will be small, and information may not be obtained.
Therefore, the perpendicular baseline should be considered

when selecting the DInSAR piar. We determined the
InSAR pair as shown in Table 2 by considering the
perpendicular baseline.

The interferogram shows fringes that include both the
phase by topographical elevation and the phase by ground
displacement. To observe the displacement of the surface,
it is necessary to remove the phase by topographical
elevation. Therefore, the Differential Interferometric SAR
(DInSAR) technique using a reference Digital Elevation
Model (DEM) was applied to remove the topographic
phase. Since there is very little ice flow in the study area,
the DInSAR images show areas with different flow
velocity than the surrounding areas. Note that one fringe in
the DInSAR image means a displacement in the Line-Of-
Sight (LOS) direction corresponding to half the
wavelength of the band.

Fig. 3 InSAR geomerty

Table 2 Used data.

Perpendicular Temporal
InSAR Pair baseline (m) baseline
(days)
20071024_20071209 -791.9373168945 46
20071115_20071231 880.2124023438 46
20101020_20101205 1020.9151611328 46

4. RESULTS AND DISCUSSION

The study area is the upper part of subglacial lake Cookg,
included in [12], who first collected the entire Antarctic
subglacial lake list. The circular fringe signal shown in the
DInSAR image means the LOS displacement according to
the volume change of the subglacial lake. [18] used an
altimeter and a DEM to observe changes in elevation at the
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surface of lake Cookg,. As a result, it was confirmed that
from the end of 2006 to the end of 2008, the altitude
decreased sharply by more than 60 m [18].

As a result of DInSAR processing of ALOS PALSAR
images on October 24, 2007 and December 9, 2007, about
56.6 circular fringes appeared, confirming that there was a
decrease in altitude of about 6.7+0.2 m. In [18], the
elevation decrease during a similar period was about
5.5£1.6 m, and considering the error range, it shows a
similar value to the elevation decrease obtained from the
DInSAR image. Additional DInSAR processing was
performed at similar times on the ALOS PALSAR images
from November 15, 2007 and December 31, 2007 to
observe some regions that were not acquired in the image
frame of the first DInSAR pair. About 52.5 fringes appear,
and it can be seen that an elevation decrease of about
6.2+0.2 m occurred during 46 days. In the DInSAR images
generated from the ALOS PALSAR images on October 20,
2010 and December 5, 2010, an elevation increase of about
0.5+£0.2 m was confirmed after the elevation decrease was
completed. In [18], the elevation increase was 1.13£1.6 m
during the same period.

The rates of elevation decrease in 2007 estimated in this
study are about 53.16 m/year and about 49.2 m/year. In
addition to the study of [18] compared above, the previous
study had a value of from a minimum of about 21.7 m/year
to a maximum of about 40 m/year, which was generally
smaller than the results of this study [9, 12, 18, 19]. This
can be seen as the result of calculating the initial rate of
elevation decrease at which the discharge occurs rapidly in
this study. Since the discharge rate can be change,
additional data analysis is required until the discharge is
complete in order to accurately analyze the change in the
rate of elevation decrease over time.

The area of the circular anomaly observed in the DInSAR
images of the discharge of a subglacial lake is much larger
than the area of the circular anomaly when the water level
is recharged after discharge is complete. This is thought to
be because the displacement including the surrounding
area occurs due to the elasticity of the ice when the altitude
decreases rapidly when the lake is discharged. Considering
the elevation change patterns observed in previous studies
and this study, it is thought that the water level of Lake
Cookgy is gradually being recharged after discharge
occurred for about 1 year and 6 months from the end of
2006. Through comparison with previous studies, it was
possible to verify that the behavior of the subglacial lake
surface can be continuously observed using satellite SAR
images. In addition, since the location of the circular
fringes and the location of the subglacial lake are exactly
the same, the SAR interferometry is being considered as a
method to detect the presence and volume change of the
subglacial lake.

5. CONCLUSIONS

In this study, the displacement in the LOS direction was
analyzed using the SAR interferometry technique and the
elevation change of the upper surface of the subglacial lake

Elevation difference (ICESat - SPOTS, m)
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Fig. 4 time series of elevation difference at surface of

Cooke2 Subglacial Lake in [18].

155°200°E 155°300°E 155°400°E 155°500°E 156°00°E

A

TLIS0S

72055040

Fig. 520071024_20071209 ALOS PALSAR DInSAR
imagery.
(phase)

-2.98

213

nagge ) 5. Ciaoogicl Survg

Fig. 6 20071115_20071231 ALOS PALSAR DInSAR
imagery. The blue line is CookE2 in [12].

155°200°E 155°300°E 155°400'E 155°500°E 156°00°E

A
Fig. 720101020_20101205 ALOS PALSAR DInSAR
imagery.

604



was estimated. Lake Cookg; is located in an area where
glacial flow rates are slow, allowing DInSAR images to
detect anomaly that differ from surrounding areas. In the
DInSAR image, the flow velocity appeared as in form of
circular fringes, and since there was almost no
displacement in the surrounding ice, these fringes are
thought to be due to vertical displacement. It is known that
the subglacial lake exists in this area, so the circular fringes
are thought to be due to the volume change of the
subglacial lake, and it can be seen in comparison with
previous studies. From the end of 2006 to the end of 2008,
the elevation appears to have decreased sharply and has
been increasing since then. In addition, it is judged that a
more precise analysis using the SAR images is required for
the increasing signal of the upper part of the subglacial lake
to the present, which has been revealed in recent studies.
Through this study, it was confirmed that the positions and
volume changes of subglacial lakes can be observed using
the SAR interferometry as well as the RES, satellite
altimeter, and DEM that have been used in previous studies
of subglacial lakes. Also, SAR interferometry is considered
capable of detecting small subglacial lakes that have not
been discovered in previous studies. Through this, it is
thought that it will be helpful in site selection for subglacial
lake field exploration.
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1. DATA RETRIEVAL

We have ordered and downloaded SAR images through
ALOS-2/ALOS User Interface Gateway (AUIG2) until the
system does not operate anymore. After the transition to
Globe Portal System (G-Portal), the download system will
be improved shortly. We made the mistake of losing some
quota by ordering the same scene because we were
unfamiliar with the new download system. We believe the
system could be significantly improved by maintenance in
the next EO-RAS3 stage.

2. DATA ARRANGEMENT USING RSP PATH
CALCULATION

Our interferometric data processing chain automatically
arranges the downloaded data by calculating the path
number with the orbit accumulation number from the file
name notation. In the case of the ALOS PALSAR image,
we found the below equation to calculate the RSP path
number and used it.

RSP Path for ALOS = [46 * orbit accumulation No. + 84]
MOD671+1 (1)

However, we could not find yet similar equation for the
ALOS-2 PALSAR-2 image. After gathering the
information on the ALOS-2 orbit from the JAXA website,
the below equation could be written.

RSP Path for ALOS2 = [14 * orbit accumulation No. +
24] MOD 207 (2)

So far, the above equation allows us to calculate the path
information of ALOS-2 correctly from the orbit
accumulation No.

3. ALOS-2 PALSAR-2 STRIPMAP DINSAR
ANALYSIS IN JAKOBSHAVN ISBRAE

The polar regions play an important role in the Earth
system. Monitoring the glaciers from the space-based
synthetic aperture radar observations could be very useful

to understand the polar regions and forecast how much sea
level will increase in the near future in the global warming
environment. Differential radar interferometry (DInSAR)
provides a displacement map with high spatial resolution
from an earthquake, volcano, water level change in the
mm to cm accuracy. However, When it is covered with
glaciers or snow, it is challenging to apply DInSAR
because the shift in topographic altitude over time is
relatively severe compared to other land topography. L-
band has a longer wavelength than X- and C-band, so it
has advantages for coherence analysis with relatively high
coherence in applying interferometry. To observe surface
displacement in Jakobshavn Isbrae, we used the L-band
ALOS-2 PALSAR-2 SAR observations from Sep-16,
2014, to Mar-26, 2019. DInSAR provides more precise
surface displacement than the offset tracking method. Still,
the rapidly changing glacial environment also affects the
decorrelation between the two images, which can cause
errors and limited measurement. As for the results, it was
possible to have a relatively good coherence because the
area where the surface displacement was only partially
observed is the glacier’s bedrock. As the glacier that was
pressing the crust on the earth’s surface melts and the
weight of the surface decreases, it is possible that the
surface rebounds and the displacement is observed. We
want to apply the SBAS technique to monitor possible
displacement of bedrock and estimate surface
displacement would be validated with a global positioning
system in the near future.

4. OFFSET TRACKING VELOCITY MAP USING
ALOS-2 PALSAR-2 OBSERVATIONS IN
JAKOBSHAVN ISBRAE

Ice velocity is an important factor in analyzing the effects
of wvarious glaciological applications and global
environmental changes. Field surveys of ice velocity along
glaciers are difficult to access, time-consuming and
expensive, limiting long-term observations. Synthetic
aperture radar (SAR), which has been used to observe
various surface displacements, is also helpful in observing
glacier displacements. Differential Radar Interferometry
(DINSAR) can detect relative surface displacements with
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high spatial resolution from mm to cm accuracies at the
surface, such as ground subsidence, volcanoes, water level
changes, and earthquake. However, DINSAR application
is often limited by the decorrelation effect due to much
larger displacements than the radar wavelength, a large
temporal baseline, volume decorrelation caused by snow
melting or accumulation, etc. Therefore, the DInSAR
technique has limitations in measuring the displacement at
high rate glaciers. Offset tracking can be applied to
glaciers because it estimates a direct displacement by
measuring the same feature between two images. We
measured the ice velocity using intensity offset tracking
with an appropriate window patch size. In Figure 2, the
areas with a consistent blue color are bedrock, compared
with a flowing glacier. We tried to find a proper window
patch size. Jakobshavn Isbrae had limitations in measuring
the velocity at the glacier’s end due to the temporal
baseline and the faster ice velocity approaching the
terminus. We will estimate a time series of glacier
movement using the STBAS technique based on speckle
tracking in the near future.

160705-160913 160705-161122

160913-161122

Fig. 1. Surface displacement map generated by using
DInSAR. The interferograms show the displacement of a
portion of the bedrock around which a fast-moving glacial
region is not observed due to decorrelation.

s

Fig. 2. Offset tracking ice velocity map of Aug 16-Sep 13
2016, scaled from 0 to 200 m. The ice velocity is faster
toward the terminus and the center of the mainstream.
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1. INTRODUCTION

Reclamation land has long history in human history,
due to the special geographical conditions and complex
geological environment of reclamation area, land
subsidence always the most series problem of these areas.
Due to the special geographical conditions and complex
geological environment of reclamation area, land
subsidence becomes most series problem of these area. It
will cause elevation loss, uneven settlement and other
issues which will have a direct impact on the industrial
engineering, flood control, municipal pipeline roads and
other facilities in the area, and indirectly threaten the
stability of the construction and economic development of
the region as well. The hazards of land subsidence mainly
include the destruction of buildings and production
facilities and the impact on the construction and resource
development [1]-[3]. Interferometric Synthetic Aperture
Radar (InSAR) technology integrates the principle of
Synthetic Aperture Radar imaging and electromagnetic
wave interference technology, and theoretically can obtain
very accurate digital elevation model and surface
deformation information of millimeter scale [4]-[6].
Compared with conventional methods such as GPS and
level monitoring, INSAR can observe the target all day
and all day. With wide coverage and high spatial
resolution, continuous surface monitoring can be
implemented in a large range. Compared with the
accuracy it can achieve, the cost is low and it has the
characteristics of stable data source. These characteristics
show that if INSAR technology is used to monitor land
subsidence, it can not only reduce the cost, but also
monitor the land subsidence displacement in the whole
radar image coverage area in a quasi-real-time and
dynamic manner [7]-9].

The research project under the ALOS Research
Announcement (RA) by the Japan Aerospace Exploration
Agency (JAXA), was intended to use L-band SAR data
acquired from ALOS-1 and ALOS-2 satellites for earth
surface subsidence monitoring [10]-[13]. Considering the
phase loss correlation and atmospheric delay effect of
conventional DINSAR, the time series INSAR technique
which only tracks the targets with relatively stable
scattering characteristics in the imaging region, while
abandoning the targets with serious loss of correlation.
These stable targets can maintain high coherence in a

long-time interval and can also maintain high coherence
when the spatial baseline distance exceeds the critical
baseline distance, the interference image pairs with long
baseline distance can be fully utilized to maximize the
utilization of data. Therefore, by analyzing the time series
of these stable points and eliminating the influence of the
atmosphere, the subsidence of stable points can be
accurately measured, so as to monitor the movement of
the ground and accurately reflect the relative displacement
of the monitored area. The studies carried out in this
project mostly cover Tianjin Binghai and Zhongshan
reclamation area, meanwhile we also studied the
conventional INSAR and time series INSAR technique in
monitoring the subsidence of mining area and landslide
monitoring and some results are given in this report.

2. STUDY AREA

Fig. 1 The location of the study area which covers
Zhongshan city area located at Pearl River Delta plain,
Reclamation activities in the Pearl River Estuary can be
traced back to the Song and Yuan Dynasties. From 1950
to 2014, nearly 930 km? was accumulated in the Pearl
River Estuary area (Red rectangle).

The Pearl River Delta plain is a loose sediment
accumulation plain. Under the influence of human
engineering activities and natural consolidation, serious
land subsidence has occurred in some areas, resulting in
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varying degrees of damage to houses, highways, Bridges,
water  conservancy facilities, embankments and
underground pipe network facilities, and causing serious
economic losses. A large area of soft soil is distributed in
the plain area of the Pearl River Delta, and the distribution
thickness is relatively large. The soft soil is mainly silt
and silty soil deposited by Marine facies, followed by peat
soil, silty sand, carbonized plant debris and shell
fragments. Due to the low strength and high
compressibility of soft soil, the soft soil foundation is
particularly prone to settlement deformation under various
loads, resulting in huge economic losses for engineering
construction, as shown in Fig 1. The terrain in this region
is relatively flat, mainly consisting of flat land, farmland,
small towns, mountains, hills and platforms. From the
perspective of geological structure conditions, there is a
small scale fault at the southern foot of Wugui Mountain,
which runs through Doumen District in a northeast-
southwest direction. From the hydrogeological point of
view, this area is adjacent to the South China Sea, with
numerous internal river networks and abundant rainfall,
which can be well supplied to the ground water.

Fig. 2 The location of the study area which covers the
Chongging area. The yellow color area is about one
scence of PALSAR-2 stripmap dataset.

Chongging is one of the geological disaster areas in
China with severe geological disasters such as landslides
and landslides ranks first among the 70 cities in China.
Chongging is the largest industrial and commercial center
in southwest China. Especially after chongging becomes
the municipality directly under the central government.
Landslide, collapse and other geological disasters are
mainly determined by geological structure, stratigraphic
lithology, hydrology and meteorology. Chongging is
located in the eastern Sichuan basin, mountain and basin

margin slope zone with deep creek, complex geological
structure, the surface of the weak layer, and sometime
with heavy rain, make the geological disasters in this area
wide spreaded and great harm.

Fig. 3 The location of the study area which covers the
Fengfeng mining area. The yellow color area is about one
scence of PALSAR-2 stripmap dataset.

Hebei Fengfeng coal mine is an old mining area in China,
with a history of more than 100 years. The west side of
Fengfeng mining area is a mountain basin, and the east
side is a sloping plain, with the highest elevation of 891
meters. Fengfeng mining area is located at the eastern foot
of the south part of Taihang mountain, which is the
transition zone between Taihang mountain and north
China plain. There are more than 30 kinds of proven
mineral resources in Fengfeng mining area, including coal,
iron ore, China clay, bauxite, limestone, marble and
gypsum. In order to reduce overcapacity in the coal
industry and eliminate backward production capacity in
the thermal power industry, the city have arranged the
withdrawal of two coal mines and the shutdown of seven
coal-fired power units. The SAR image covers the
northern part of the Fengfeng mining area and part of the
Wuan area. The central part is the remaining vein of the
Taihang mountains, with the altitude of more than 800
meters at the highest and less than 100 meters at the
lowest.

The area around bohai sea is to point to encircle bohai sea
whole and yellow sea part of littoral area place forms
extensive economy area. Land subsidence is one of the
major environmental geological disasters in the bohai rim
region, which includes tianjin, hebei and shandong
provinces. Dongying City is a very serious subsidence
area in this region. The coastline of Dongying City is 421
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kilometers, and the coastal tidal flat area is 1159 square
kilometers. The shallow underground brine reserves are
about 1.16 billion cubic meters, and the estimated
geological reserves of salt mines are 600 billion tons.
According to the statistics of Dongying Salt Industry
Association, the salt fields in Hekou District cover an area
of 450,000 mu, with a raw salt production capacity of
2.55 million tons. With the strengthening of salt mining
capacity and the increase of mining intensity, the ground
subsidence of salt mining area is becoming more and
more serious. Although there are few reports on land
subsidence caused by salt mining, the cause and
mechanism of subsidence have been studied clearly. With
the increase of water gushing at the wellhead, the ground
subsidence is intensified. When the ground surface
subsidence reaches a certain degree, the cavity is
gradually filled. When the stress redistribution makes it
reach a new equilibrium.

Fig. 4 The location of the study area which covers the
Dongying city salt mining area.

3. DATA SET

The data set used consists of ALOS-1 and ALOS-2
SAR data, both datasets were acquired in strip map mode,
part of them are bi-polarimetric dataset. The format of the
single complex looking data of ALOS-1 and ALOS-2 has
very small different, so most part of the code for read-out
software for them are the same. This reduce lots of works
to migrate code from ALOS-1 data to ALOS-2 data.

In this report, eight scences of ALOS-2 dataset acquired
between Dec 2014 to May 2020 were used in Zhongshan
area, the polarimetric mode is HH; nine scenes of ALOS-
2 dataset acquired from 2015-Jul-11 to 2018-Oct-27 were
obtained in Chongging area, the polarimetric mode is HH,
and the fly direction is ascending. While in Fengfeng area,
we obtained 4 scenes of ALOS-1 data and 3 ALOS-2 data,
both fly directions are ascending, and the polarimetric
mode are HH. In Bohai sea area, four scenes of ALOS-2
data are obtained during 2015 to 2018 in ascending mode,
and two interferogram are generated.

The external DEM used is from Shutter Radar
Topography Mission (SRTM).

4. METHODOLOGY

The mining of underground coal will cause the goaf.
Under the action of the gravity of the upper rock and soil
layer itself, the deformation will occur in the upper part of
the goaf, thus causing the subsidence of the mining area
surface. Along with the mining of the long arm, the
surface subsidence center will then move, in general, the
fastest sedimentation generally formed in the goaf on the
surface of the earth after a few months, then the
sedimentation rate tends to be stable, in the initial stage,
the surface subsidence may reach several centimeters
every day, at this point you can ignore the influence of the
atmosphere.

Since the SAR uses the synthetic method to image the
surface, ideally the surface deformation of the mining area
can be clearly reflected on the radar interferogram, so as
to realize the monitoring of the surface subsidence or
underground mining activities [13]-[16]. The SAR
interferometric phase map contains information about the
difference in the length of the propagation path from the
radar antenna to the target during two imaging periods.
The length of the propagation path is generally affected
by the change of satellite measurement position, the
change of measurement time and the change of
atmospheric conditions. In the case of ignoring the
influence of the atmosphere, the deformation interference
phase can be obtained by removing the topographic
interference phase caused by the change of satellite
measurement position through a certain algorithm, so as
to realize the monitoring of the surface deformation. For
C-band radar sensors, such as the ASAR SAR sensors
carried by ERS and ENVISAT satellites, the one-period
variation of the deformation interference phase represents
the surface variation of 2.8cm. For L-band radar sensors
such as PALSAR deformation interference phase change
one period corresponds to the surface change of 11.75 cm.

_ A simulation
Ar = - (‘Pifg ~ QPirg ()
where with A being the wavelength of the SAR sensor, ¢
is the phase on the interferogram and the simulated terrain
phase.

There are various SBAS processing strategies. In this
study we use Small BaselineSet (SBAS) method [17]-
[20]. First N scenes of SAR images are coregistrated on
the super master image, then the images pairs are formed
so as to obtain interferograms, here we should take care
that the INSAR pairs with heavy atmospheric effect
should be removed from the list. For each interferogram
pair, the master image acquisition time is less than the
slave image acquisition time for later processing
convenience. Then the first round we could select possible
stable point with amplitude dispersive index, and with the
selected candidates, we estimated the atmospheric and
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deformation together with the elevation error of the points.

In common situation, the phase model could write as:

4 B,
(pmodel(x) - T (U(X)(St + rsin® 6h)

Then stable points candidates with significant deviation
are removed from the stable point’s subset. The next step
is to remove the height error phase of each point from its
observed phase. The residual phase is then containing the
spatially high pass topographic error and the noises along
with the displacement phase information. After this
processing we could be estimated the ensemble phase
coherence so as to estimate the error of the results, and
select the possible stable points, after that, the networks
are established and the deformation are estimated at last.
In this study we only estimated the linear deformation.

5. EXPERIMENTS AND RESULTS

Fig. 5 The SBAS deformation results of Zhongshan City,
most of the area is relatively stable while the reclamation

area in the upper right corner has obvious land subsidence.

In Zhongshan region, 8 scenes ALOS-2 SAR data
are used and the image acquired between December 2014
and May 2020 are selected. The climate in this region is
humid and the atmospheric phase screen is obvious. From
the result of time series InNSAR processing, the land
subsidence is concentrated in the southwest corner of the
thick soft soil layer and the northeast corner of
reclamation. The maximum subsidence speed of this
region is more than 50mm/year. This result is consistent
with that of ground monitoring. From the optical image, it
can be seen that the highly coherent target points of time
series INSAR are mainly concentrated on the cofferdam in
the reclamation area, in the reclaimed area, it is difficult
to obtain the target point with high coherence because of
the obvious vegetation cover.

Fig. 6 The Reclamation activities area in the Pearl River
Estuary.

In Chongging region, 9 scenes ALOS-2 SAR data
are used and the image acquired in November 2017 is
selected as the master image. Fig.7 shows the baseline
distribution of the images, the whole period is about three
years of the acquired ALOS-2 dataset, and the maximum
perpendicular baseline is about 300 meters. Generally
speaking, the spatial and temporal baseline distribution is
relatively uniform, but the data volume is small.
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Fig. 7 The baseline distribution of the ALOS-2 images
acquired in Chongging area.

A total of 72 SAR interferogram pairs can be formed by
using 9 scenes SAR images, some of which are of low
quality, and 30 of which have high quality are retained
after selection. To a certain extent L-band SAR can keep
good coherence within ground changes in 2 to 3 years.
During the process we found that although the accuracy of
the orbit data is ok, due to the large time interval of the
provided orbit data, it is easy to be unstable in the process
of interpolation, which is easy to cause errors of the orbit,
which has a certain impact on the unwrap. As the terrain
in this area is not flat, it is not convenient to carry out the
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analysis of orbital characteristics, which may be
considered in the later work.

Fig. 8 The SBAS deformation results around Chongging
City, where the area is relatively stable without large area
subsidence.

The whole area of the image coverage is about 60 km
south-north and 60 km east to west. On the whole, the
situation of the whole region is relatively stable. There are
5 obvious surface movement areas, and the movement
rate is basically within 3 centimeters per year.

wedilingron

Fig. 9 The enlarge image of the middle region in the
central area of image.

Figure 9 is an enlarged image of two deformation regions
in the central region. The deformation region on the right
is located in JiangYin village. This sliding region is
mainly located on a relatively large terrace with an area of
about 0.5 square kilometers. The left deformation area is
XianYing village, we found that the topography in this
area is flat and with an altitude difference of about 100
meters, it may not cause rapid movement and disaster.
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Fig. 10 (a) The DInSAR interferogram of PALSAR-1
data which acquired in 2007-Dec-15 and 2008-Jan-30
near XiangtangShan area.

Fig. 10 (b) The DInSAR interferogram of PALSAR-1
data which acquired in 2009-Dec-20 and 2010-Feb-04
near XiangtangShan area.

In Fengfeng mine area, mining activities is relatively
concentrated, we chose the northern area which located
surrounding XiangtangShan in the town of Cishan, the
extent of the area is about 30 kilometers east-west, and 30
kilometers north-south. On the whole, for PALSAR data,
the accuracy of the orbital data is acceptable, which can
remove the flat ground interference phase and topographic
phase, and there is no obvious residual phase information
on the whole, which provides a favorable condition for
the interpretation of the mining settlement. Nevertheless,
we can see that the topographic phase in figure 10 (b) is
relatively obvious and has a relatively small orbital
influence. Meanwhile, we can see that for figure 10 a-c
with a relatively short time baseline, the coherence is
significantly higher than that of figure 10 (d) with a time
baseline of 5 months.
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Fig. 10 (c) The DInSAR interferogram of PALSAR-2
data which acquired in 2018-Nov-04 and 2018-Dec-16
near XiangtangShan area.

Fig. 10 (d) The DInSAR interferogram of PALSAR-2
data which acquired in 2018-Dec-16 and 2019-May-19
near XiangtangShan area.

In XiangtangShan area, the extraction activities of the
overall trend are being small. From Fig.10 (a) and Fig.10
(b) about 20 active mine area or so can be clearly
identified, and they are almost the same in year 2008 and
2010, the exploitation of the most rapid mining area is
located in Xialiuquancun area, then the mining area in
Chengerzhuancun, from Fig.10(a) and Fig.10(b) we can
see that the ground subsidence of these two mine area
caused by mining beyond 10 cm per month. And in 2018,
from Fig.10 (c) and Fig.10 (d) we can see that the
extraction activities were reduced to 10 or so, and from
Fig.10 (d) we could see clear deformation pattern due to
extraction, the up left area show about half a meter’s
deformation due to extraction. And the low right area the
mine deformation of two work-plane is contacting after
five months.

Fig. 11 (a) The DInSAR interferogram of PALSAR-2
data which acquired in 2015-Oct and 2016-Jul of
Dongying.

Fig. 11 (b) The DInSAR interferogram of PALSAR-2
data which acquired in 2017-Mar and 2018-Nov of
Dongying.

Around bohai sea, Dongying area is focused. The main
factors affecting the land subsidence in Dongying city are
the long-term exploitation of oil, natural resources such as
salt and gas, and deep groundwater, which makes the
strata stress increase and produce compression.
Neotectonic movement, global sea level rise, natural
subsidence of under consolidated soil and ground load are
the secondary influencing factors of land subsidence.

614



There are 4 scenes ALOS2 images were acquired, in
201510-201607 and 201703-201811 separately. Both the
spatial baseline is about 100 m, while due to the temporal
baseline is 266 days and 588 days each, we could see that
not only the correlation has large different, but also the
subsidence pattern. There are three obvious subsidence
center large than 40cm/yr in Fig 11 (a), and due to
temporal decorrelation the Fig 11 (b) show pattern not
very clear, but the range of the interferogram is still
visible. This shows that for large deformation the
temporal baseline should be carefully select so as to make

the interferogram pattern to be clear to extract information.

Fig. 12 (a) The SBAS deformation results at the east part
of Beijing with PALSAR-2 spotlight dataset which
acquired in 2014 and 2018.

Fig. 12 (b) The enlarge image of the east-north region in
the area of the image.

Geohazards occur not only in remote areas but also in
highly populated cities. In the framework of the Dragon-4
32365 Project, this paper presents the main results and the
major conclusions derived from an extensive exploitation
of Sentinel-1, ALOS-2 ( Advanced Land Observing
Satellite 2) , GF-3 ( GaoFen Satellite 3) , and latest
launched SAR ( Synthetic Aperture Radar) , together with

methods that allow the evaluation of their importance for
various geohazards[21]. Here we will show some new
results especially with ALOS-2 dataset.

There are 10 scenes ALOS2 spotlight images were
acquired, in 201410-201808. All the spatial baseline is
within 500 m, this combination of baselines can be
relatively coherent. From the results, firstly, we find that
more stable points can be obtained by using the high-
resolution data of ALOS2, compared with GaoFen-3 and
Sentinel-1 results, which is directly related to the high
resolution of the data. Meanwhile, as can be seen from the
results of Figure 12 (a), the area with large deformation is
obviously divided into different parts, which may be
related to the local microgeological structure. It is well
known that groundwater mining in the east of Beijing has
caused a certain extent of surface subsidence. Although
this subsidence occurs in a large area, the deformation of
different small blocks is different. And this differential
deformation between the different blocks in turn reflects
the boundaries between the blocks.
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Fig. 13 The SBAS deformation results of Shuping
landslide in Three Gorges Reservoir area.

As the largest water conservation project in China, the
Three Gorges Reservoir has attracted a lot of attention.
Shuping landslide, is located on the southern bank along
the Yangtze River. The landslide belongs to Zigui County
in the HuBei Province. The Shuping landslide is a large
accumulation landslide with obvious deformation every
flood season, posing a major threat to the Three Gorges
Project and the life and property safety of local residents.
To ensure safety, a landslide treatment project for the
Shuping landslide began in August 2014. We have
obtained TerraSAR-X data in the spring of 2012 in this
area, and through time series INSAR analysis, we found
that the Shuping landslide area movement speed is quite
large, with the maximum movement area speed reaching
37mm/month [6]. In this report, we obtained the data of
ALQOS2 after treatment. From 201507 to 202105, through
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time series analysis, we found that the sliding speed of the
landslide area has basically decreased to less than
50mm/year. The results show that the landslide control
work has obtained a relatively obvious effect. We also use
the sentinel-1 data for comparison, but due to the problem
of de-correlation, no good results are obtained.

6. CONCLUSIONS

In this study, we used time series interferometry method
to monitor land subsidence of reclamation area and some
other area, in the Zhongshan region, the maximum
subsidence speed of this region is more than 50mm/year,
and the highly coherent target points are mainly
concentrated on the cofferdam in the reclamation area.
For Chongging city, where the terrain is complicated and
the elevation error is large, we found that the land
subsidence in this area is not obvious, however there
exists a few areas with slow subsidence, the deformation
area needs further observing in the later works. In
Fengfeng mine area, the land subsidence mainly comes
from the coal mining, and as a result, there has been less
activity after 2017 due to the regulation of mining. And
around Bohai area, the Dongying city has subsidence due
to salt mining extraction and has a large deformation
velocity to 40 cm/yr, however the PALSAR-2 could catch
the deformation pattern clearly. In general, L-band radar
data can be used to obtain better results not only in
mountainous areas, but also in non-urban areas. More
details of the deformation can be seen from the enlarged
image. In the middle of Figure 9(b) is Wenyu River. The
deformation of the east side and the west side of the river
are different.
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1. INTRODUCTION

SAR (Synthetic Aperture Radar) is an active sensor with
all-day, all-weather, high resolution and wide coverage,
which has been widely used in marine resource
monitoring, ship detection and other fields. As an end-to-
end model, the deep network can automatically perform
feature extraction and carry out detection work with far
better performance than traditional detection methods,
showing great application potential. Therefore, the
research on SAR image ship detection based on deep
learning is developing rapidly.

In recent years, researchers have done a lot of work to
demonstrate the superiority of deep networks that search
for potential regions containing targets by using the
intersection ratio of a predefined anchor frame to a sample
ship bounding box and fitting the target bounding box by
the network self-learning parameter offsets. To improve
the detection accuracy, the existing methods mainly
include changing the feature extraction (backbone)
structure [1,2], adding attention mechanism [3,4], and
optimizing the loss function [5].

However, the current deep network-based detection
methods are usually trained and tested on fixed data sets,
with fewer experiments for open scenes, and the process
of ship detection for the whole SAR image is not clear
enough. Therefore, this report designs a set of detection
process for the whole SAR image, and conducts
preliminary experiments of cross-band simulation of open
scenes using L-band ALOS data, which is useful for
subsequent research The report provides a reference for
the direction of subsequent research.

2. METHOD

Deep detection network is mainly divided into one-stage
network and two-stage network, the two-stage network
mainly performs candidate region generation first and
then classifies by CNN, which has higher accuracy but
higher computational cost and long inference time. The
single-stage network extracts features directly in the
network to predict object categories and locations, which
gains a huge speed boost compared to two-stage detection
and is only slightly less accurate. YOLO, as one of the
representatives, is known for its light weight, flexibility,
and fast detection speed. And YOLOVS is the newer
versions, has improved the detection accuracy compared
to its predecessor, and at the same time, it is much faster

and more flexible, and there are several versions available
for different data sizes to facilitate deployment and
improvement.

In summary, YOLOvVS was selected as the detection
network. The specific network structure is shown in
Figure 1. It consists of four main parts: Input, Backbone,
Neck, and Head parts (also known as the prediction part).
The input side uses random Mosaic, data enhancement
techniques and adaptive anchor frame calculation and
adaptive image scaling to expand the amount of sample
features and improve the network robustness, and
adaptive anchor frame calculation is used to automatically
match different training sets. The Neck part adopts
FPN+PAN structure, FPN is the feature pyramid network,
which is used to extract and merge features at different
levels, and PAN structure is mainly to copy the features at
the bottom of FPN and perform secondary downsampling,
and then fuse the extracted features. The main part is to
calculate the classification and regression loss to complete
the prediction.

In order to complete the ship detection for a whole SAR
image, the corresponding detection system is designed,
and the specific detection process is described as follows:
(1) The whole image is divided into blocks, and regional
sea clutter modeling is performed for each block, with
five alternative types of sea clutter: GO distribution, K
distribution, Gaussian distribution, Rayleigh distribution,
and Weibull distribution.

(2) CFAR threshold segmentation is performed for
different blocks to initially filter out the suspected targets
with high intensity values.

(3) Slicing is performed with the suspected target as the
center, and it is linearly stretched and output as JPG
format image.

(4) The chips are fed into the trained YOLOVS network
for detection.

(5) The corresponding detection results are generated after
intersection-and-comparison calculation and removal of
overlapping detection frames.

3. EXPERIMENT AND ANALYSIS

The GF3 satellite 1-10m resolution images in C-band are
used to make ship target chips, which are fed into the
constructed YOLOVS for training and retaining the best
weight parameters. The test images are the provided L-
band ALOS PALSAR 2 images, and a total of 2 scenes
are selected, which have pure sea surface areas, and these
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Fig. 1 Flowchart of YOLOVS.

images containing confusingly small islands, as shown in
Fig. 2. The resolution of image(a) is 5m, and the
resolution of image(b) is 12m. The number and location
of ships in each view image are determined by visual
interpretation.There are 34 ships in image(a),86 ships in
image(b).

(2) (b)
Fig. 2 SAR images used in test. (a) the image
containing pure sea surface (b)the image containing
small islands

In order to recognize the detection effectiveness of the
constructed system for each image as a whole, metrics
such as recall(R) and precision(P) are introduced. They
are defined as follows:

p_ TP R TP
TP+FP'~ NP )
where TP is the number of the correctly detected target,
FP is the number of false alarm, and NP is the number of
ground truths. These are two of the more important
indicators in the detection experiments, but this report is
more focused on selecting more typical regions and
targets for analysis, to provide reference for subsequent
research on cross-band open scenes.
The test accuracy indexes of the two images are shown in
Table 1, and the detection accuracy can be above 90%,
but the recall rate is low, indicating that there are more
missed detections. Through observation and analysis, the
ship characteristics of L-band and C-band have certain

differences, which may be due to the different
wavelengths of electromagnetic waves in the two bands,
and there is a certain gap in the characterization ability of
the target.How to migrate the network to different bands
of data for detection will be one of the important aspects
of cross-band detection research in the future.

TABLE I
Overview of each image indicator
P R
Image(a) 1 0.8235
Image(b) 09114 | 0.8372

Meanwhile, some typical targets and regions in the image
are analyzed for their detection. Fig. 3 shows the slices of
Image (b) in Fig. 1. after preliminary extraction by CFAR,
while the detected ships are assigned detection labels. For
the detection of the island in (a), a false alarm target
appears, and a small part of the island is misclassified as a
ship, which is due to the presence of small and poorly
resolved ships in the training dataset, where the texture
information is not obvious enough, but the target shape
features are more similar, resulting in false detection.The
small island in (b) was recognized as a suspected target
during CFAR detection, but was not misdetected when
fed into the network for detection, and both ships in (c)
were detected, indicating that the network has some
generalization capability, but further in-depth research is
needed to address the problem of misditection.

;hip 0.78
s'hip 0.48

(b) ©

Fig. 3 Partial detection of slices in images. (a) the chip

containing island (b)the chip containing small island (c)
the chip containing ships
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4. CONCLUSION

This report designs a detection process for the whole SAR
image based on YOLOVS. By training the depth network
on the C-band dataset and using the L-band ALOS image
as the detection image, the ship detection experiments in
cross-band open scenes are conducted. The improvement
in detection efficiency of deep networks is considerable
and the accuracy improvement is large compared to
traditional methods, but the performance of networks
trained and tested in the same distribution of data sets is
poor for open scenarios.According to the analysis of the
detection accuracy index and the detection effect of
typical regions, it can be learned that just simply using the
depth network for ship detection in cross-band open
scenes has a low recall rate, more missed detections, and a
large risk of false detection, mainly because the ship
characteristics are different in different bands, and the
knowledge learned by the network cannot be directly
applied to open scenes, so how to combine the scattering
mechanism of SAR and migrate the network Therefore,
how to combine the scattering mechanism of SAR and
migrate the network to the data of different bands for
detection will be one of the important aspects of cross-
band open scene detection research in the future.
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1. INTRODUCTION

Sea surface wind is an important variable in studying air-
sea interactions and oceanic phenomena in the marine-
atmospheric boundary layer (MABL). Winds affect
climate change and the marine environment, and as interest
in climate change increases, frequent and accurate
observations to increase the reliability of wind turbines
have been emphasized. Satellite synthetic aperture radar
(SAR) sensors have provided high-resolution observations,
allowing the investigation of wind fields in coastal areas
that cannot be observed by satellite scatterometers. In
particular, the Korean Peninsula exhibits varied marine
environmental conditions; thus, this region is suitable for
evaluating the performance of SAR-measured sea surface
winds and investigating various atmospheric-oceanic
interactions. Therefore, many studies have used SAR to
calculate sea surface wind, understand the characteristics
of the wind field, and analyze ocean phenomena in the
coastal areas of the Korean Peninsula [1-3].

Because the relative wind direction is necessary to
examine winds using SAR, these data must obtained from
an external source, such as in-situ measurements,
scatterometer data, and numerical model data. Although
wind direction data are frequently available, they have
inherent potential aliasing errors due to their much coarser
spatial resolutions than those of the SARs. Moreover, the
much larger time difference between the model data and
SAR data are insufficient for resolving small-scale marine
phenomena in the wind field. However, if wind-induced
streaks are apparent in the SAR image, the wind direction
can be directly estimated using a 2-D Fourier transform
spectrum, wavelet analysis, and the local gradient.
However, these methods are only valid for cases in which
no ambient oceanic or atmospheric features (e.g., internal
waves, atmospheric gravity waves, and ship wakes) are
present, and a 180° ambiguity remains. Furthermore,
under-determination associated with the sensitivity of
single normalized radar cross section (NRCS)
measurements to both the wind speed and direction should
be considered in wind interpretation.

In this study, we calculated wind fields using ALOS-2
PALSAR images and compared their accuracy with that of
the Korean Meteorological Administration (KMA) ocean
meteorological buoy data near the Korean Peninsula. Land
masking was performed using the Shuttle Radar

Topography Mission digital elevation model data. To
eliminate the influence of double scattering due to ships on
the wind field, a ship removal process was performed using
the adaptive threshold method. To remove speckle noise in
the SAR data, we preprocessed the data utilizing a moving
window and applied an ensemble average. To understand
the impacts of the coastal wind field on ecosystems, we
collected sea surface temperature (SST) data from the
National Oceanic and Atmospheric Administration, which
used an advanced very-high-resolution radiometer (NOAA
AVHRR); chlorophyll-a  (chl-a) data from the
Communication, Ocean, and Meteorological Satellite,
which used a Geostationary Ocean Color Imager
(COMS/GOCI); and sea surface height (SSH) data from
the Archiving, Validation and Interpretation of Satellite
Oceanographic data (AVISO). We subsequently analyzed
the changes in SST and chl-a concentration caused by wind.
In addition, atmospheric-oceanic interaction mechanisms
were analyzed using atmospheric stability, which varies
with SST and wind field.

2. STUDY AREA AND DATA

2.1. STUDY AREA

The study area was the coastal regions near the Korean
Peninsula, as shown in Fig. 1, which includes portions of
the Yellow Sea, East Sea/Japan Sea (EJS), and East China
Sea. The study area is dominated by well-developed,
seasonal current systems (warm and cold), shallow
bathymetry, and strong tidal currents in the Yellow Sea. It
is characterized by relatively deep waters but with a depth
of less than 3000 m and contains diverse oceanic
phenomena, such as coastal upwelling, fronts, and
suspended sediment.
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Fig. 1. (a) Bathymery (m) of the marginal seas of the
Northwest Pacific around Korean peninsula: the East/Japan
Sea, the Yellow Sea, the East China Sea. (b) The spatial
distribution of sea surface temperature [°C] in the study
region from 1-km NOAA/AVHRR data.

2.2. ALOS-2 PALSAR

ALOS-2 PALSAR-2 satellite, which was launched on
May 24, 2014, is equipped with an L-band SAR instrument
operated by the Japanese Aerospace Exploration Agency
(JAXA) and has been continuously observing Earth’s
surface (Arikawa et al. 2014). PALSAR-2 data have been
widely used in land, agricultural, natural resources, and
oceanic applications. Oceanic observations have been
utilized for detecting and monitoring sea ice, ships, oceanic
currents, and sea surface winds. The factors affecting the
sea surface wind errors of ALOS-2 PALSAR-2 have not
been previously discussed in detail, particularly for the
stripmap mode. In total, we collected 45 Stripmap mode
images to assess sea surface winds; however, for eddy
investigation, we used ScanSAR mode images with a wide
swath, which is more suitable for comprehensive analysis
than the stripmap mode because of its wide spatial
coverage.

2.3. COMS/GOCI AND NOAA AVHRR

COMS/GOCI is the world's first geostationary satellite
centered on the Korean peninsula and has a spatial
resolution of 500 m x 500 m. It has observed the marine
environment in a 2500 km x 2500 km area around the
Korean Peninsula eight times daily for 7.7 years [4].
The near-polar orbiting NOAA AVHRR provides sea
surface temperature data twice daily at a 1 km spatial
resolution. The sensor has five spectral channels, including
visible, near-infrared, and thermal infrared wavelengths;
the center wavelengths are 0.6, 0.9, 3.7, 11, and 12 pm.

2.4. AVISO DATA

To investigate marine environments, we used the SSH
data from AVISO (https://www.aviso.altimetry.fr/). We
used Level 4 data, which contains multiple sensor-merged
products, such as maps and time series reproduced by the
data unification and altimeter combination system. The
maps are constructed by optimal interpolation of multi-
mission altimeter observations and are provided daily with
a 0.25° x 0.25° resolution for the global products and a
0.125° x 0.125° resolution for regional products, such as
those for the Mediterranean and Black Seas, through the
Copernicus Marine Environment Monitoring Service [5].

2.5. KMA BUOYS

A total of 17 KMA oceanic meteorological buoys are
located near the coast of the Korean Peninsula: six in the
Yellow Sea, five in the EJS, and six in the East China Sea.
The measurement interval of the buoys is 30 minutes or 1
hour, and the height of the measurements varies, from -1.2
m to -0.1 m for water temperature and from 3.6 mto 4.0 m
for wind speed.

3. METHOD

3.1. RADIOMETRIC CALIBRATION

The ALOS-2 PALSAR-2 data utilize different NRCS
calculations based on the data processing levels and
number of conditions (Table 1). The data used in this study
were L1.5 data, which is a product of the stripmap fine
mode. The NRCS was calculated using the digital number
for each pixel and various calibration constants for each
processing level and observation mode [6]. The calibration
factors vary with the software version, acquisition mode,
spatial resolution, and incidence angles for the ALOS
PALSAR data [7]. Table 1 summarizes the calibration
factors for stripmap fine-mode data [8]. The digital number
of the ALOS-2 PALSAR-2 image was converted to NRCS
using these calibration factors, based on the characteristics
of the data.

Table 1. Calibration factors for the ALOS-2 PALSAR data
with respect to the observation mode, data processing
version, and product ID.

. Processing version
Observation D 000.001-
mode 002.022 002.023-
Stpotlight all -81.1
U2-6 -81.6
u2-7 -81.2
U2-8 -81.6
Uz2-9 -81.7
FP6-3 -81.0
Stripmap F6-4 8L7
F6-5 -82.8 -83.0
F6-6 -82.5
F6-7 -80.8
F2-5 -82.4
F2-6 -82.4
F2-7 -81.9
ScanSAR W2 -79.0
Other mode all -83.0

3.2. SHIP DETECTION AND REMOVAL

Single scattering on the ocean surface, as well as Bragg
scattering and its backscattering coefficient (e.g.,
normalized radar cross section (NRCS)) all show low
values. However, ships over the ocean impose various
scattering characteristics, including single scattering,
double scattering, and volume scattering, associated with
the interactions between the ship and its internal structure.
In general, due to the predominantly double scattering and
volume scattering by ships, the measured NRCS becomes
much larger than that of the surrounding ocean pixels.
These scattering characteristics affect not only the pixels
where the ship is, but also those of the surrounding ocean,
causing errors when calculating the sea surface wind from
SAR data. To obtain an accurate sea surface wind field, this
study applied a method of detecting and removing ships for
ALOS-2 PALSAR. Previous studies have used the global
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threshold, adaptive threshold, and artificial neural network
methods to detect ships in SAR data; we applied the
adaptive threshold method to calculate the threshold that
influenced the characteristics of surrounding pixels.

3.3. RETRIEVAL OF L-BAND SAR WIND SPEED
Using the ECMWEF reanalysis wind field data and radar
azimuth look angles, the relative wind direction was
calculated and subsequently used as input data for the L-
band geophysical model function (GMF) [9]. Then, the
preprocessed NRCS, incidence angle, and relative wind
direction were utilized in the L-band GMF to retrieve high-
resolution sea-surface wind fields.
The L-band GMF is an empirical model that was developed
based on HH polarized data from ALOS-1 PALSAR. It is
expressed as a function of NRCS, incidence angle, relative
wind direction, and wind speed. The L-band GMF 2009 is
calculated as follows:

0'0 = Ao(c, U190, 9)[1 + Al(C, Uq0, 6) Cos ] +
A (c,uq0,8) COS 2¢] (1)

where ¢ is the NRCS in linear units, u,q is the neutral
wind speed at 10 m height, 8 is the incidence angle, ¢ is the
relative wind direction, and c is the constant coefficient. 4,
A;, and A, are the coefficients related to and 6. The L-
band GMF 2009 is capable of accurate wind retrieval for
wind speeds of less than 20 m s™ and incidence angles
from 17°to 43°.

To understand the properties of the L-band GMF 2009
for each input data point, we ran the model with a
maximum incidence angle of 43° (Fig. 2), at which, the
upwind value was higher than the downwind value. The
anisotropy of the upwind and crosswind values became
more apparent at increasing incidence angles; however, the
anisotropy of the downwind and crosswind values became
more evident at decreasing incidence angles. In addition,
as the wind speed increased, the variation in wind speed
increased, with respect to the fluctuations in the NRCS.
This effect was more pronounced at lower incidence angles.
These observations imply that accurate NRCS values are
more important for retrieving precise wind speeds at
smaller incidence angles and higher wind speed ranges.
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Fig. 2. Distributions of estimated wind speeds (m s™1) of
the L-band GMF 2009 as a function of relative wind
direction (°) and NRCS (dB) at given incidence angles of
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4. RESULTS

4.1. ACCURACY OF ALOS-2 PALSAR WIND
The estimated wind speeds derived from the ALOS-2
PALSAR-2 Stripmap Fine mode data by using the L-band
GMF 2009 were compared to the 10-m neutral wind speeds
converted from the in-situ measurements (Fig. 3). The
accuracy of the sea surface winds using the L-band GMF
2009 showed the root-mean-square error (RMSE) of about
2.11 ms™, bias error of —1.16 m s, and standard deviation
of 1.78 m s [10]. According to the previous study on the
accuracy of ALOS-2 PALSAR-2 ScanSAR mode, the L-
and ALOS-2 PALSAR-2 wind speeds showed the RMSE
of 2.33 m s* and the bias error of 0.23 m s™* [11]. Since
the RMSE was derived from the ScanSAR mode with a
much wider spatial coverage than the Stripmap Fine mode,
it is not possible to compare the RMS errors directly.
However, this difference implies a possibility that the
Stripmap Fine mode data can be applicable to derive the
wind speed with accuracy similar to that of the ScanSAR
mode data.
20
RMSE =211 ms"
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Bias =-1.16 m s~
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Fig. 3. Comparison of buoy wind speed with the wind
speed derived from the ALOS-2 PALSAR-2 using L-band
GMF 2009, where the texts indicate the accuracy of SAR-
derived wind speed.

4.2. REGIONAL ACCURACY

The three seas around the Korean Peninsula have
different water depths, islands, tidal currents, coastlines,
and other marine characteristics. To assess the accuracy of
the sea surface wind derived from the ALOS-2 PALSAR
data for each sea, we classified the Yellow Sea, East China
Sea, and EJS according to the criteria of the KMA, and
assessed the accuracy of the sea surface winds in each area,
estimated using the L-band GMF 2009 (Fig. 4). We found
that ALOS-2 PALSAR underestimated sea surface winds
throughout the region, which became more apparent as the
wind speed increased. This tendency to underestimate was
strongest in the EJS and weakest in the Yellow Sea. In
general, this is because the average water depth decreases

623



and tidal currents become strongest in the Yellow Sea, and
are deeper and weaker, respectively, in the EJS [3]. Thus,
because of the water depth and tidal currents, the
underestimation of sea surface wind from ALOS-2
PALSAR was alleviated in the Yellow Sea. However, the
standard deviation of the wind speed error was highest
there; therefore, the influence of tidal current and water
depth led to uncertainty in the retrieval of the ALOS-2
PALSAR-derived sea surface wind over the Yellow Sea.
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Fig. 4. Comparison of residuals (ALOS-2 PALSAR wind
speed — buoy wind speed) using L-band GMF 2009 in ()
the EJS, (b) the southern region, and (c) the Yellow Sea,
where the black dashed line represents a least-squared fit
to a linear function.

4.3. MARINE ENVIRONMENTS OVER EDDY

Fig. 5 shows the backscattering coefficient of ALOS-2
PALSAR observed on April 22,2017, at 03:24 UTC. These
data were obtained from a ScanSAR mode image of an area
with a low sea-surface wind in the EJS. In general, sea
surface wind is affected by stability, which is derived from
the temperature difference between SST and air
temperature [1]. This difference is induced by marine
phenomena, such as fronts and eddies.

To consider the spatial distributions of marine
environments, we investigated the SST and chl-a data
derived from the NOAA AVHRR and COMS/GOCI,
respectively (Fig. 6). Fig. 6a shows the spatial distribution
of SST observed on April 22, 2017, at 05:59 UTC; Fig. 6b
shows the spatial distribution of chl-a observed on April 22,
2017, at 03:00 UTC. The eddy was enclosed by a high SST
current; its boundary showed a high chl-a (above 5 mg m-
%) concentration compared with the surrounding
environment, which accompanied an algal bloom.

Fig. 5. Distribution of backscattering coefficient (dB) of
ALOS-2 PALSAR observed on April 22, 2017, at 03:24
UTC in the EJS.

[mg/m?’]
d 3 =Y 5
b= Y
N TN e
375N 375N 1 X A 1 B
L8
o e 4
TN 3
355N 355N B
p L8 2
335N BSN > " 1
' akly
0
128 130°E 132°E 128E  130E 132°E

Fig. 6. Distributions of (a) SST (°C), from NOAA AVHRR,
observed on April 22, 2017, at 05:59 UTC and (b) chl-a
(mg m-3), from COMS/GOCI, observed on April 22,2017,
at 03:00 UTC. The white box represents the ALOS-2
PALSAR ScanSAR image.
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Fig. 7. Distribution of sea surface height anomaly (m) from
the AVISO Level 4 data on April 22, 2017, near the Korean

Peninsula.

Fig. 7 shows the spatial distribution of the sea surface
height anomaly (SSHA) from the AVISO Level 4 data. As
shown by the SSHA, the eddy over the EJS was an
anticyclonic warm eddy; the rotation direction of the eddy
can be seen in the time series of the SST and chl-a
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distributions. This warm-core eddy showed a positive
SSHA compared to the surrounding environments. In
general, warm-core eddies show low dissolved nutrient
concentrations, deep mixed layer depth, and low chl-a
concentrations [12]; however, this eddy showed high chi-a
concentrations (Fig. 6b).

4.4. WIND FIELDS OVER EDDY

To investigate the wind field over the warm core eddy,
we estimated the sea surface wind from an ALOS-2
PALSAR ScanSAR image using the L-band GMF 2009
(Fig. 8). The ECMWEF reanalysis model data were used as
wind direction information to retrieve the sea surface winds.
The winds moved westward, and their speed decreased
over the eddy.

37°N

36°N

35°'N

34°N

128°E 129°E 130°E 131°E

Fig. 8. Spatial distribution of sea surface winds (m s-1)
from an ALOS-2 PALSAR ScanSAR mode image
observed on April 22, 2017, at 03:24 UTC near the Korean
Peninsula. The white arrows represent the wind direction,
derived from ECMWEF reanalysis model data.

Fig. 9 shows the relationship between the estimated wind
speed and stability in the MABL. To calculate the stability,
the 2-m air temperature data from the ECMWF reanalysis
and the SST from NOAA AVHRR were used. When the
air temperature was higher than the SST, the MABL was
stable. However, when the SST was higher than the air
temperature, the MABL was unstable. The wind speed was
lower over the stable MABL than the unstable MABL. In
other words, as the MABL becomes more destabilized,
higher momentum can be transferred, wind stress increases,
and surface winds are amplified; the reverse is also true
[1,13,14].

The stability of the MABL affected not only the wind speed,
but also the wind direction. As shown in Fig. 8, the wind
passing over the warm-core eddy changed direction.
Previous studies demonstrated that as the MABL became
more destabilized, air-sea momentum was more
effectively transmitted, which increased the wind stress
and decreased the veering angle of the surface winds; the
reverse was also true [2,14]. Moreover, the effect of
stability in the MABL on the wind field instantly occurred
within a small spatial scale of less than 25 km [15].
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Fig. 9. Wind speed variations with respect to air-sea
temperature differences (SST minus air temperature) (°C),
where the red error bars represent the standard deviation of
wind speeds for each bin.

5. CONCLUSION

In this study, we applied the adaptive threshold method
to detect and remove ships from ALOS-2 PALSAR data.
To retrieve the sea surface wind, the L-band GMF 2009
algorithm was applied to preprocessed ALOS-2 PALSAR
data. To assess the estimated sea surface winds, we used 45
stripmap fine mode images. The accuracy of the sea surface
winds had an RMSE of approximately 2.11 m s—1, bias of
—1.16 m s—1, and standard deviation of 1.78 m s—1. As the
wind speed increased, the L-band GMF 2009 tended to
underestimate. In terms of the sea area, the underestimation
was strongest in the EJS, and weakest in the Yellow Sea;
however, the Yellow Sea showed the highest standard
deviation compared with the other areas. Because the
Yellow Sea has a shallow water depth and strong tidal
currents, the wind speed is generally overestimated;
however, inthe ALOS-2 PALSAR data, the overestimation
due to these characteristics alleviated the underestimation
in the L-band GMF 2009. Thus, the characteristics of the
Yellow Sea caused a large standard deviation and
uncertainty for the sea surface wind derived from ALOS-2
PALSAR.

To investigate air-sea interactions in the MABL, we
used SST data from the NOAA AVHRR, chl-a data from
COMS/GOCI, SSHA from AVISO, air temperature from
the ECMWEF reanalysis model data, and sea surface wind
derived from ALOS-2 PALSAR ScanSAR mode images.
Based on the spatial distribution of SST and SSHA, we
found that a warm-core eddy was located over the EJS on
April 22, 2017. The influence of the stability of the MABL
on the wind field was revealed by the differences between
the SST and air temperature. In the warm-core eddy, an
algal bloom occurred with a high chl-a concentration above
5 mg m-3. As the MABL became more destabilized, it
amplified the magnitude of surface winds, and vice versa.
The change in wind speed also affected the wind direction.
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This study examined the estimation of wind using the
ALOS-2 PALSAR by assessing its accuracy. Furthermore,
this study addressed the importance of ALOS-2 PALSAR
data to understand the wind field and its role in air-sea
interactions, which are related to physical forcing and low-
level ecosystem responses. We expect that ALOS-2
PALSAR data will continue to contribute to coastal marine
studies using high-resolution wind data.
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1. INTRODUCTION

Multifrequency synthetic aperture radar (SAR) images
from ALOS/PALSAR, ENVISAT/ASAR and Cosmo -
SkyMed sensors were studied for forest classification in a
test area in Central Italy (San Rossore), where detailed in
- situ measurements were available. A preliminary
discrimination of the main land cover classes and forest
types was carried out by exploiting the synergy among L
-, C- and X - bands and different polarizations. SAR
data were preliminarily inspected to assess the capabilities
of discriminating forest from non - forest and separating
broadleaf from coniferous forests. The temporal average
backscattering coefficient (o ° ) was computed for each
sensor - polarization pair and labeled on a pixel basis
according to the reference map. Several classification
methods based on the machine learning framework were
applied and validated considering different features, in
order to highlight the contribution of bands and
polarizations, as well as to assess the classifiers’
performance. The experimental results indicate that the
different surface types are best identified by using all
bands, followed by joint L - and X - bands. In the
former case, the best overall average accuracy (83.1%) is
achieved by random forest classification. Finally, the
classification maps on class edges are discussed to
highlight the misclassification errors.
2. TEST AREA AND INPUT DATA

The investigation was carried out in a forest area in
Central Italy, where ground measurements,meteorological
information and other ancillary data were available. The
natural park of San Rossore (43.72°N, 10.30°E) is a
protected flat area of about 4800 ha located along the
coast of Tuscany Region. The area is covered by forests
and pastures; forests are dominated mainly by
Mediterranean pines (Pinus pinaster Ait. and Pinus pinea
L.) and deciduous broadleaf (i.e., Quercus robur L.,
Fraxinus subsp. oxycarpa M. Bieb. ex Wild, Ulmus laevis
Miller, Alnus glutinosa (L.) Gaertner, etc.). The ground
truth is represented by the forest type map produced by
‘Dimensione Ricerca Ecologia Ambiente’, DREAM
(2003) [1]. The original classification map was provided
at the 1:15000 scale and was derived from field
observations collected in the whole Park. According to the
definition used by the Tuscany Regional authority, forests

correspond to areas having a minimum extension of 2000
m 2, a length greater than 20 m, and tree cover must be
greater than 20%. Unfortunately, evergreen broadleaf
forests (dominated by Holm oak, Quercus ilex L.) cover
only a marginal area (0.2%) of the whole Park, thus, it
was not possible to separate them to coniferous and
deciduous broadleaf forests. Logging activities had an
interested part of the forest area since 2009; therefore, a
preliminary check was done to exclude these areas from
the training and the test

phases. Felled areas were identified using a Landsat TM
of 2009 and Google Earth images of 2010. Additional
conventional measurements were carried out on 72 forest
stands covered by three forest species groups:
Mediterranean pines, holm oak and deciduous trees,
whose area ranged from 1 to 170 ha [2]

A series of SAR images, listed in Table 1, was collected
at L-(ALOS/PALSAR), C-(ENVISAT/ASAR) and X-
(COSMO - SkyMed) bands in 2009 and 2010 across
different seasons and by using different modality of
observation. The original (range, azimuth) resolution of
the PALSAR, ASAR and COSMO - SkyMed images
were (9.3 m, 6.1 m), (7.8 m, 4.0 m) and (1.1 m, 1.9 m), in
that order. Furthermore, the images are characterized by
different incidence angle, polarization, acquisition mode
and daily time acquisition, as reported in Table 1

Table 1 SAR images available in the test area of San
Rossore.

Group Sensor Date Time Inc.
UTO) Ang.

1 PALSAR 28/02/2009 21:43:00 38 HH
ASAR 26/02/2009 09:38:29 23 VV
CSK2 06/03/2009  05:13:15 33 HH

2 PALSAR 07/06/2009 21:03:08 22 Full-

pol

ASAR 26/05/2009 20:59:38 23 VV
CSK2 25/05/2009 05:12:24 33 HH

3 PALSAR 29/06/2009 21:41:48 38 HH/HV
ASAR 27/06/2009  09:35:57 23 VV
CSK2 25/05/2009  05:12:24 33 HH

4 PALSAR 16/07/2009 21:44:03 38 HH/HV
ASAR 16/07/2009 09:38:31 23 VV
CSK2 13/08/2009  05:11:29 33 HH

5 PALSAR 29/09/2009 21:42:14 38 HH/HV
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ASAR 24/09/2009  09:38:26 23 VV

IBvi$ cover, too (see, for instance, [5-9]). Boosting
Higoradans generally refer to the method that combines

WBIR classifiers to get a strong classifier [10]. AdaBoost
WMI$ decision trees (AB) [11] is a boosting ensemble
dlassification method whose prediction relies on a

CSK2 29/08/2009  05:11:29 33 HH

6 PALSAR 16/10/2009 21:44:25 38 HH/HV
ASAR 13/10/2009  20:59:34 23 VV
CSK *N/A * *

7 PALSAR 30/12/2009 21:42:15 38 HH

ASAR 22/12/2009  20:59:34 23 VV
CSK3 20/12/2009  05:10:04 34 HH

Ww8ghted mean of the outputs of several weaker decision
€S (the higher the weight, the more reliable the decision
tiBepaddie iterative training algorithm selects a decision

8 PALSAR 16/01/2010 21:44:22 38 HH
ASAR 10/01/2010 21:02:24 23 VV
CSK2 20/01/2010  05:09:38 33 HH

tEgpSat each step, in order to minimize a cost function, and
upigte the weights. This process has been shown to
imipiape the overall performance under some optimality

mpssure [12]. AdaBoost has been already considered in
thergemote sensing literature, e.g., for tree detection [13],
Ienghgeyer classification in tropical regions [14] and land

9 PALSAR 14/02/2010 21:42:06 38 HH
ASAR 11/02/2010 21:02:24 23 VV
CSK2 21/02/2010  05:09:15 33 HH
10 PALSAR 01/04/2010 21:41:07 38 HH
ASAR 03/04/2010  09:35:32 23 VV
CSK3 25/03/2010  05:08:25 33 HH

qsr classification carried out on hyperspectral images
Mk Nevertheless, the main drawbacks of AB are its
$qnsifvaty to outliers and the number of hyperparameters

11 PALSAR 18/04/2010 21:23:47 38 HH
ASAR 22/04/2010  09:38:20 23 VV
CSK *N/A * *

topglee optimized in order to improve the classification
paormance. The K - nearest neighbors (KNN) algorithm
1% another popular classification method [16]. In KNN, the

12 PALSAR 19/07/2010 21:42:52 38
ASAR 20/07/2010  20:59:36 23 VV
CSK3 01/08/2010  05:07:28 34 HH

HH/HV

tFRMNg dataset corresponds to a set of labeled points in
therspace of features. The prediction is performed by only
qnsistesing the classes of the k training samples that are

3. METHODS

This investigation aims at evaluating the use of the
available SAR data for discriminating forest from non -
forest land covers and separating broadleaved from
coniferous forest types.
The classification of the test site was carried out by using
the following supervised classification methods belonging
to the machine learning framework:
- Random forest (RF);
- AdaBoost with decision trees (AB);
- K - nearest neighbors (kNN);
- Feed forward artificial neural networks (FF - ANNs);
- Support vector machines (SVM);

Quadratic discriminant (QD).
Random forest (RF) is a classification method belonging
to the ensemble learning methods [3]. Ensemble
classifiers perform decisions by aggregating the
classification results coming from several weak classifiers.
In RF, the weak classifiers are decision trees [4] and
predictions are performed by the majority, i.e., the
predicted class is the most voted by all the weak
classifiers. Decision trees are trained by randomly
drawing with replacement a subset of training data
(bagging). The RF algorithm has been demonstrated to
reduce both the bias and the overfitting with respect to
decision trees, as well as making unnecessary the pruning
phase [5]. Two main parameters must be set in RF: the
number of features in the random subset at each node and
the number of decision trees [6]. All these aspects, as well
as a contained computation burden (compared, for
instance, to SVM) and outperforming classification results,
have contributed to make RF very popular in the study of

closest to test sample, according to a given metric. There
are many strategies to perform this decision, e.g., majority
vote, weighted distance [17] or by using Dempster—
Schafer theory [18]. An integration of KNN and SVM has
been also proposed [19]. The basic KNN algorithm
usually attains suboptimal classification performance
compared to other more recent methods and can be
memory intensive for a high number of features.
Nevertheless, due its plain logic and configuration (the
main parameter is the number of neighbor k), it has been
thoroughly used as benchmark in the remote sensing
community [9,20,21]. An algorithm based on feed
forward artificial neural networks (FF - ANNs) has been
also considered for the comparison. FF - ANN is
conceived for establishing non - linear relationships
between inputs and outputs [22] and therefore cannot be
regarded as a classification algorithm strictly speaking.
However, they can be applied to almost any kind of
input—output relationships and their ability in solving non
- linear problems has been largely proven [23]. FF -
ANN is composed of a given number of interconnected
neurons, distributed in one or more hidden layers, that
receive data, perform simple operations (usually additions
and products) and propagate the results. The FF - ANN
training is based on the back propagation (BP) learning
rule, which is a gradient descendent algorithm aimed at
minimizing iteratively the mean square error (MSE)
between the network output and the target value. As a
main disadvantage, FF - ANN is sensitive to outliers: a
training representative of the testing conditions is
therefore mandatory for obtaining satisfactory results
[24].In this study, FF - ANN was adapted to act as
classifiers by simply rounding the obtained outputs to the
closest integer. Another popular algorithm for
classification is represented by support vector machine
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(SVM). In SVM, the space of features is divided in
subspaces by means of hyperplanes, named decision
planes, and the prediction is performed according to the
subspace that the test point belongs to (see, for instance,
[25]). The decision planes are computed during the
training phase searching for the maximum margin,
according to some distance function. SVM have been also
extended to deal with nonlinear separation hypersurfaces
[25,26], allowing us to map the features in a higher -
dimensional feature space through some nonlinear
mapping and formulating a linear classification problem
in that feature space by means of kernel functions. SVM
- based methods are very common due to their good
classification  performance (see, for instance,
[37,6,9,19,20]). As a drawback, SVM may require a fine
tuning of many hyperparameters to obtain the optimal
result. Furthermore, the training of SVM classifiers is
performed by means of quadratic programming
optimization routines [24]; thus, the training time is
usually higher than, for instance, RF. The quadratic
discriminant classifier (QD) pertains to the discriminant
analysis framework [27]. In QD, data samples are
assumed to be generated according to a Gaussian mixture
distribution. The mean and the covariance matrix of each
component are estimated by using the training data set
belonging to the corresponding class. The prediction is
performed by computing the posterior probability that the
test sample belongs to each class and selecting the class
for which the maximum is attained. Despite of the
simplistic statistical hypothesis, QD can often deal with
complex data models, exhibiting a competitive
classification performance [28,29]. Furthermore, the
training and decision phases are usually extremely fast

4. RESULTS
Classifiers were compared by means of a 10 - folds cross
- validation, where at each round the 10% of the dataset
was used as training set and the remaining 90% for
validation. In the training phase, five - fold cross -
validation was adopted to optimize the hyperparameters
of the classifiers. To investigate the contribution of
different bands and polarizations, seven scenarios were
tested. For each scenario, only a subset of classification
stack’s components was considered for training and
validation. The indexes of the scenarios and the related
components follows:
1. PALSAR HH + PALSAR HV;,
2. CSK2 HH;
3. ASAR VV;
4. PALSAR HH + PALSAR HV + CSK2 HH;
5. PALSAR HH + PALSAR HV + ASAR VV;
6. CSK2 HH + ASAR VV;
7. PALSAR HH + PALSAR HV + CSK2 HH + ASAR
VV.
Each scenario was trained and validated. The confusion
matrices were subsequently computed over the overall 10
validation sets, in order to assess and compare the
prediction capabilities among classifiers. The predicted

and the ground truth classes are reported in rows and
columns, respectively. The scores are normalized to 100%
on each column (up to rounding error), such that the main
diagonal and off - diagonal entries report the sensitivity
and the misclassification rate, respectively. In Table 4, the
confusion matrix obtained in the scenario 1 is shown.
Almost all classifiers exhibited the highest sensitivity for
the non - forest class, whereas the worst misclassification
was between broadleaf and coniferous. This result
confirms that L - band data were more useful to
discriminate forest and non - forest rather than different
forest types. As to scenario 2, whose results are reported
in Table 5, the sensitivity was remarkably unbalanced
toward the discrimination of forest types for all classifier,
whereas they show very poor performance for the non -

forest type. Similar conclusions could be drawn by
observing Table 6, where the results for scenario 3 are
reported. A noticeable sensitivity balancing was obtained
in scenario 4, as reported in Table 7. As to the forest type,
four classifiers out of six exhibited sensitivity greater than
80% for both classes, whereas it ranged between 70% and
80% for the non - forest class. This trend was also
observed in the scenario 5 (see Table 8), even though the
sensitivity values were slightly lower (about less 1%-2%).
The joint use of band C - and X - (scenario 6, Table 9),
on the contrary, did not provide enough information to
discriminate the non - forest class and the sensitivity of
classifiers drops of about 50%- 70% with respect to the
previous scenario. In Table 10, the results of scenario 7
are reported. By comparison with scenario 4 (Table 7), no
remarkable trend emerged in terms of sensitivity or
misclassification rate. In order to summarize the
comparison, the average accuracies computed on the 10
folds, as well as the standard deviations, are reported in
Table 9. RF classification achieved the best overall result
(83.1 £ 0.1) and led in six out of seven scenarios. AB
performed very closely to RF and both classification
methods exhibited very low variance in all scenarios.
KNN joins RF as to the best overall result, but the former
suffered of poorer results in Scenario 2, 3 and 6.
Moreover, some of the classifiers trained in the Scenario 2
resulted strongly biased towards forest classes, which was

reflected in the higher standard deviations of the accuracy.
A similar irregular pattern was exhibited by the SVM
classifiers. FF - ANN and QD sub - optimally scored
with respect to the best ones, even though no remarkable
variability emerged across different realizations. All
classification methods consistently attained their best in
the scenario 7, that is, when all available data were used,
the second - best result was observed for the joint use of
L - and X - bands. Furthermore, the accuracies of all
classifiers were remarkably above the 36.4% lower bound
threshold, which corresponded to the accuracy of the
trivial random assignment based on pixels’ prior
distribution. The average computational times of the
tested classification methods are reported in Table 10. The
computer simulations were carried out in MATLAB
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R2019b, on an Intel(R) Core(TM) i7 - 8700 CPU @
3.20GHz, 32 GB RAM, operating system Xubuntu 19.04
and exploiting six parallel processing. The time spent for
the hyperparameters optimization was included and it
varied according to several parameters, such as the i)
dimensionality of predictors, ii) separability of classes, iii)
number of parameters and the iv) stopping criterion of the
optimization routines. It must be pointed out that, despite
of a relatively fast training phase, KNN classifiers are
more memory and processor intensive during the
prediction phase, significantly being the slowest with
respect to the other classification methods. For a visual
evaluation, the classification maps obtained with RF are
presented in Figure 1, considering three different
scenarios. In scenario 1 (Figure la), identification
between coniferous and broad leaf was scarce, whereas
the non - forest areas were almost correctly identified as
blue areas. Conversely, the classification map of scenario
2 (Figure 1b) shows a better discrimination between
coniferous (red areas) and broadleaf (green) forests. In
scenario 4 (Figure 1c), the improvement in the
classification result combining L - and X - band was
clear.

Table 2 Confusion matrices in the scenario 1
(PALSAR HH + PALSAR HYV) for the classes

coniferous, broadleaf and non - forest areas

RF AB KNN

Ground Truth (%) Ground Truth (%) Ground Truth (%)

Coniferous 719 259 88 722 262 87 688 276 90
Broadleaf 259 702 133 256 700 133 284 680 144
Non-forest 2.2 39 780 22 3.9 780 27 44 76.6

FF-ANN SVM QD

Ground Truth (%) Ground Truth (%) Ground Truth (%)

Coniferous 728 279 6.0 710 261 638 77.1 381 62
Broadleaf 256 67.7 164 273 707 175 19.7 56.7 13.1
Non-forest 1.6 44 775 17 32 757 32 53 807

Table 3 Confusion matrices in the scenario 2 (CSK2
HH) for the classes coniferous, broadleaf and non -
forest area.

RF AB KNN

Ground Truth (%) Ground Truth (%) Ground Truth (%)
Coniferous 833 147 59.8 829 144 594 620 131 497
Broadleaf 154 852 30.1 157 855 305 123 637 230
Non-forest 1.3 0.1 100 14 0.1 102 257 232 273

FF-ANN SVM QD

Ground Truth (%) Ground Truth (%) Ground Truth (%)
Coniferous 767 101 515 612 205 525 874 181 679
Broadleaf 22.6 898 406 191 597 277 124 818 266
Non-forest 0.6 0.1 79 198 198 197 02 01 55

Table 4 Confusion matrices in the scenario 3 (ASAR
VV) for the classes coniferous, broadleaf and non -
forest area.

RF AB KNN
Ground Truth (%) Ground Truth (%) Ground Truth (%)
Coniferous 822 155 588 821 153 587 644 179 471
Broadleaf 178 834 363 179 836 36.6 193 704 351
Non-forest 00 1.1 49 00 11 48 163 11.7 178
FF-ANN SVM QD

Ground Truth (%) Ground Truth (%) Ground Truth (%)
Coniferous 81.6 148 582 832 165 59.7 822 154 588
Broadleaf 184 840 368 168 835 403 178 841 381

Non-forest 00 1.1 49 00 00 00 00 04 31

Table 5 Confusion matrices in the scenario 4
(PALSAR HH + PALSAR HV + CSK2 HH) for the
classes coniferous, broadleaf and non - forest area.

RF AB KNN
Ground Truth (%) Ground Truth (%) Ground Truth (%)
Coniferous 83.6 13.1 105 832 128 105 834 133 107
Broadleaf 147 834 123 151 836 125 148 831 124
Non-forest 1.7 35 772 17 36 770 17 36 770
FF-ANN SVM QD

Ground Truth (%) Ground Truth (%) Ground Truth (%)

Coniferous 83.0 138 85 842 137 11.1 861 171 99
Broadleaf 160 822 156 142 83.0 142 112 784 112
Non-forest 1.0 41 759 16 34 747 27 44 788

Table 6 Confusion matrices in the scenario 5
(PALSAR HH + PALSAR HV + ASAR VYV) for the

classes coniferous, broadleaf and non - forest area.

RF AB KNN
Ground Truth (%) Ground Truth (%) Ground Truth (%)
Coniferous 81.3 136 109 812 135 10.8 815 140 112
Broadleaf 166 831 114 166 831 115 164 826 116
Non-forest 2.1 33 778 22 34 777 21 33 772
FF-ANN SVM QD

Ground Truth (%) Ground Truth (%) Ground Truth (%)

Coniferous 81.0 146 84 804 128 10.6 823 155 99
Broadleaf 177 819 162 176 837 127 149 801 108
Non-forest 1.3 35 754 20 35 766 28 44 794

Table 7 Confusion matrices in the scenario 6 (CSK2 +
ASAR VYV) for the classes coniferous, broadleaf and
non - forest area.

RF AB KNN

Ground Truth (%) Ground Truth (%) Ground Truth (%)

Coniferous 827 129 50.6 826 127 506 763 138 468
Broadleaf 147 855 251 148 857 252 155 81.7 248

Non-forest 2.6 1.7 243 26 1.6 242 82 45 284

FF-ANN SVM QD

Ground Truth (%) Ground Truth (%) Ground Truth (%)

Coniferous 79.0 128 431 856 150 60.8 850 148 552
Broadleaf 20.1 86.0 362 134 819 294 133 831 238

Non-forest 09 12 207 09 31 98 17 21 210

Table 8 Confusion matrices in the scenario 7 (the
PALSAR HH + PALSAR HV + CSK2 + ASAR VV)
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for the classes coniferous, broadleaf and non - forest
area.

RF AB KNN

Ground Truth (%) Ground Truth (%) Ground Truth (%)

Coniferous 84.6 126 106 843 125 105 848 126 110
Broadleaf 13.6 84.1 113 139 841 115 137 843 116
Non-forest 1.8 34 781 18 34 780 16 32 774

FF-ANN SVM QD

Ground Truth (%) Ground Truth (%) Ground Truth (%)

Coniferous 845 142 85 839 122 109 856 151 108
Broadleaf 145 819 151 144 843 131 123 803 118
Non-forest 1.0 39 764 17 34 760 21 46 774

Table 9 Average and standard deviation of the
accuracy of the classifiers for each tested scenario
(abbreviations are used for sake of clarity). The best
values for scenario are highlighted in bold.

Scenario RF AB KNN FF-ANN SVM QD
PALSAR 723+0.1 724+01 700+03 716+01 71801  69.4+0.6
CSK2 70.0+0.0 70.0+0.1 3;0; 689+01 526+218 69301
ASAR 67.8 0.0 67800 579+33 67.8x0.0 67300  67.8x0.0
PALSAR + CSK2 823x0.1 822+01 821+01 81301 81.8+0.0  81.5+0.1
PALSAR + ASAR 81.4+0.1 81.3+0.1 81.1+01  803+0.1 81.1+0.0  808+0.1
CSK2 + ASAR 72.6+0.1 726+00 693+02 70.7+02 695+36 71901

PALSAR + CSK2 + ASAR 83.1+0.1 83.0+0.1 831x0.1 81.9:0.1 825+0.0 81.8+0.1

Table 10 Average computational times (s) of the
training  phase for  different classification
methods,including the hyperparameters optimization,
as a function of the Scenario. Six parallel processing

was used.

Scenario RF AB KNN FE-ANN SVM QD
1 175 219 27 15 190 <1
2 7 90 25 30 332 <1
3 7 107 26 43 129 <1
4 143 143 28 123 163 <1
5 191 169 28 145 186 <1
6 191 148 24 84 237 <1
7

215 180 27 201 121 <1

() (d)

Figure 1 Classification maps of San Rossore test site
obtained with random forest by using (a)PALSAR HH
+ PALSAR HV; (b) CSK HH and (c) PALSAR HH +
PALSAR HV + CSK HH. (d) Reference forest
classification map produced by DREAM [27]. Legend:
Red: coniferous (correctlyclassified), Green: broadleaf
(correctly classified), Blue: non - forest (correctly
classified), Black:misclassified.

5. CONCLUSIONS
The application of multi - frequency SAR images to the
study of heterogeneous Mediterranean forests, which have
not been so far extensively investigated by using
microwave remote sensing methods, have been adopted.
The role of L -, C - and X - bands in land classification
has been analyzed by applying several machine learning
classification methods to data coming from different
combinations of sensors and polarization. The joint use of
multi - frequency and multi - polarization SAR data was
shown to improve the classification of heterogeneous
Mediterranean forests, allowing the separation of forest
areas from non - forest ones, as well as the identification
of broadleaf and coniferous classes inside the forest class.
The overall accuracy exceeded 80% when integrating
both L - and X - band contributions for almost all
considered classifiers; instead, it was significantly lower
when considering separately L - and X - band.
Furthermore, more homogeneous sensitivity across bands
was achieved in the former case. By comparison, the
contribution of C - band had emerged to be of secondary
importance. Random forest classification and support
vector machines are two popular classification methods
that were tested among others. In our results, the former
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had shown the best accuracy for all almost the considered
scenarios and it was confirmed a powerful tool for
classification purposes. The latter, on the contrary, was
shown to suffer of unbalanced sensitivity among classes
in some scenarios; this behavior could be also motived by
the consistent number of hyperparameters that must be
tuned to achieve optimality, which is an intrinsic limit of
this algorithm with respect to random forest. This research
could be also interesting in view of the OptiSAR
Constellation mission, devoted to the Earth surface
observation by means of spaceborne optical, L - and X -

band SAR sensors, with the aim of developing consistent
applications in environmental, hazard and safety
monitoring. This research was published in [30]
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1. INTRODUCTION

As was described in the project proposal, monitoring
mining  deformation is necessary to legislative
requirements, predict subsidence, maximize of coal
extraction and risk and environmental monitoring [1].
Mining monitoring conducted by traditional monitoring
techniques as field survey using levels, total stations or
GPS are labour-intensive and time-consuming when the
study regions become large. Hence, the monitoring is
usually constrained to very localized areas. Mining
measurements on the levelling lines are generally
performed one per year or sometimes even rarely
Moreover, these techniques are point-by-point basis, thus,
the spatial extent is not enough to assist in understanding
the mechanism involved in ground subsidence [2].

Thus, Satellite Synthetic Aperture Radar Interferometry
(INSAR), like any other remote sensing technique,
captured considerable attention in subsidence monitoring
by providing measurements of ground deformation. Many
application of Sentinel-1 data have been demonstrated for
subsidence or deformation monitoring [3]. However, for
deformation with high deformation gradient, as well as in
the vegetated areas, this data are not appropriate [4].
Therefore, the idea of the this project was synergetic
integration of ALOS-2 and Sentinel-1 data in order to
measure the whole deformation range from mm/yr up
to m/yr in the areas of active coal exploitation.
Through,  traditional DINSAR  exploits  single
interferometric SAR pairs, the accuracy of this technique
is limited by factors related to spatial and temporal
decorrelation, signal delay as a result of atmospheric
artefacts as well as orbital or topographic errors. In order
to overcome abovementioned limitations, different
techniques which exploit time series interferometric SAR
analysis (TS-InNSAR) have been proposed such as
Persistent scattered interferometry (PSINSAR) or Small
Baseline Subset [5-7]. However, due to the limited
number of ALOS-2 SAR images (5) in the GPortal,
application of the PSINSAR approach was not
possible. Therefore, only one possible option was
integration of ALOS-2 and Sentinel-1 by on the level of
DInSAR processing.

From another point of view, by considering the high
availability of ALOS-1 data, additional integration
was made in term of time. More specifically long lime
series monitoring of the mining areas by using various

SAR sensors. It was carried out in the area of the
Mieroszewskich palace where some crack exists which
was deduced to be an effect of the mining activity in the
past.

Taking into account such a valuable culture heritage, it is
very important to answer the question what is causing the
palace damages and in the authors opinion, satellite radar
interferometry will be very helpful tool.

To investigate this issue we applied various SAR dataset
to check the history of the deformation is this areas.
-Firstly, we will utilized ALOS-1 data from 2007-2011 to
check if during this time, significant deformation occur in
the area of interest, PSINSAR approach will be used for
such purpose.

-Secondly we will apply available archive data from
TerraSAR-X satellite from 2011-07-05 to 2013-01-27 to
estimate deformation by using PSINSAR approach -
Thirdly, we will utilized Sentinel-1 ascending and
descending data for the period of 2014-2020 to estimate
deformation by using PSINSAR approach.

-Finally, we will utilize TerraSAR-X images for the year
of 1-04-2019 up 4-04.2021.This results was utilized as a

2. STUDY AREAS

First study area is Rydulttowy mine in the Upper Silesian
Coal Basin, which is used as case study in appendixes A-
B. Second study case is area of the Mieroszewskich

Palace which is presented in the appendix C.

CASE STUDY 2

The Rydultowy mine is the oldest active mine in the
Upper Silesian Coal Basin (USCB) in Poland. The USCB
is one of the largest hard coal mining areas in Europe. The
Rydultowy mine is located in the southwest part of the
USCB  (Figure 1-Appendix A,B) and covers
approximately 46 km?. The average daily production of
the mine ranges between 9,000 and 9,500 t/day and the
extraction depth reaches 800 - 1200 m. This area was
investigated during the EPOS-PL project, which allowed
the purchase of five passive corner reflectors (CRs) and
placed them in the area of interest. EPOS-PL is the Polish
implementation of the European Plate Observing System
(EPOS) initiative, which aims at the integration of existing
and newly created research infrastructures to facilitate the
use of multidisciplinary data and products in the field of
Earth sciences in Europe.
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CASE STUDY 2

Mieroszewskich Palace building is a baroque-classicist
building erected in 1702 as a symbol of the position and
rank of the Mieroszewskich family in the Duchy of
Siewier, it is a typical 18th-century noble residence
modeled on French palaces. It is a late baroque, one-story
palace, with a mansard roof, two-bay, with an enfilade
arrangement of rooms. After renovation in 1958, the
building was turned into a Children and Youth Culture
Center. He performed this role until the 1970s. From the
mid-1960s, the management of the Museum in Bedzin,
together with the Provincial Conservator of Monuments,
made efforts to change its function and start
comprehensive conservation of the entire palace and park
complex. In March 1982, after years of efforts and work
carried out by the Monuments Conservation Studios in
Krakow, the USCB Museum in Bedzin presented stylish
18th and 19th-century interiors to the visitors to the palace
opening. The interior design of the eighteenth-century
interiors is complemented by fireplaces, stylish furniture,
artistic craftsmanship and a collection of portrait and
landscape paintings from the eighteenth - nineteenth
centuries. The palace interiors also exhibit works by
artists from USCB and archaeological and ethnographic
collections.

3.METHODOLOGY

As was mentioned in the introduction section, ALOS data
have been used in two aspect. First aspect utilized ALOS-
2 data altogether with Sentinel-1 by the integrated
DINSAR approach to appropriate estimate deformation
form the active mining exploitation. Methodology
flowchart is attached in the appendix A and B.

Second aspect was made by the integration of the ALOS-1
data altogether with other SAR mission for the long term
monitoring post mining area in the Mieroszewskich
Palace. For that aspect we utilized PSInSAR approach to
facilitate mm-level accuracy. Also it was possible due to
the availability of the bigger amount of SAR Scenes (at
least 20 is needed for the PSINSAR calculations). All
utilized data are presented in the Appendix C.

4. RESULTS

Integration of the DINSAR results from ALOS-2 and
Sentinel-1 by using various strategies which are deeply
described in the appendix A-B, are presented in the
following table. As can be observed , the best results are
received for the integration option 2D+1D, for the
Sentinel-1 and ALOS-2 data.

Integration and decomposition

Sentinel-1 only Sentinel and
ALOS-2
Deformation @ 3D 2D+1D | 3D 2D+1D

component

Vertical [m] = 0.065 0.038 0.052 0.032
Easting [m] | 0.046 0.031 0.038 0.018
Northing 0.572 0.034 0.288 0.024

[m]

The results of the second aspect are presented in the figure
1 in the appendix C. As can be observed, in each cases
there were no characteristic basins which can suggest that
cracks detected in the Mieroszewickich palace are the
source of the post mining activity. Integration of ALOS-1,
TerraSAR-X and Senitnel-1 data allow for the long time
investigation of the mining and post mining areas.

5. DISCUSSION

Achieved results of ALOS-2 and Sentinel-1 data indicated
the positive value of the additional to freely available
Sentinel-1 data for the proper estimation of the vertical
and horizontal deformation component. Unfortunately, in
the areas of the study only 5 ALOS-2 data were available.
Thanks to the long wavelength of the ALOS-2 mission,
coherence was still enough to carry out the satellite
interferometry by using conventional DINSAR approach.
Unfortunately this amount of data is not enough for
PSINSAR approach, therefore this method could not be
applied. Nevertheless, it is foreseen that in another case
studies where more ALOS-2 data is available, the results
of the Sentinel- and ALOS-2 data integration will be much
more accurate. Especially, when at least 20 ALOS-2
images are available, PSINSAR approach can be utilized
which is known for its better performance.

Additionally, results of the Appendix c- integration of
various sensors in the case of the long time monitoring by
taking advantage of various time of the imaging of various
satellites allows to answer many question about the
surrounding environment. Thanks to the various mission it
was possible to cover approximately time span of 10
years, which is very beneficial and unavailable with
another geodetic measurement techniques.

6.CONCLUSIONS

In each of the investigated aspect ALOS missions proved
to be beneficial for monitoring of mining and post mining
areas. Benefits comes from longer wavelength of the
ALOS SAR sensor applied in that mission. Additionally,
ALOS-1 mission is beneficial in application in long term
monitoring of infrastructures in the mining areas.
Unfortunately, in the mining area of USCB, ALOS-2 data
availability is very limited. This makes impossibility to
apply more sophisticated time series interferometric
techniques as well as limits the revisiting time of the SAR
measurements.
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APPENDIX

Appendix A: conference paper from ISPRS congress in
Nice which presents the integration of 5 scenes of ALOS-
2 data with the data of the Senitnel-1 for the year of 2019.

Appendix B: poster form the Joint Pl Meeting of JAXA
Earth Observation Missions FY 2020

Appendix C: document/paper draft in which integration
of the ALOS data was made in terms of time. More
specifically, various SAR data have bed utilized in order
to evaluate the if the mining deformation existed in the
investigated study case.
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Fig. 1 Geographic condition in this study. The contour
color map shows the topography. Black and red
rectangles represent the area of the gridded ZTD
model and the ALOS-2 SAR coverage, respectively.
Triangles colored in light blue represent locations of
GNSS stations. The yellow star symbol represents the
earthquake epicenter with the Japan Meteorological
Agency’s magnitude of 6.3 occurred on 28 December
2016.
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Fig. 2 A brief example of the processing flow in the
gridded ZTD retrieval.

Table. 2 Statistics of the gridded ZTD retrieval
result.

Date mean of residual (mm) STD of residual (mm)
2016/01/23 0.09 2.03
2016/03/19 0.06 2.98
2016/04/30 0.12 2.52
2016/07/23 0.18 2.79
2016/12/24 0.08 2.48
2017/04/15 0.15 3.78
2017/05/13 0.12 2.79
2017/09/30 0.15 3.39
2017/10/14 0.14 3.18
2017/12/23 0.10 2.45
2018/04/14 0.12 273
2018/09/29 0.18 3.26
2018/12/22 0.23 3.45
2019/09/28 0.22 3.37
2019/12/21 0.14 2.72
2020/04/11 0.10 2.40
Average 0.14 2.89

InSAR 7 — & ~jii ff] « #i1E L7-fE 5, fedko it
KRG IBIEM IE T4 & Hel U CARRFZE CTRI%E L 7= 1E
FEEEOHENREE R LT, —#l& LT Fig. 3 12
FIEE AT O InSAR B %7~ Fig. 3 THW -
InSAR {813 2016 4 3 H 19 H & 2016 44 A 30 H
(iR S 7= SAR Wi & VTl Y | BRI E
VW (42 HIFD) 72, m0TEE (2e—L ) &
IRLTEBY DOMEBHERAENMOEELE TN TR
ATREPED VY, Jex O U F /L InSAR Hifg: (Fig.
3a) CTIXFEICHE S IR EBIONFAZ LD 2 A
IJVEERZTBVBEETHLHLDD, SSM 12X D
EHEMEZEA TS 2 L THRMETETWVWS
(Fig. 3b) . L 72> LEHEEREMIED A T iE-rE R
BUZT CORBMOMHEELRNE-> T, EiE
JEHIED A TIIMEN TR & B ER T
%, Z DOEHEERIEF 7~ InSAR B I AFZE CRER
L7 GNSS _R—ZDHIEEFT /N2 L=k R4
Fig. 3¢ (2759, GNSS ~_—ZDHHIEIZ LY, Fig. 3b
TIEFE > T 7= AL P -FE 35 17 O AR 28 b 13 44

640



E-BRESNTEBY., fiE% InSAR E#IZIIE km
A=V DRZEBIE ) A APBREIND &V D) L

JNZE THIIETE T\ 5, Fig 3 TIEEEDO DI,

KRBT A Y A —LET/L (MSM) IC L DHER X
OIEEAB &= GACOS £F /v ([6]) 12X B4HIE
%38l L7= InSAR Ef% % Fig. 3d 3 X O Fig. 3e (2%
NENRLTWND, HEH THLHRTEZSL 51T
k@M%iUGMDSKié%ETi@%SAwX@
FHIEIZ AR & 72 A LA R > T D . GNSS
— ZDMIEN Z NS RERDOMIEFE X 0 2RIl
EZFEHLTNDZENS1D,

lono+GNSS correct  lono+MSM correct  10n04GACOS carrect
c) it T 3
()94'7 sll 1’-, % ‘ () ,;’t J
JBE  4BE . g
J’f | y - ,-"‘ Pl \/
g g | F % ,‘
B ) et **-»‘tl e Wl 'f‘:&ﬁ\}‘
- T b o " .
gl g 4
i _/:‘ & A
: L L&
14 140° 141° )’ 14 140 141
[———————————
40 -20 0 20 40

LOS change

Fig. 3 (a) An original wrapped interferogram of 19
March 2016 and 30 April 2016 over Kanto region. No
corrections were applied in this image. (b) An
interferogram that the ionospheric correction was
applied to the interferogram (a). (c-e) Phase residuals
corrected for the GNSS-based, MSM, and GACOS
delay model, respectively. The model phase was
subtracted from (b).
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1 CICESE

1. INTRODUCTION

The original objective of this proposal was to continue our
research on understanding of seismic moment and stress
accumulation rate along the San Andreas Fault System
using InSAR observations from ALOS-2, Sentinel-1 and
GNSS measurements. It was written in November 2018 as
a backup plan to the research objective, since we did not
know whether the prior RA6 proposal (PI NO.: 3071) will
be extended. After we received the announcement that the
prior RA6 proposal will be extended, we decided that the
data quota from this proposal will be mainly used for
advancing the development of processing approaches in
GMTSAR related to ALOS-1 and ALOS-2 data. The
results will further ensure the goals described in RA6
3071, the original form of this proposal and any future
proposals under JAXA RA programs.

2. DEVELOPMENTS AND RESULTS

Phase gradient estimator for ALOS-1/ALOS-2

We developed the phase gradient estimator original for
detection of small changes associated with earthquake
ruptures. The phase gradient approach is able to reveal
small motions that are localized to nearby cracks or faults
next to the main rupture [1]. Fig.1 shows the basic theory
why taking a phase gradient will help the detection of
small changes. The top plot shows the simulated
deformation from an earthquake rupture in unwrapped
and wrapped forms at C-band. Without further help, the
small crack at -5km away from the fault will not be
identified. The middle plot shows after taking the gradient,
the motion from this crack shows up nicely. Despite the
effectiveness in detecting small changes, taking the phase
gradient will magnify noise, making this technique
inapplicable in cases of loss of coherence. Usually, this
can be addressed with stacking multiple acquisitions
together thus the noise level is reduced. The bottom plot

of Fig.1 gives an example how stacking could help reduce
the noise in the phase gradient measurement.

T T T T T
05t - unwrapped | |

O SO S U S S S SOV SUT SV SU0 S U S S S S S AR A
N _‘\

30 20 S0 0 10 20 30
Distance along fault (km)

Deformation (m)

x1072

1

05+

0

e v
05¢

Phase-Gradient (m/pixel)

-30 20 0 o 10 20 30
Distance along fault (km)

§ 2 Pre + 5 After |

Fig. 1 Phase gradient approach

With this approach, we were able to reveal hundreds of
small fractures next to the rupture region of the 2019
Ridgecrest earthquakes (Fig.2 top) [2-3]. We wused
kinematic slip model derived from ALOS-2 and Sentinel-
1 InSAR measurements, ALOS-2 Multi-Aperture
Interferometry, GNSS and optical offset estimates, to
calculate the stress and strain release from this earthquake
and found that the nearby faults with backward motion are
consistent with compliant fault deformation, while the
faults with forward motion are likely frictional slip [2].
These findings indicate the release of shallow strain may
be much more distributed than scientists have believed.
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Note the very straight lines are burst discontinuities
caused by azimuthal motion from the earthquake rupture.

Sentinel-1 Phase Gradient (Azimuth)

Ridgecrest 2019
Sentinel-1

18.5°

18.3° {0

-74.0° -73.8° -73; -735° -73.3° 78 -73.0°

Fig. 2 Phase gradient results from Sentinel-1 for
Ridgecrest earthquake (top) and Haiti Earthquake
(bottom)

We experimented similar analysis over the recent 2021
Haiti earthquake, but the decorrelation from the heavy
vegetation is too strong over the tropical region and even
with stacking, the resulting phase gradient map is filled
with noise. We then built an estimator of phase gradient
for the ALOS-2 Stripmap data over the rupture region,
considering that the L-band data is less subject to
decorrelation noise from vegetation. Despite the strong
noise, the deformation associated with some nearby faults
showed up nicely with just a single pair of interferogram.
The post-seismic creep toward the east is also detected by
this technique. We also tried on the ScanSAR data but the
quality of phase gradient maps is not as great, which
could be due to the narrower range bandwidth of the data.
This result could have been much better if there are more
ALOS-2 Stripmap data acquired over the area. A paper
that discusses these results is lead by a student at UCSD
and is under preparation.

Ionosphere estimator for ALOS-1/ALOS-2

We developed the ionospheric phase estimator in
GMTSAR following several prior publications [4-7]. The
overall idea is to bandpass the radar measurements in the

ranging direction thus the dispersion of the
electromagnetic beam through electron content could be
used as a diagnostic of the volume of electron content
itself [4]. ALOS satellites are acquiring data at L-band,
which is subject to much stronger (wavelength squared)
ionospheric delay than radar at smaller wavelengths. Over
the duration of this proposal, we first implemented the
ionospheric correction for ALOS-1 raw and SLC data and
validated the effectiveness of our approach with prior
publications (Fig.3). Following that, we further
implemented and automated the ionospheric phase
estimation in GMTSAR for ALOS-2 Stripmap and
ScanSAR data (Fig.4) [8]. For both figures, the left
column is the original data, the middle column is the
estimated ionospheric phase and the right plot is the
corrected phase. These implementations will help reduce
the artifacts of radar phase from propagation delay
through the ionosphere and help the deformation analysis.
Eventually we would like to build a time-series similar to
prior studies [9-10] and build a robust strain rate map
combining measurements from Sentinel-1, ALOS-2,
GNSS and the future NISAR data.

e s = e 2 u e or . h“ ey s
Fig. 4 Ionospheric phase estimation for ALOS-2 data
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Multi-Aperture Interferometry Processor

We implemented and automated the multi-aperture
interferometry processor for ALOS-1 and ALOS-2 data
into GMTSAR. The processor band-passes the Single-
Look Complex images in the azimuth direction and forms
double difference interferograms for measurement of
deformation along the track direction. This processor was
used to map the azimuthal motion associated with the
2019 Ridgecrest earthquakes [2]. Adding this information
helped reveal the smaller amplitude of rupture over the
fault junction of the conjugate ruptures. It is noted that
this measurement is subject to very short wavelength
ionospheric perturbations, where the ionosphere gradient
approach [7] may not fully capture the variabilities within
such small scales. It is yet to be explored how such
artifacts could be mitigated.

S

Fig. S MAI intefferograins for the Ridgecrestr
earthquakes

3. CONCLUSIONS AND FUTURE TASKS

We have made a number of ALOS-1/ALOS-2 processing
modules available to the general public through
GMTSAR. These advancements will help in mapping
deformation, detecting changes and mitigating the
artifacts from ionospheric delays. We hope to further
cooperate with JAXA scientists to benchmark some of
these modules and make ALOS-2 and potentially the
furture ALOS-4 data usage more accessible to the radar
interferometry community.
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1. INTRODUCTION

Measurement of surface velocity field due to tectonic
deformation provides an important constraint in
geodynamic models, and a method to improve the
evaluation of earthquake potential. The increase in spatial
and temporal coverage of geodetic images such as those
provided by Interferometric Synthetic Aperture Radar
(INSAR) motivates us to better quantify the evolution of
tectonic deformation and strain accumulation associated
with crustal faulting.

The Chuandian block is located in southwestern corner of
the Tibetan Plateau, and is one of the most seismically
active areas in China. The Lijiang—Xiaojinhe Fault is a
major transverse fault that divides the Chuandian block
into southeastern and northwestern parts. Formation of the
Lijiang-Xiaojinhe Fault may be due to other tectonic
processes which have nothing to do with the slip
transferring between the Xianshuihe and the Xiaojiang
faults. The internal faults in the Chuandian block often
control formation of Quaternary sedimentary basins and
lakes. Large to medium size earthquakes frequently occur
on those internal faults, and especially the Lijiang—
Xiaojinhe Fault is the largest one among them. The fault
itself consists of two discrete segments: the northeast
trending Lijiang Fault and the north—south trending
Xiaojinhe Fault. Trenches on the Lijiang Fault indicate
three paleo-earthquakes in the Holocene at 7940-7210 a
BP, 4740-4050 a BP and 1830-1540 a BP, respectively.
Large earthquakes appear to fit the quasi-periodic model
with the recurrence interval of ~3000yr and the estimated
magnitude 7.5 [1]. On the western part of Lijiang Fault,
the geological studies indicate that its quaternary left slip
rate is 2.4-4.5mm/yr with small shortening rate of
0.6mm/a. Unfortunately, they did not report left-slip
feature along the Xiaojinhe Fault [2-3]. The modern left-
slip rate derived from GPS is no more than 3 mm/yr, and
there also exist shortening [4-5]. These above studies
reveal that the Lijiang-Xiaojinhe fault play an important
role in the crustal deformation of the Sichuan-Yunnan
region and it has the potential for generating big
earthquake.

In this study, we want to know: how is the slip distributed
locally along each segment of the Lijiang—Xiaojinhe Fault
currently? What is its current strain accumulation rate, and

how does individual segments interact with each other?
Sparse GPS and geological data are not detailed enough to
fully answer these questions. INSAR provides spatially
dense maps of surface deformation at the kilometre scale
over length scales of 100s of km, which benefit the
achievement of our goal. With the launching of ALOS-2
satellite, L-band PALSAR-2 onboard provide us a good
opportunity to carry out tectonic deformation observation
with fine resolution in those heavily vegetated area like
the Lijiang—Xiaojinhe Fault, the geographical focus of my
proposal.

We seek to use PALSAR and PALSAR-2 data acquired
between 2006 and 2021 to map an overall picture of the
deformation velocity and strain fields across the whole
Lijiang—Xiaojinhe Fault zone, which provide detailed
constraints both on the slip rate of each segment and on
the temporal and spatial evolution of the strain
accumulation over the period the data spanned, examining
the behavior of the fault movement, and looking for
changes in the rates of movement on them. Our results
will make significant contributions to the general
understanding of how the active Lijiang—Xiaojinhe Fault
accommodate the tectonic strain, and the interaction
between its sub-parts, as well as providing critical first-
order data for the assessment and mitigation of seismic
hazard within this tectonically active area.

2. TECTONIC SETTING

The Lijiang-Xiaojinhe fault zone is an NE trending active
tectonic belt within the Sichuan-Yunnan rhombic block,
with a total length of 360km. The Sichuan-Yunnan
rhombic block is obliquely cut into two secondary
blocks : the Northwest Sichuan and central Yunnan
subblocks. It is a reverse sinistral strike slip active fault
with a high angle dipping to NW [6]. Many earthquakes
with magnitude > 6 occurred in this area in history, and
the largest earthquake was the M7.5 Lijiang earthquake in
1996. The largest earthquake occurred on the Xiaojinhe
fault was the M6 Yanyuan-Ninglang earthquake in 1976
[7] (Figure 1).

Many studies presented evidences that this fault system is
still active. Shen et al. [4] gave a left-lateral strike slipping
rate of 3mm/yr for the Lijiang-Xiaojinhe fault by
analyzing the GPS data. Taking the GPS velocity field as
the constraint, Wang Yanzhao et al. [8] inverted for the
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present-day segmented slip rate of the fault by using the
least square method. The northeastern segment is a left-
lateral strike-slip fault, with a small strike slip rate of 0.8 &+
1.5 mm/yr and a tensional rate of 2.4 1.7 mm/yr; The
middle segment is mainly left-lateral strike-slip, with a
rate of 5.4 £ 1.2 mm/yr; The southwestern segment is
dominated by compressing and thrust faulting, with a rate
of 2.3 £1.8 mm/yr. In addition, the vertical components
of leveling and GPS observation show that there are
obvious differences in the vertical movement of the crust
on both sides of the Lijiang-Xiaojinhe fault zone [9-10].
There exists a 50km seismic gap between the 1976 M6
and M6.7 Yanyuan-Ninglang earthquake rupture zone
(Figure 1). In terms of the tectonic scale, fault activity
and seismic activity, it is considered that the tectonic
setting of the Lijiang-xiaojinhe fault zone is complex with
strong tectonic activity.

Fig. 1 Tectonic map of main active faults in Sichuan-
Yunnan region. Fault traces are superimposed on
SRTM DEM, blue dots indicate the seismicity (M>4)
in history from USGS. The Global Centroid Moment
Tensor (GCMT) focal mechanisms of the 1978 Mw 6.5
and 1996 Mw 7.0 Lijiang earthquakes are shown in
red. T40D refers to the descending ALOS/PALSAR
track is marked by cyan rectangle box, red lines
indicate the Lijiang-xiaojinhe fault, active faults are
shown in grey lines. JSRF: Jinshajiang Fault.

3. INSAR VELOCITY FROM ALOS-2 DATA

3.1 SAR data

The descending ALOS-2/PALSAR-2 ScanSAR data
(350km>350km, track number: 40) from Japan Aerospace
Exploration Agency (JAXA) was used to extract the
deformation signal with time span from September 2014
to September 2019. The footprint is about 350km>350km,
covering an area from 98E to 102E (as shown in Figure 1).
A total number of 30 SAR acquisitions were used to form
interferometric pairs (as shown in Figure 2).

In order to save data processing time and reducing
unwrapping error, we choose to process only the three
sub-strips on the right of the ScanSAR data that

completely cover the fault deformation zone. To construct
a redundant small-baseline network, a vertical orbit
baseline threshold of 300m and a time baseline threshold
of 2 years were used to generate 221 interferometric pairs.
The interferometrc baseline network connects all SAR
images to ensure the redundancy of the network. Due to
the complex terrain, heavy vegetation coverage and more
rainfall in Sichuan-Yunnan region, it is hard to maintain
the coherence of interferograms in mountainous areas.
Therefore, to avoid the impact of low coherence on the
subsequent time series analysis, 41 long-time baseline (>
3.5 years) interference pairs with high coherence were
chosen to form the final network, which connect as many
images as possible (Figure 2). The first and the second
acquisitions are excluded because of low coherence of the
interferograms including them. The interferometric
processing of SAR images were implemented by using the
Gamma software [11], with 2 and 10 looks for multi-
looking in range and azimuth respectively to improve the
calculation efficiency and reduce the noise.
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Fig. 2 Perpendicular and temporal baseline network
plot on descending track T40D. The dates listed on the
left are SAR acquisitions corresponding to the labeled
blue circles, the red circles mark the master images,
coherence color bar listed on the right. The lines
present the interferometric pairs coloured according
to the coherence. The solid lines are selected
interferograms with best coherence, and dashed lines
are dropped interferograms.

3.2 Error correction

A numerical weather model GACOS (A Generic
Atmospheric Correction Online Service for INSAR) was
used to correct atmospheric errors in interferograms in this
study. It is proved that GACOS is useful in correcting the
topography-dependent  atmospheric  effect.  Before
atmospheric correction, we need to remove the orbital
error. Considering strong coupling between the long
wavelength tectonic signal and orbital ramp, we need to
define a "far field" to estimate the orbit phase [12], in
which the phase gradient caused by tectonic activity is
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small. A quadratic polynomial is used to fit the orbital
ramp using only phase measurements 30 km or further
from the fault on both side to avoid the effect of the near-
fault gradient in ground deformation. It is worth noting
that the long wavelength component ionospheric phase
delay is also removed in orbital correction. Then the
distribution map of vertical stratified atmospheric delay
error in the study area is reconstructed by using the
GACOS data to correct the topography-dependent
atmospheric error in interferograms. From figure 3, we
can see that the topography-dependent atmospheric signal
in interferograms is estimated effectively, and the
interferogram after atmospheric correction is significantly
improved. In acmospheric correction, we found that

atmospheric phase in this area shows seasonal fluctuations.

Interferograms whose master and slave image was
acquired in the different season show much more serious
stratified effect than those with the master and slave image
from the same season. Therefore, we prefer to choose
interferometric pairs in the same season when selecting
interferograms for time-series analysis.

Atmospheric Atmospheric

Original Orb errors Orb corrected delay corrected

B B

=

4 J |
| e !

100 102 100 102 100 102

Fig. 3 Two examples of INSAR phase error correction
for interferograms (20150407-20160405, 20150630-
20190625). (a,f) Original unwrapped interferograms;
(b,g) Estimates of quadratic orbital ramp errors; (c,h)
Interferograms following orbital error correction; (d,i)
Topography-dependent atmospheric delay derived
from GACOS; (e.)) Atmospheric-corrected
Interferograms. The black boxes in (a,f) are defined as
“far-field” and are used to construct quadratic model
in orbital correction.

3.3 InSAR ratemap and time-series deformation maps

Based on the interferometric network constructed above,
the baseline construction problem discussed above, a least
square method is used to solve for time series estimates of
global and nonlinear deformation. Due only one
interferometric network dataset used sets under baseline
control, there is no matrix rank deficiency. We use Giant
software to invert for the average deformation rate and
cumulative changes in time of the Lijiang-xiaojinhe fault

zone in the observation period. Through the least square
method, the LOS observation value and its corresponding
start and end dates in each interferogram are used to
retrieve the incremental displacement relative to the
reference time (the first image). The obtained velocity
field of Lijiang-xiaojinhe fault zone is shown in Figure 4
(a), and the time series is shown in Figure 5.
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Fig.4 Mean LOS ratemap for track 40, produced from
GAOCS corrected interferograms. Cold color
(negative range change) is toward satellite, warm color
(positive range change) corresponds to movement
away from satellite. Profile AA’, BB’ and CC’
correspond to figure b, ¢, d respectively.

4. INVERSION OF THE SLIP RATE AND
LOCKING DEPTH

Based on the interseismic deformation field of Lijiang-
Xiaojinhe fault zone we extracted above, the current fault
activity for each segment of the fault could be evaluated
by analyzing InSAR results. As shown in Figure 4 (a), we
extracted the cross-fault profile in the northeastern section,
middle section and southwestern section of Lijiang-
Xiaojinhe fault, and inverted for the slip rate and locking
depth for each section by using arctan screw dislocation
model [13]. The results are shown in Table 1. As the "far
field* away from the fault is contaminated by the
atmospheric signal, the cross-fault profile we extracted are
within the "near field". We can see that the ratemap and
cross-fault profiles (Figure 4) show an obvious tectonic
signal near the Xiaojinhe fault zone. Compared with the
northeastern section with a small locking depth (3.7km), a
big locking depth (12.4 and 15.8km was derived from
cross-fault profile inversion for the middle and
southwestern section respectively, which is consistency
with GPS results [6]. We suggested there is a strong
locking area in the central and southern section of the
Xiaojinhe fault, which indicates that these two fault
segments has an earthquake potential with the strain
accumulating. In the northeastern section, the locking
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degree is shallower with a higher slip rate, which means it
might be the existence of shallow creep.
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Fig.5 InSAR time series of the Lijiang-Xiaojinhe fault
based on SBAS method. Line of sight (LOS)
cumulative displacements are referenced to the first
acquisition, 7 April 2015. Negative range change is
toward satellite. Black line in the last snapshot
indicates the location of profile shown in Figure 6.
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Table 1 the slip rate and locking depth of three
sections of the Lijiang-Xiaojinhe Fault

Profile | Fault Slip rate Locking depth
ID segment (mm/a) (km)
AA® Notheastern 424 37
section
pp: | Middle 3.41 12.4
section
cc Sou'_[hwestern 306 15.8
section

Figure 5 shows the time evolution of the LOS cumulative
displacement maps on 28 acquisition dates. In the time
series, we can see that the deformation evolution basically
presents a linear accumulation, and the near-field
displacement in the middle section of the Xiaojinhe fault
reaches ~ 20mm (Figure 6).
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Fig.6 The cross-fault profiles of line of sight
cumulative displacement across the middle of

Xiaojinhe fault.

5. CONCLUSION

INSAR is an effective means to measure high-precision
deformation of earth’s surface. The InSAR timeseries
technology has been applied widely in monitoring trivial
surface deformation and predicting geological disasters.
30 ALOS-2 ScanSAR images were processed to extract
INSAR interseismic deformation field of the Lijiang-
Xiaojinhe fault. GACOS was used to correct atmospheric
error in interferograms. The profiles across the fault show
a left-lateral strike slip movement on the fault which is
coincidence with geological observation. The results from
inverting the cross-fault profiles show the locking depth is
deeper in middle and south segment, while it is shallower
in north part with a high slip rate, which means it might be
the existence of shallow creep.
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1. INTRODUCTION

In this report, we firstly measured the coseismic
surface displacements caused by the 2018 Palu earthquake
using the InSAR data from both the ALOS-2 ascending
and descending tracks. We then jointly used the sub-pixel
correlation results of SAR and Sentinel-2 optical images
to invert the 3D coseismic surface deformation field.
Subsequently, we constrained the fault geometry and
estimated the fault-slip distribution jointly using the SAR
offsets in the near field and the InSAR LOS
displacements in the far field.

Then we use the InSAR, multiple aperture InSAR
(MAI) and pixel offset-tracking (POT) measurements
from Sentinel-1 and ALOS-2 SAR data to obtain the
coseismic displacement fields caused by the two largest
earthquakes during the 2019 Ridgecrest sequence. We
build a joint-event model constrained by four SAR image
offsets and four InSAR LOS displacements that
temporally covers both earthquakes. We use the joint-
event model to simultaneously estimate the cumulative
coseismic slip distribution of both events.

We also map the surface deformation of the southern
Junggar Basin, China, using TS-InNSAR method. To
conduct comprehensive monitoring of regional-scale
ground subsidence in JSOAA, we collected a total of
1116 SAR images covering the whole region of JSOAA
from 2007 to 2020, including ALOS-1/PALSAR data of
13 ascending tracks and 29 frames (2007 - 2010) and
Sentinel-1 data of 4 ascending tracks and 2 descending
tracks (2015 - 2020). Among them, the ascending ALOS-
1/PALSAR and ascending Sentinel-1 data achieved full
coverage of JSOAA. Due to the short time coverage, the
descending Sentinel-1 data in the western part of JSOAA
is not processed. The coverage of all InSAR data used in
this study is shown in Fig. 1.

L, — i
—— Lakes & Rivers ! L T

Fig. 1. Study area and InSAR data cover. The yellow
line delineates the boundary of JSOAA. The green,
blue, and red boxes show the coverage of the ALOS-
1/PALSAR, ascending Sentinel-1, and descending
Sentinel-1 data, respectively. The light blue lines mark
the main surface runoff distribution around JSOAA.

2. ALOS/ALOS2 PALSAR DATA AND
PROCESSING

2.1 Coseismic deformation measurement

The ALOS PALSAR platform provides data that are
playing an important role in earthquake deformation and
surface subsidence caused by agricultural irrigation. The
SAR data are used in this project to create interferograms
of coseismic deformation following the various
earthquakes we researched. In addition to the data from
this project, we also use lots of data from our S1A/B from
ESA. The ALOS/PALSAR SAR data are processed from
raw products with the conventional two-pass differential
interferometry approach using the GAMMA software
package. During the SAR data processing, all the FBD
(Fine Beam Double Polarization) PALSAR data are
oversampled to the resolution of the FBS (Fine Beam
Single Polarization) mode. The 30m SRTM (DEM) is
used to remove the phase component contributed by the
topography. We apply a multi-look operation before
phase unwrapping. We use the minimum cost flow
algorithm (MCF) to unwrap each of the interferograms. In
order to illustrate the finer structure of the displacement
field and for ease of comparison, we rewrap the LOS
displacement from both the PALSAR and SI1A/B
displacement products with the same fringe cycle of 11.8

653



cm. In order to obtain accurate coseismic deformation
associated with the earthquake, the potential spurious
phase contributions, e.g. topographic error phase, the
ionosphere disturbance and atmosphere delays, and orbital
errors need to be considered and mitigated. In some great
earthquakes, coseismic deformation distortions related to
ionosphere disturbance also need be considered. From the
error analysis above, we conclude that the discontinuities
are mainly due to orbital ramps although incidence angle
variation can be potentially another reason.

2.2 TS-InSAR measurement for agricultural
irrigation in the Junggar Basin

In this study, the L-band ALOS1/PALSAR data
would be used to obtain the deformation information of
the Junggar Basin from 2006 to 2011, and the data are
processed by differential interference with GAMMA
software. The image needs to be registered before the
interference processing, and the registration accuracy
between the two scene images is better than 0.1 pixels.
The terrain phase in the interferogram is removed using
the l-arcsecond (~30m) Shuttle Radar Topography
Mission (SRTM) data provided by United States
Geological Survey (USGS). Since the ALOS1/PALSAR
and orbital information of the L-band are not accurate
enough, there is still obvious orbital residual phase in the
differential interferogram after removing the flat phase
and the terrain phase. In this project, a modified Goldstein
filter would be used to reduce noise phases. In order to
avoid or weaken the effect of low coherence regions (sea
and isolated islands, etc.) on phase unwrapping, a mask
with a coherence of less than 0.4 is masked. Finally, we
used Phase unwrapping with Minimum Cost Flow (MCF)
algorithm to unwrap pixel. In order to obtain more
accurate deformation information, it is necessary to
remove noise signals such as orbital errors, atmospheric
delays, and the like. For orbital errors, the unwrapped
phase can be removed by polynomial fitting.

The phase of each pixel in the interferogram can be

expressed as:

8¢;(x,m) = (g, x,7) — Bty x,7) ¥ T Ad +
T 4 Mg + By,

A rzinf
(1)

Ad

where :ﬁ'qb}- (x,7) is the phase of the interferogram,=** is

the cumulative deformation along line of sight (LOS)

between the two moments of the same pixel point, Az i

the residue DEM error, Adyem is the atmospheric delay
A .

phase, ™i is the phase noise. In order to find the low-

frequency deformation component and the elevation

residual, the equation (1) is transformed into a matrix
form:
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where v is the deformation rate. By solving the equation
(2) by the least squares method, the average deformation
rate and the elevation residual of each pixel point can be
obtained, and the shape obtained at this time is a low-
frequency deformation component. The obtained low-
frequency deformation phase and elevation residual phase
are removed from the original interferogram, then the
high-frequency deformation phase, atmospheric phase and
noise remain in the original interferogram, and then the
singular value decomposition method is used in the
interferogram. The residual phase is assigned to each
scene image.

The SAR image in study area is seriously disturbed
by the atmosphere, so atmospheric effects must be
removed. The atmospheric phase is a low frequency
signal in space and a high frequency signal in time. The
noise is a high frequency signal in both time and space.
Therefore, according to the temporal and spatial
characteristics of the atmospheric phase and noise, the
image of each scene is spatially low-pass filtered and
high-pass filtered in time to remove atmospheric errors
and noise. Then, the high-frequency deformation
sequence is solved for the interferogram containing only
the high-frequency deformation phase, and the final time
deformation sequence can be obtained by adding the low
frequency deformation back to the interferogram.

3. RESULTS

2018 Mw 7.5 Palu earthquake: For the 2018 Palu
earthquake, we used the ascending Stripmap mode and the
descending ScanSAR mode ALOS-2 images to map the
coseismic deformation fields of this earthquake. These
SAR images provide sufficient coverage of the entire
rupture zone. There are also some C-band Sentinel-1 data
in this area, but the L-band ALOS-2 data have obvious
advantage in this case. We processed the ALOS-2 data
using the GAMMA software (Werner et al., 2001). To
increase the signal-to-noise ratio (SNR), both the
ascending and descending interferograms were multi-
looked to a ground resolution of about 80 m. The 90 m
SRTM DEM was used to correct the topographic phase
component. The interferograms were filtered by an
improved Goldstein filter (Li et al., 2008). The
polynomial fitting model was applied to mitigate the long
wavelength orbital errors and the atmospheric delay
associated with the ground topography. Finally, the
interferograms were geocoded to the geographic WGS-84
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coordinate system. The ascending and descending
coseismic interferograms of the 2018 Palu earthquake are
shown in Fig. 2.

o1gs,

0365

o054

i ey o o

TR s Sl
20 km

120100, 12030,

H948E  120'00E N94SE 12000

Fig. 2. Coseismic deformation fields of the 2018 Mw7.5
Palu earthquake derived from the ALOS-2 phase data.

For the 2018 Palu earthquake, the InSAR coseismic
deformations near fault ruptures were not well observed
due to the decorrelation caused by the great deformation
gradient and the rugged terrain. We thus calculated the
range and azimuth offsets for ascending and descending
image pairs using the SAR pixel offset-tracking technique
(Strozzi et al., 2002) (Fig. 3). Although the image offsets
are much noisier than conventional InSAR observations,
they can provide unambiguous range and azimuth
displacements parallel and perpendicular to the LOS
displacements, and can improve the near-field
displacement measurement. We estimated the offset fields
using almost square search patches of 50 x 100 pixels
(range x azimuth) for the ALOS-2 Stripmap images
(about 300 m x 300 m window size) and of 30 x 140
pixels for the ALOS-2 ScanSAR images (about 400 x 400
m window size). To maintain a pixel spacing of around 50
m for the two datasets, the offsets were estimated for
every 5 pixels in range and 10 pixels in azimuth for the
ALOS-2 Stripmap images, and for every 6 pixels in range
and 28 pixels in azimuth for the ALOS-2 ScanSAR
images.
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Fig. 3. ALOS-2 ascending (a) azimuth and (b) range
offsets, ALOS-2 descending (¢) azimuth and (d) range
offsets, Sentinel-2 (e) north-south and (f) east-west
components of the surface displacement of the 2018
Palu earthquake.

For the 2018 Palu earthquake, we obtained the multi-
sight coseismic surface deformation fields of the 2018
Mw 7.5 Palu earthquake using InSAR, SAR and optical
sub-pixel correlation technologies. These datasets provide
valuable constraints for the fault geometry and fault slip
on the Palu-Koro fault. we utilized the rectangular
dislocation (Okada, 1992) in a homogeneous elastic half-
space domain to simulate the coseismic displacements of
the mainshock. The fast non-negative constrained least
squares algorithm (Bro and Jong, 1997) was employed to
solve for the strike-slip and dip-slip components on each
fault segment (Fig. 4). The second-order Laplace
smoothing constraint was used to minimize the abrupt
variation of slip among the adjacent sub-fault patches (J6
nsson et al., 2002). We utilized a three-segment fault
model with variable strike angles and found that a newly
discovered fault lies in the north of Palu city, and extends
northward ~ 60 km. The best-fitting fault model fits the
InSAR LOS displacements and SAR offsets well.
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Fig. 4. (a) Total slip, (b) strike- and (c) dip-slip
distributions of the 2018 Palu earthquake estimated
from the joint inversion of InSAR and SAR datasets.

2019 Ridgecrest earthquake sequences: For the 2019
Ridgecrest earthquake sequence, we coregistrated two

single look complex images with the assistance of DEM.
A multi-looking operation of 30%8 and 6x32 (range X
azimuth) was applied for Sentinel-1 and ALOS-2
interferograms, respectively. After minimizing the
decorrelation noise with an improved Goldstein filter, the
minimum cost flow method (Chen & Zebker, 2002) was
used to unwrap interferometric phase by masking the
areas with coherence value smaller than 0.4. The
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ascending and descending coseismic interferograms of the
2019 Ridgecrest earthquake sequence are shown in Fig. 5.

For the 2019 Ridgecrest earthquake sequence, the
POT and MAI methods have lower accuracy than the
DInSAR method, but they can extract the deformation
along the AT direction, which is crucial for interpreting
geophysical phenomenon with large surface displacement
such as earthquakes, glaciers, or volcanic movements. To
measure the ground deformation by the POT method, the
matching window size of 300x60 pixels and 40x185
pixels (rangexazimuth) was utilized for Sentinel-1 and
ALOS-2 data, respectively. The MAI procedure was
applied to both the ALOS-2 and Sentinel-1 data, but only
the azimuth result of the former was selected, because the
latter has lower coherence. The sub-aperture
interferograms were generated on the framework of the
DInSAR process (Liang & Fielding, 2017). These two
sub-aperture interferograms were then differenced to
generate the azimuth deformation related phase maps,
which would be further filtered to generate the final AT
deformation. A directional filter was applied to the
ascending ALOS-2 MAI interferogram to mitigate the
influence of ionospheric disturbs. The POT and MAI
measurements have similar spatial resolution with the
DInSAR ones (Fig. 5).
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Fig. 5. Coseismic displacement fields of the 2019
Ridgecrest earthquake sequence obtained from the
space-based geodetic data. (a) and (b) are the
ascending and descending coseismic interferograms
from Sentinel-1 images, respectively. (¢) and (d) are
the cumulative ascending and descending coseismic
interferograms from ALOS-2 images, respectively. (e)
and (f) show the cumulative ascending and descending
coseismic POT range offsets from Sentinel-1 images,
respectively. (g) and (h) are the cumulative ascending
and descending coseismic MAI azimuth offsets from
ALOS-2 images, respectively. (i-) E-W, N-S and
vertical components of the 3-D cumulative surface
displacement as well as the horizontal offset vectors,
respectively.

For the 2019 Ridgecrest earthquake sequence, we
used the geodetic data, including four InSAR
interferograms and four SAR image offsets, to estimate
the coseismic slip distribution on the fault segments F1-
F3 (Fig. 6). The geodetic moment on segment F2
determined by the joint-event inversion is 8.86x1018
NUm (Mw 6.60), almost 39% larger than that determined
by the single inversion of the mainshock (5.40x1018
Nim; Mw 6.46), because a part of slip component
between zones A and B of segment F1 is mapped into
zone E during the joint-event inversion, leading to a slip
amplitude of ~4 m in zone E in the joint-event slip model,
almost twice that (~2 m) in the single slip model of the
mainshock.
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Fig. 6. Top view of the coseismic slip distributions of
the 2019 Ridgecrest earthquake sequence. (a) and (b)
show the single-event coseismic fault slip distributions
induced by the mainshock and the foreshock,
respectively. (¢c) and (e) show the joint-event and the
combined-data coseismic fault slip distributions
induced by the two events, respectively. (d) and (f)
represent the slip component on segment F3 in (c) and
(e), respectively. The two single-event slip models
shown in (a) and (b) are inverted from the Planet-Lab
optical and GPS datasets. The joint-event slip model
shown in (c¢) is inverted from four SAR offsets and
four InSAR LOS displacements. The combined-data
slip model shown in (e) is inverted from all the used
data.

Surface subsidence of the southern Junggar basin:
Using all the ALOS-1/PALSAR and Sentinel-1 data

covering JSOAA, we obtained the regional-scale ground
displacements along the LOS direction in JSOAA during
2007 - 2010 (Fig. 7(a)) and 2015 - 2020 (7(b-c)). As the
results show, there are multiple settlement funnels in
JSOAA. Compared with the corresponding optical images,
the subsidence funnels (Fig.7 in closed dotted line) are
consistent with the agricultural planting area in spatial
scope and is positively correlated with the planting area
and planting intensity, while negatively correlated with
the distribution density of surface runoff. That is, the
settlement funnels are more significant in areas with high
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planting intensity and insufficient surface water supply.
The comparison between the ground subsidence from
2007 to 2010 and that from 2015 to 2020 shows that the
spatial distribution range and magnitude of settlement
funnels are expended and intensified. Many settlement
funnels in the eastern part of JSOAA, where there was no
settlement previously.

There were two independent settlement funnels
distributed in this profile during 2007 - 2010. During
2015 - 2020, these two settlement funnels gradually
expanded and approached, and merged into a large
settlement funnel. The maximum accumulative settlement
reached about 400 mm from 2007 to 2010, and about 500
mm from 2015 to 2020. The subsidence rate of the main
subsidence area of the section remains unchanged.

Due to the low temporal resolution (=46 days) of
ALOS-1/PALSAR data, the periodicity of ground
deformation is not well represented during 2007 - 2010.
However, Sentinel-1 data with higher temporal resolution
(=12 days) can capture the periodic signals of ground
deformation well. The subsidence occurred between
March and September each year, and the deceleration of
subsidence and uplift occurred from October to February.
This is consistent with the exploitation and recharge of
groundwater caused by seasonal agricultural irrigation in
JSOAA. The results confirm the advantages and potential
of Sentinel-1 data in monitoring regional-scale periodic
ground deformation caused by groundwater extraction.
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Fig.7 The mean displacement velocity along the LOS
direction derived from (a) the ALOS-1/PALSAR
ascending data, (b) Sentinel-1 ascending data, and (c)
Sentinel-1 descending data. The closed black dotted
lines delineate the main deformation zones. The black
rectangle identifies the range of the regions selected
for accurate verification of the results. The yellow line

shows the scope of JSOAA. The light blue lines
indicate the spatial distribution of surface runoff.
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1. INTRODUCTION

Purpose of our project is further development and
application of methods for studying and monitoring of
active geodynamic processes in the Kuril-Kamchatka
subduction zone (KKSZ). This area is very difficult for
application of SAR technologies, but investigation and
monitoring of geodynamic processes leading to major
earthquakes, eruptions and tsunamis is an important issue
for Society. Catastrophic earthquakes and tsunamis in
KKZS can lead to loss of human lives and economic
infrastructure in all countries of the pacific coast. Large
volcanic eruptions disrupt domestic and international air-
traffic for long time-periods.

Reason for addressing the problem is that in 2018 a new
joint laboratory in Schmidt Institute of physics of the
Earth Russian academy of sciences was created in
cooperation with the Kamchatka Institute of VVolcanology
and Seismology and some other Institutions. The scientific
leader of the project is Nikolay Shapiro, head of
laboratory is PI of this project prof. Valentin Mikhailov.
The laboratory is aimed at extension of surface seismic
and geodetic networks, collection and processing of big
volume of information for studying volcanic and seismic
processes, development of new technologies for joint
analysis and interpretation of terrestrial and satellite
geophysical data and their application for studying the
geodynamics of subduction zones of the Russian Far East.
Because of limited budget of the laboratory, we planned to
restrict our study mostly by Sentinel 1AB images,
whenever ALOS images are often more efficient for
DINSAR and PSINSAR studies of natural terrains in
specific conditions of KKZS. Our research proposal
supported by JAXA helped us considerably extending our
study using both Sentinel and ALOS images, performing
comparative application of different technologies of SAR
data processing and interpretation.

The main research areas of the project are closely linked
to activity of the created laboratory. Content of Research
includes:

(1) Development of innovative methods for processing of
SAR data efficient in specific conditions of KKZS.

(2) Application of SAR interferometry for studying and
monitoring of volcanic and seismic events. For it, new
surface data will be used as ground control for validation
of SAR results and for joint inversion of surface and
satellite data.

(3) Scientific and educational activities, including training
of graduate students and organization of scientific field
schools for students of Russian universities.

Innovative part of the project is in joint analysis and
interpretation of SAR with big volume of data which now
is collecting for the KKZS by new laboratory.

Let us consider the main results obtained in the
frameworks of the EO-RA2 ER2A2N075 project.

2. AJOINT STUDY OF SEISMICITY AND SAR
INTERFEROMETRY OBSERVATIONS FOR
ASSESSING THE POSSIBILITY OF AN ERUPTION
OF THE DORMANT BOLSHAYA UDINA
VOLCANO

Seismicity began to be recorded in October 2017 around
the dormant Bolshaya Udina Volcano (B. Udina in what
follows) situated 10 km southeast of Plosky Tolbachik
Volcano. Seismic tomography showed the existence of a
long-lived magma chamber south of B. Udina in the area
of the Tolud River. The chamber has its top at a depth of
about 15 km, and may probably be connected to the
Plosky Tolbachik plumbing system. Some authors related
the observed resumption of seismic activity to a
hypothetical emplacement of magma beneath the B. Udina
volcanoes, pointing out a high likelihood of the
resumption of volcanic activity.

In our study we examined data from permanent seismic
stations showing a systematic displacement of the center
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of seismic energy southward from B. Udina from October
2017 through August 2019. The center characterizes the
location of the volume that generates the bulk of
seismicity. We used images of the Sentinel-1A satellite
(wavelength 5.6 cm) taken from a descending orbit of
track 60 during the period from June 7, 2017 through
September 23, 2017 (10 images) and during the period
from May 21, 2018 to September 30, 2018 (12 images) to
determine time series and average velocities of
displacement on the slopes of B. Udina. Persistent
scatterers were only identified at the foot of B. Udina
(Fig.1). An analysis of displacement time series for the
surface of the volcano showed that the character of
displacements in 2017 and 2018 on the southwestern and
eastern slopes remained nearly the same, while the
average rate of displacement on the northwestern slope
decreased in 2018 [1]. We used three images of the
ALOS-2 PALSAR-2 satellite (wavelength 23.5 cm) taken
on October 4, 2016, June 13, 2016, and October 2, 2018
from an ascending orbit to construct interferograms, which
characterize displacements for the time period between
images. The displacements on both interferograms did not
exceed a few centimeters, except for narrow zones
confined to local relief forms (Fig.2). The deformations
thus detected were most likely due to surface processes.
The deformed volumes related to pressure changes in the
magma chamber at a depth of 5 km must have linear
dimensions of 10-15 km, while the displacement areas
detected in the satellite images are considerably smaller.
These results suggested an alternative model that
postulates the resumption of seismic activity to
accompany the retreat and sinking of magma melt from B.
Udina into the chamber in the Tolud River area as
identified by tomographic techniques.

Hence we can conclude that, beginning mid-2016, no
evidence for emplacement of magma material from the
Tolud chamber lying in the middle and lower crust
northward toward B. Udina was detected. The important
fact to remember is that ground deformation did occur
based on SAR data before eruptions of Kizimen,
Kamchatka, PI. Tolbachik (TFE-50), and Bezymianny.
The presence of a hydraulic connection between the Tolud
River area and the area of fissure eruptions on Plosky
Tolbachik is also corroborated by the fact both in 1975
and in 2012, a few days after massive lava flows began to
be discharged, large earthquakes were occurring in the
Tolud River area. The hydraulic connection described
above makes B. Udina an unlikely location for the next
eruption, because in that case magma would have to find a
way upward through cooled, consolidated, and higher-
lying (relative to Tolbachik Dol) rocks in the edifice of
this dormant volcano. The results derived in the present
study in combination with the previously observed facts
suggest the inference that the dormant B. Udina volcano is
an unlikely site for a new eruption.

Results were published in the paper submitted to
“Volcanology and Seimology” Journal of Russian

Academy of Sciences (indexed in Web-of-Science and
Scopus) entitled “Joint study of seismicity and SAR
interferometry data for evaluating a possible eruption of a
non-active volcano Big Udina” authors S. Senyukov, V.
Mikhailov et al. [1].
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Fig. 1. The positions of persistent scatterers on the B.
Udina slopes: survey period from June 7, 2017 to
September 23, 2017 (a); survey period from May 21,
2018 to September 30, 2018 (b). The topographic
background was based on an image at Google Earth.
The color scale in the upper left corner represents
average displacement rates between +70 and -70
mm/yr. The blue persistent scatterers were displaced
away from the satellite. The flight direction and the
line of sight are shown by arrows in the upper right
corner.
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Fig. 2. Displacements in map view (meters) derived
from paired interferograms based on ALOS-2
PALSAR-2 images for the periods from October 4,
2016 to June 13, 2017 (a) and from June 13, 2017 to
October 2, 2018 (b). The red contours enclose areas
with low (<0.35) coherence where displacement could
not be determined with reliability. Negative values
denote displacements from satellite, positive ones
toward satellite.

3. ON THE CONNECTION BETWEEN THE 2008-
2009 ACTIVATION OF THE KORYAKSKII
VOLCANO AND DEEP MAGMATIC PROCESSES

The Koryakskii stratovolcano is located in the southern
part of the Kamchatka Peninsula. It is the largest volcano
in the Avachinskii—-Koryakskii group of volcanoes
(AKGV) located in the immediate vicinity of
Petropavlovsk-Kamchatskii, the largest city of the
peninsula. Studying the volcanic and seismic processes
taking place in the AKGV region, the periods and causes
of their activation, and eruption forecasting are critically
important for people living in this most densely populated
part of the peninsula.

The last activation of the Koryakskii volcano in 2008—
2009 was accompanied by intense fumarolic and seismic
activity. Volcanic activity peaked in March—April 2009
when ash plume rose to a height of 5.5 km and extended
laterally over more than 600 km. To understand the
dynamics of the volcanic processes and to forecast the
further course of the events, it is relevant to establish

whether the eruption was associated with a rise of magma
to beneath the volcanic edifice or caused by fracturing of
the volcano’s basement and penetration of groundwater
into a high temperature zone.

Based on the analysis of the images from the Japanese
satellite ALOS-1 using satellite radar interferometry
methods, the slope displacements of the Koryakskii
volcano during its last activation have been estimated for
the first time [2].

For the activation period of the Koryakskii volcano, we
found seven ALOS-1 satellite images in the database of
the Japan Aerospace Exploration Agency (JAXA). One
image was rejected because of a long baseline and low
coherence. The images map the ground surface as of June
21, 2006; August 16, 2007; May 18, 2008; October 6,
2009; May24, 2010; August 24, 2010, and October 9,
2010.

For the selected AKVG region, we calculated
interferograms for different image pairs. The best results
were from the image pair August 16, 2007 and October 6,
2009 the interval between which covers the entire eruption
period. An important fact is that on the days of the survey,
substantial territory of the slopes was free of snow cover.
The interferograms were calculated using the SARscape
software with pixel averaging perpendicular to the orbit so
that the resolution cell was as large as 14.98 x 12.29 m.
Phase filtering was carried out by the Goldstein method.
The interferometric coherence of the image pair is high
for natural terrains (0.6). As the displacements are
determined from the phase shift of the signals reflected
from the same scatterer during the repeated imaging, the
displacements on the interferogram are expressed in
radians and wrapped modulo 2z. The absolute phase is
determined by unwrapping, i.e., adding the number of full
periods (2m multiples) corresponding to the path-length
difference. To unwrap phase, we used minimum cost flow
algorithm. After passing from radar coordinates to
geographic coordinates, we constructed a map of
displacements in m.

The displacements are determined in the line-of-sight
direction. Their values on a selected area range from —33
(from the satellite) to 22 cm (towards the satellite).
Assuming that displacements mainly occur in the vertical
direction, then, with an average incidence angle of the
satellite beam of 38.69°, the displacements in the
directions towards the satellite should be multiplied by
1.28.

Areas of negative displacements are spotted on the slopes
of all volcanoes on the image and can be primarily
associated with erosion. Within the image there is only
one area of the uplifts on the northwestern slope of the
Koryakskii volcano around the 2008— 2009 eruption zone.
The displacements increase from 9-15 cm at the foot to
20-22 cm towards to summit. Assuming that the
displacements are purely vertical, we obtain that the
displacements at the summit are above 28 cm.
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We stress that the positive displacements on the
northwestern slope of the Koryakskii volcano can barely
be associated with the increase in the thickness of snow
cover and glaciers in the vicinity of the summit or with the
formation of a layer of ash deposits. According to the field
data, the ashes, as a rule, had insignificant thickness and
occurred as separate patches on the snow even at a small
distance from the eruptive center. The cited work reports
ash deposits with a thickness of a few cm. This is also
clearly visible in many photo images presented on the
Internet and in the articles. Moreover, it reported on
melting of glaciers and on the formation of deep troughs
in them due to the reduction of reflectivity of ice. These
processes should have caused a surface to subside.
Therefore, volcano surface uplifts with the amplitude up
to 25 cm cannot be attributed to the formation of the ash
layer.

The persistent ash emissions throughout the 2008— 2009
eruption and the analysis of seismicity indicate that
magma could approach close to the volcano’s surface. The
total volume of the uplifts on the northwestern slope of the
volcano (Fig. 3) is 1.3 x 10° m®. In the Okada model of an
dilating fault, this value is approximately equal to the
volume of the opened space. This is very close to the
estimate obtained by Gordeev and Droznin for the volume
of magma (10° m®) required whose cooling can provide
the observed steam emission and to the value of opening
of a fissure with a volume of 1.2 x 10® m® in the model.
This indicates that the uplifts of the volcano slope just as
the other observed processes are most likely to be
associated with the intrusion of magma material.

Fig. 3 Displacements (color scale in m) obtained
from paired interferogram based on images of August
16, 2007 and October 6, 2009. Negative and positive
values are displacements in the direction away from
and towards the satellite. Shadow relief is based on
SRTM DEM. Vertical scale is terrain elevations in m,
horizontal scale is coordinates in degrees.

To interpret the displacement field we used the solution of
Okada about surface deformation of an elastic half-space
due to the displacement along a rectangular fault located

in it. In the general case, the displacement vector includes
three components: tensile (TS) reflecting extension, dip-
slip (DS) component describing the up-dip or down-dip
displacement along the fault plane, and a strike-slip (SS)
component corresponding to the displacement along the
strike. Application of this solution in our case is
challenging because the solution is obtained for the
displacements along a crack located in an elastic half-
space with a horizontal free surface. Within the
displacement region shown in Fig. 4, the terrain elevations
vary from 1300 to 3450 m; therefore, the neglect of the
real topography can lead to errors. To mitigate the terrain
effect, we converted the displacement map into the local
Cartesian coordinates and approximated the relief in the
region with LOS above 10 cm by a plane. Then, the
coordinate system was rotated around the Oz axis by an
angle of 43.03° (the rotation direction is shown by red
arrow in Fig. 4a) so that to make the Ox axis parallel to
the projection of the approximating plane gradient vector
onto the xQOy plane (Fig. 4b). Within the displacement
map, the heights of the approximating plane vary within
2.15 km and terrain elevations relative to this plane (Fig.
4b) range from —220 to 220 m.
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Fig. 4. Displacements in the direction towards satellite
(color scale, m) on western and northwestern slope of
Koryakskii volcano: (@) map in geographic
coordinates, height in m. Red arrow is direction of
rotation around Oz axis; (b) map in local Cartesian
coordinates after subtraction of plane approximating
local relief and rotation around the Oz axis. Isolines
show height above approximating plane in m.
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Next, the coordinate system was rotated by an angle of
27.3° around the Oy-axis so that the Oz-axis was
perpendicular to the approximating plane. In the new
coordinates, the plane approximating the relief coincides
with the free surface of the elastic half-space and the
deviations of the residual relief (Fig. 4b) prove to be small
compared to a fracture depth. Now, as a distance from the
fracture to the ground surface, in formulas of Okada we
can either use the very distance to the approximating plane
or to add to this distance the height of the local
topography above this plane. Calculations have shown
that with the heights of the local relief in the study region,
this does not cause a significant change in the solution.
After solving the inverse problem, the displacement field
on the surface of the model is rotated back to the local
coordinate system (Fig. 4b), and LOS displacement is
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calculated using the flight path azimuth and the incidence
angle of radar beam (for ALOS-1 ascending track,—8.16°
and 38.69°, respectively).

In the solution of Okada, a fracture is approximated by a
rectangular element or a set of elements. We only
considered a single rectangular element which ensures
numerical stability of the inverse problem. A rectangular
element is characterized by ten parameters. These are the
three coordinates of the center of the lower edge of the
rectangle; its dip and strike dimensions; the dip and strike
angles; and the three components of the displacement
vector (TS, DS, and SS). The displacement field on the
surface is a linear function of the three components of the
displacement vector; the dependence on the other
parameters is nonlinear.

The size of the displacement region and the
characteristic distance from the maximum to the half-
maximum of the displacement field on the ground depend
on the fracture depth and size. We selected the parameters
of the rectangle based on the analysis results of seismic
event distribution. The lower edge of the rectangular
element was located at a depth of 0.5 km above sea level
as suggested by the dimensions of the displacement
region. The dip and strike dimensions were assumed to be
2.4 and 1.0 km, respectively. The dip angle was varied
within 45-80°. The coordinates of the lower edge and the
strike of the rectangle can be easily selected by shifting
the maps of the calculated and measured displacement
field relative to each other. We set the displacements
along the fissure strike to be zero (SS = 0) and determined
two  components—extension  (TS) and  dip-slip
displacement (DS)-by solving a system of linear
equations.

The best fit of the LOS displacement field is achieved
with the fissure dip angles in the interval from 45 and 60°
(Fig. 5). In all models, the normal dip-slip displacement
component is a few cm, i.e., zero within the accuracy. The
extension at the dip angles 45°, 60° and 80° is 82, 71, and
64 cm, respectively. Thus, the volume of the injected
material is 2.0 x 10° 1.7 x 10°% and 1.5 x 10° m®
respectively, which is consistent with the above data of
other authors. The model with one rectangular fracture
fairly well approximates the real displacement field;
therefore, in our opinion, it was unreasonable to
complicate the model.
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Fig. 5. Model of fissure in volcanic structure of
Koryakskii volcano. Displacements in the LOS
direction are shown by color (meters), isolines are the
calculated LOS displacements in m: (a), (b), (c) models

with dip angle 45°, 60°, and 80°. Red rectangle is
projection of fissure on horizontal plane.

Hence we can conclude that:

1. The surface displacements of the Koryakskii volcano
estimated by SAR interferometry are larger than 25 cm
and cannot be explained by the ash layer formed during
the eruption of 2008-2009. Slope processes and glacier
melting should have produce displacements of the
opposite sign. Therefore, as the most likely cause of the
observed displacements, we should recognize the injection
of magmatic material into the volcano structure. This is
also suggested by the analysis of seismic catalogs and the
results of thermal imaging studies.

2. A fissure model with a bottom edge at a depth of 0.5
km above sea level, a width of 1.0 km along the strike and
2.4 km along the dip, and a dip angle from 45° to 60°
fairly well fits the displacements identified by SAR
interferometry. Fissure volume is consistent with the
estimates of other authors. We note that the depth of the
fissure can be increased by 1 km with the corresponding
reduction of its geometrical dimensions.

3. The obtained results support the hypothesis that the
activation of the Koryakskii volcano was associated with
the ascent of volcanic material and its injection, inter alia,
into the volcanic structure of the volcano itself. Therefore,
the processes taking place beneath the volcano can be
threatening to the nearby localities and infrastructure and
require continuous monitoring.

4. OTHER AREAS UNDER STUDY

1. Monitoring of Mutnovsky volcano situated close to the
Petropavlovsk-Kamchatsky city and in the neighborhood
of the largest hydrothermal power plant. Using the
available ALOS-2 images (06/03/2017, 06/02/2018,
06/01/2019), paired interferograms and displacement
maps for different time intervals were calculated. On the
map of displacements based on images from 06/02/2018-
06/01/2019 various changes are visible on the sides of the
crater of Mutnovsky volcano, including subsidence on its
western slope and inside the crater with amplitude from 4
to 8 cm. Since March-May 2018 a new lake within the
crater of the volcano was formed. Active fumaroles were
observed at this time on the sloped of the volcano, so this
minor subsidence can highly likely be associated with
snowmelt and/or glacier retreat.

2. Using ALOS-2 images from 2018- 2021 years, we are
studying an intense volcanic activity on the Shiveluch
volcano. This activity is increasing since 2018. Using the
obtained displacements, we study the properties of the
pyroclastic flow deposited after the powerful eruption on
August 29, 2019 using thermo-mechanical model of its
subsidence. From 2020 to 2021 years, the displacement
amounted to -25 centimeters.

3. Using ALOS-2 images from 09 descending
(2016/05/02, 2017/03/06, 2017/05/01) and 108 ascending
(2016/07/30, 2017/07/29) tracks we are studying the
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South Ozernoe earthquake that occurred on March 29,
2017 in the western part of the Bering Sea, the magnitude
of the event was Mw = 6.6. In this study, the DINSAR
technology was used. The ENVI SARscape and SNAP
software packages with the built-in SNAPHU plugin were
employed for the calculations. All possible pairs of
ALOS-2 images covering the studied seismic event were
analyzed.  Additionally =~ we  calculated  paired
interferograms for Sentinel-1A images (since May 2016
till September 2017, 22 images all together) and
compared the results. The interpretation of the obtained
results is a non-trivial task. In the area under consideration
at this time of the year, usually there is a thick snow cover,
not necessarily dry. With the availability of geodesic data,
it will be possible to build a model of the fault surface and
conclude whether registered LOS displacements show
displacements of the earth's surface or they dealt with
displacements of the snow/ice cover.
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[1] Senyukov, S.L., Mikhailov, VV.O., Nuzhdina, I.N. et al.
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the Dormant Bolshaya Udina Volcano. J. Volcanolog.
Seismol. 14, 305-317 (2020).

[2] Mikhailov V., Volkova M., Timoshkina E., Shapiro N.,
Smirnov V., 2021 On the Connection between the
2008-2009 Activation of the Koryakskii Volcano and Deep
Magmatic Processes. Izv., Phys. Solid Earth 57(6),
819-824.
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1. INTRODUCTION

Long-term multi-dimensional time series deformation
monitoring is crucial for generating early warnings for
active landslides and mitigating geohazards. Various
advanced interferometric synthetic aperture radar (INSAR)
methods have been widely applied to detect and monitor
small-gradient landslide deformation. However, the
INSAR observations were just limited to LOS ascending
or descending direction, which could hardly reveal correct
deformation characteristics when the landslide showed
multi-dimensional deformation. Thus, a refined small
baseline subsets (SBAS) method and multidimensional
small baseline subset (MSBAS) InSAR technique were
applied to characterize the landslide kinematics with
multi-track synthetic aperture radar (SAR) images.
Moreover, measuring the steep-gradient landslide
deformation has posed certain challenges. An improved
cross-platform SAR offset tracking method was proposed,
which can not only estimate high-precision landslide
deformation in two and three dimensions but also
calculate long-term time series deformation over a decade
using cross-platform SAR offset tracking measurements.

2. METHODS

2.1 Small Baseline Subsets (SBAS) INSAR

Due to the limited interferometric datasets from the ALOS
PALSAR-2 satellite, the small baseline subsets (SBAS)
INSAR technique [1] was applied to retrieve the landslide
deformation. To obtain the DEM error and time series
deformation, a refined SBAS-InSAR method was applied
in our study, which divides the interferograms into high-
and low-quality sets and estimates the parameters
iteratively [2]. In general, a minimum cost flow (MCF)
method with the aid of coherence is adopted to unwrap the
interferogram [3]. However, the continuous motion of the
Three Bears landslide makes it troublesome to produce
effective long-duration (>70 days) interferograms.
Therefore, a deformation model constructed from a stack
of correctly-unwrapped short-duration interferograms was
introduced and then subtracted from the original
interferograms. Thus, we could maintain coherence and
minimize the phase unwrapping error. After the residual
interferometric phase was filtered and unwrapped, the
subtracted deformation derived from the deformation
model was added back into the residual unwrapped
interferogram. This technique works well because it
prevents the phase gradient of adjacent pixels exceeding &t
radian (5.9 cm for ALOS PALSAR-2). We carefully

compared the new unwrapped interferograms with the
original wrapped interferograms to ensure that no artifacts
were introduced in this processing. Once the
interferograms were successfully unwrapped, the time
series deformation was retrieved by using either the least
squares (LS) or a singular value decomposition (SVD)
method.

2.2 Two-dimensional time series deformation inversion
with multi-track SAR datasets

The SAR data from each independent track were
processed using the above-mentioned SBAS method, so
the InSAR observations were limited to LOS ascending or
descending direction. The availability of ascending and
descending ALOS PALSAR-2 measurements in the Three
Bears landslide provides us with an opportunity to extend
the displacement vectors to 2-D or 3-D [4]. Therefore, the
east-west and vertical deformation components were
simultaneously inverted by using a multidimensional small
baseline subset (MSBAS) InSAR technique [5] by using
multi-track synthetic aperture radar (SAR) images.

2.3 Multi-dimensional long-term time series inversion
with improved cross-platform SAR offset tracking
method

The proposed procedure focuses on the three
shortcomings of traditional SAR offset tracking methods
in the time series deformation mapping of slow-velocity
landslides, especially in complex areas, such as rugged
mountain areas, steep terrains, and non-homogenous
targets. For the first solution, the ortho-rectification of the
SAR images was added to remove topographic relief
effects and achieve accurate co-registration of SAR
images from identical and cross platforms. Second,
adaptively varying windows were introduced into the
cross-correlation computation to avoid the bias caused by
non-homogenous samples in two image patches, thus
improving the accuracy of the azimuth and slant-range
offset measurements, particularly for offset pairs with
longer spatial baselines. Third, high-quality offset pairs
were optimally selected to design the network of
deformation inversion based on the measurement
uncertainties and the theory of optimization and design of
geodetic networks. Fourth, the mathematical equation of
two-dimensional (2D) deformation rates and time series
inversion was established using the designed network, into
which the M-estimator was introduced to restrain the
outliers caused by low correlation. Next, the three
dimensional (3D) deformation inversion based on the
surface-parallel flow model [6] and the estimated 2D
deformation were followed. The TLS algorithm was
applied to estimate the 3D deformation rates and time
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series, given that random errors exist not only in the
observations but also in the coefficient matrix (caused by
inaccurate DEM).

3. DEFORMATION MONITORING OF THREE
BEARS LANDSLIDE IN NORTHERN CALIFORNIA

The spatiotemporal deformation variations of the Three
Bears landslide in northern California have not been
systematically monitored and interpreted. In this study, we
applied advanced time-series INSAR analysis methods to
characterize the kinematics of the landslide covering two
periods (2007-2011 and 2015-2017) with multi-track
synthetic aperture radar images acquired from L-band
ALOS PALSAR-1/2 satellites.

The annual LOS deformation rates derived from each
independent SAR datasets are shown in Fig.1. It is worth
noting that the positive values indicate the landslide
motion toward the satellite sensor while the negative
values represent the landslide motion away from the
satellite sensor. As seen on the deformation maps, the
large displacement mainly occurs in the eastern part of the
Cedar Grove Ranch Earthflow, which is consistent with
the active landslide identified by Zhao et al. [7].
Furthermore, the average ascending LOS deformation
rates were almost similar to those of the descending LOS
velocities during the period of 2015-2017, but the signs
were the opposite, indicating that the landslide moved
toward the satellite sensor in the descending tracks, but
away from the sensor in the ascending tracks (Fig. 1c-f).
These observations also suggest that the landslide
displacements must be dominated by the horizontal
motions. We can also see that the Three Bears landslide
underwent strong movement with the deformation rate
exceeding 300 mm/yr from 2007 to 2011, but the motions
decreased to around 250 mm/yr from 2015 to 2017.
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Fig. 1 Average LOS deformation rate maps of the
Three Bears landslide calculated with L-band SAR
datasets (unit: mm/yr). The figures in the first and
second row show the results derived from ascending
datasets: (a) P223 of ALOS PALSAR-1 (data period:
2007-2011), (b) P224 of ALOS PALSAR-1(data period:
2007-2011), (c) P68 of ALOS PALSAR-2 (data period:
2015-2017), and (d) P69 of ALOS PALSAR-2 (data
period: 2014-2017). The figures in the third row show
the results derived from descending datasets: (e) P170
of ALOS PALSAR-2 (data period: 2015-2017) and (f)
P171 of ALOS PALSAR-2 (data period: 2015-2017).

Combining the results shown in Fig. 1c-f with the slope
and aspect information derived from DEM data, it can be
deduced that the Three Bears landslide primarily moved
eastward horizontally. Since both ascending and
descending ALOS PALSAR-2 data had the same time
span from 2015 to 2017, we derived the east-west and
vertical deformation components by using eight (six from
P68 and two from P69) ascending interferograms and
eighteen (fourteen from P170 and four from P171)
descending interferograms. The two-dimensional time-
series deformations of the active landslide are presented in
Fig. 2 and Fig. 3, respectively. It can be seen that there
was a continuous eastward movement of the landslide and
obvious uneven deformation patterns were also visible
during the whole monitoring period. The maximum
cumulative east-west deformation from March 2015 to
November 2017 could reach up to 1400 mm in Zone 1,
but just 500 mm in Zone 2, and less than 300 mm in Zone
3. However, a different pattern and trend was seen in the
cumulative vertical deformation. It can be seen from Fig.
3: (1) that the landslide in Zone 1 experienced continuous
subsiding deformation during the whole period with a
maximum cumulative displacement up to -500 mm; (2)
The landslide in Zone 2 presented a relatively small
movement before February 2017 with an average
deformation rate of -20.4 mm/yr, but moved quickly after
February 2017 with an average deformation rate of -44.1
mm/yr, where the maximum vertical displacement
amounted to -200 mm; and (3) The landslide in Zone 3
showed less vertical movement than the other two zones
with a maximum vertical displacement just up to -100 mm
during the period of March 2015 to November 2017.
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Fig. 2 Cumulative east-west deformation from March
7 2015 to November 11 2017 inverted by using
ascending and descending ALOS PALSAR-2 satellite
datasets. It is worth noting that the positive values
indicate eastward movement while the negative values
represent westward movement.

05030

Fig. 3 Cumulative vertical deformation from March 7
2015 to November 11 2017 inverted by using ascending
and descending ALOS PALSAR-2 satellite datasets.

4. LANDSLIDE DETECTION IN LINZHI, THE
QINGHAI-TIBETAN PLATEAU OF CHINA USING
LONG-WAVELENGTH ALOS PALSAR-2 SAR
OBSERVATIONS

The Qinghai-Tibetan is a highland with the highest
elevation and most complex geological setting in the
world. Linzhi is located in the southeast of the Qinghai-
Tibetan Plateau of China. For the purpose of disaster
management and prevention, we used ALOS PALSAR-2
SAR images based on InNSAR method to detect and map

active landslides in the study area. The deformation rate
map between 2016 and 2019 are shown in Fig. 4, where
the positive values (blue color) indicate the motion toward
the satellite, and the negative values (red color) indicate
the motion away from the satellite. We can see that most
regions of the study area are quite stable, and two
concentrated areas of landslides were detected (see the red
rectangles in Fig. 4), which are located in the northeast
and southwest of the study area. The deformation rate of
the two concentrated areas are highlighted in Fig. 5, we
can see that a host of small-scale landslides were observed,
which were driven by glacier movements and glacier
avalanches. The results suggest that long-wavelength SAR
images have unique advantages for detecting landslides in
dense vegetation cover areas. However, serious
decorrelation occurred in large glacier-covered areas duo
to the large-gradient deformation, thus casing the phase
measurements of SAR images failure. Therefore, we will
apply the offset-tracking method based on SAR amplitude
information to measure large-gradient deformation in
future work.

Fig. 4 The deformation rate map of Linzhi, China
between 2016 and 2019 calculated with ALOS
PALSAR-2 images.
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Fig. 5 Enlarged deformation rate maps of regions A (a)
and B (b) marked in Fig. 4.

5. MULTI-DIMENSIONAL AND LONG-TERM
TIME SERIES MONITORING OF THE
LAOJINGBIAN LANDSLIDE, WUDONGDE
RESERVOIR AREA (CHINA)

Using the cross-platform ALOS PALSAR-1 and ALOS
PALSAR-2 images, we retrieved the long-term 2D
deformation rates and time series of the Laojingbian
landslide from August 2007 to May 2020. Then, we
estimated the long-term 3D deformation rates and time
series by using the 2D displacements and external DEM.
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Fig. 6 shows the 2D annual deformation rates of the
Laojingbian landslide during different periods. In Fig. 6(a),
(c), and (e), the blue colors indicate that the pixels are
moving along the flight direction of the satellites, while
the blue colors in Fig. 6(b), (d), and (f) indicate that the
landslide is moving away from the satellites. Furthermore,
the landslide movements were simultaneously measured in
both the azimuth and slant-range directions, suggesting
that the Laojingbian landslide has 3D movement
characteristics. The maximum deformation rates in the
azimuth direction from August 2007 to March 2011, from
September 2014 to May 2020, and from August 2007 to
May 2020 were -0.9, -1.5 and -1.0 mm/year, respectively,
and the corresponding deformation rates in the slant-range
direction were -1.6, -2.6 and -1.7 m/year. The results
suggest that the landslide movement in the slant-range
direction is approximately 1.7 times that in the azimuth
direction. The average slope aspect derived from DEM
indicates that the Laojingbian landslide is oriented toward
the east, which is nearly perpendicular to the flight
directions (approximately —10< from the north) of the
ALOS PALSAR-1 and ALOS PALSAR-2 sensors. Thus,
the observed landslide displacement mainly occurred in
the slant-range direction. Moreover, the 2D deformation
rates of the landslide increased with time, suggesting that
the landslide may have been in the accelerated
displacement stage during the observational period of the
ALOS PALSAR-2 images.

_________________

_______

Fig. 6 2D long-term deformation rates in the azimuth
and slant-range directions of the Laojingbian landslide
retrieved with the ALOS PALSAR-1 and ALOS
PALSAR-2 images. The white dashed lines indicate the
unstable region. (a) and (b) are the deformation rates
in the azimuth and slant-range directions, respectively,
retrieved from the ALOS PALSAR-1 images between

August 2007 and March 2011; (c) and (d) are the
deformation rates in the azimuth and slant-range
directions, respectively, retrieved from the ALOS
PALSAR-2 images between September 2014 and May
2020; and (e) and (f) are the deformation rates in the
azimuth and slant-range directions, respectively,
retrieved from the cross-platform ALOS PALSAR-1
and ALOS PALSAR-2 images between August 2007
and May 2020.

On the basis of the estimated 2D displacements, the 3D
long-term deformation rates and time series of the
Laojingbian landslide were retrieved. Fig. 7 shows the 3D
deformation rates in the north-south (N-S), east-west (E-
W), and up-down (U-D) directions of the Laojingbian
landslide from August 2007 to May 2020. The 3D
deformation time series for P1-P6 are presented in Fig. 8.
Negative values (blue) in the N-S deformation maps
indicate northward landslide movement, negative values
(blue) in the E-W deformation maps indicate eastward
landslide movement, and negative values (blue colors) in
the U-D deformation maps indicate downward landslide
movement. As shown in Fig. 7 and Fig. 8, the 3D
displacement fields clearly revealed the fine-scale
spatiotemporal characteristics of the Laojingbian landslide,
which can lead to a better understanding of the movement
and failure mechanism of the slope in depth. The N-S
deformation rates shown in Fig. 7(a), (d), and (g) highlight
the landslide with both northern movement and southern
movement, with the maximum deformation rates of -0.6, -
0.9 and -0.6 m/year from August 2007 to March 2011,
from September 2014 to May 2020, and from August
2007 to May 2020, respectively. The E-W deformation
rates shown in Fig. 7(b), (e), and (h) suggest the eastward
movement of the landslide, with maximum deformation
rates of -2.5, -4.3 and -2.8 m/year from August 2007 to
March 2011, from September 2014 to May 2020, and
from August 2007 to May 2020, respectively. The U-D
deformation rates presented in Fig. 7(c), (f), and (i)
indicate only downward movement of the landslide, with
deformation rates of -0.7, -1.2 and -0.8 m/year from
August 2007 to March 2011, from September 2014 to
May 2020, and from August 2007 to May 2020,
respectively. The results revealed that the displacement in
the E-W direction was much larger than those in the N-S
and U-D directions, suggesting that the landslide
movement was dominated by the E-W displacement.
Similar to the 2D displacements, the displacements in the
three directions increased with time, and the boundary of
the active part of the landslide was clearly mapped by the
3D displacements.
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Fig. 7 Estimated 3D deformation rates in the north-
south (N-S), east-west (E-W) and up-down (U-D)
directions of the Laojingbian landslide. The white
dashed lines indicate the unstable region. (a)-(c) are
the deformation rates in the N-S, E-W and U-D
directions, respectively, calculated with the ALOS
PALSAR-1 images from August 2007 to March 2011;
(d)-(f) are the deformation rates in the N-S, E-W and
U-D directions, respectively, calculated with the ALOS
PALSAR-2 images from September 2014 to May 2020;
and (g)-(i) are the deformation rates in the N-S, E-W
and U-D directions, respectively, calculated with the
cross-platform ALOS PALSAR-1 and ALOS
PALSAR-2 images from August 2007 to May 2020.
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Fig. 8 Estimated 3D deformation time series of the
Laojingbian landslide for P1-P6 from August 2007 to
May 2020, retrieved with cross-platform ALOS
PALSAR-1 and ALOS PALSAR-2 images.
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Abstract: Synthetic aperture radar interferometry (InSAR) is widely applied in ground subsidence monitoring. In
this report, with ALOS PALSAR-2 data, we presented the first multi-temporal InSAR analysis of high-speed railway
deformation located in the Beijing-Tianjin-Hebei region. 47 ALOS PALSAR-2 images were processed to extract the time
series deformation results. The deformation trend along the high-speed railways located in the Beijing-Tianjin-Hebei region
is analyzed. We also analyzed the subsidence centers along Beijing-Shanghai and Beijing-Tianjin intercity high-speed
railways, respectively. These results show high potential for high speed railway subsidence monitoring with ALOS-2 data
and the research provides a reference for further deformation monitoring along high-speed railway in the Beijing-Tianjin-

Hebei region.

Keywords: ALOS PALSAR-2 data, InSAR, high-speed railway, deformation monitoring

1. INTRODUCTION
Land subsidence is one of the most serious geological
hazards in the world. Three major regions affected by most
serious land subsidence in China include the Yangtze River
Delta, the North China Plain, and the Fence-Weihe basins
[1]. The Beijing-Tianjin-Hebei region is located in North
China Plain. The possible reasons of the serious land
subsidence over these areas are the geological conditions,
the soft clay coverage and the increasing underground
water demand. Two main important high-speed railways
are located in these areas and they are Beijing-Shanghai
and Beijing-Tianjin intercity high-speed railways. The
deformation along high-speed railways cause will bring
risk on life security and economic loss.
Traditional monitoring methods include leveling, bedrock
markers, stratified tables, and GLOBAL Positioning
System (GPS) measurements [2]. Synthetic aperture radar
interferometry (InSAR) makes it possible to monitor land
subsidence accurately over a wide range and with short
interval. The inherent limitations of InSAR were avoided
by Multi-temporal InSAR (MT-INSAR) methods
including permanent scatterers [3-4]. It can accurately
extract the surface deformation information through multi-
temporal InSAR data by looking for point-target scatter.
Berardino et al.[6] proposed a small baseline method and
it searched for distributed scatters [7]. More recently,
methods have been proposed by exploring both types of
the scatterers [8-10]. The detection of partially coherent
targets has been detected by Quasi-PS (QPS) [11]
technique. These different techniques can be optional
methods for multi-temporal InSAR (MT-InSAR) analysis
when applied to monitor deformation in diverse
applications according to real conditions and restrictions.
One of the main drawback of SAR images is the low
resolution. With the launch of new generation high-
resolution SAR satellites, the level of details visible in
SAR images increased dramatically [12]. ALOS PALSAR-
2 can provide SAR data with global coverage and high
resolution, and it has relatively high temporal and spatial
coherence even in vegetated and forested areas.

To explore the potential ability for monitoring subsidence
along high-speed railway, 47 ALOS PALSAR-2 images
were processed and the results are presented in this report.
The study area is located in Beijing-Tianjin-Hebei region
and the datasets are collected from 2015 to 2021. The
subsidence information was extracted by MT-InSAR
method. Combined with the historical information of the
study area, the subsidence centers along these two high-
speed railways were analyzed. All of these results will
provide reference for further monitoring planning along
these two high-speed railways in the Beijing-Tianjin-Hebei
region.

2. STUDY AREA AND DATASET
The study area is located in Beijing-Tianjin-Hebei region.
Beijing-Shanghai and Beijing-Tianjin intercity high-speed
railways are across this region. The geographic location of
the study area is illustrated in Figure 1. Two high-speed
railway are highlighted with red and green lines,
respectively.
The study area includes part of Beijing, Tianjin, and Hebei
provinces, and they are located in North China Plain. It is
affected by most serious land subsidence in China. Beijing-
Tianjin  Inter-city railway (from  39.865068°N,
116.376120°E to 39.003333°N, 117.678745°E). The
whole railway track is about 120 km and more than 130
pairs of trains are working along this railway. Beijing-
Shanghai high-speed railway (from 39.750048°N,
116.299992°E to 39.151547°N, 117.075745°E). Beijing-
Shanghai high-speed railway is across Beijing, Tianjin and
Hebei, and several other provinces. The length of the
whole track is 1318 km. The operation lasts 7 years and the
total number of passengers achieved 82,000,000. The
small deformation will cause large economic loss and
threaten the safety of lives.
The available SAR datasets are composed of four frames
of ALOS-2 L-band images. Four frames are 137-790, 137-
780,137-770a, 137-770b, and 137-760, and they are
marked with blue frames. The detail lists of each frame are
listed in Table 1.
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Fig. 1 Study area and PALSAR-2 data. The location of the study area is highlighted with the blue line
on the map of China, which is zoomed and illustrated in the right inset, as shown by the red line and green line.

Tablel The acquisition date of the ALOS PALSAR-2 datasets

Frame 790 Frame 780 Frame 770A Frame 770B Frame 760
No. Date Date Date Date Date

1 20150709 20150205 20150709 20150723 20150709
2 20150917 20150709 20150917 20151001 20150917
3 20151126 20150917 20151126 20151029 20151126
4 20160915 20151126 20160915 20151210 20160915
5 20161124 20160915 20161124 20160721 20161124
6 20170202 20161124 20170202 20160929 20170202
7 20170706 20170202 20170706 20161208 20181025
8 20171109 20170706 20181025 20181108 20190509
9 20181025 20181025 20190509 20190718 -

10 20190509 20190509 20210506 -- -

3. METHODOLOGY
QPS technique was applied to process the ALOS-2

dataset and it was implemented with the software
SARPROZ [13]. For processing the ALOS PALSAR-2

datasets, the processing strategy is designed according to
the spatial-temporal baseline distribution of the datasets,
the number of images in the datasets, and the deformation
situation of the study area. The whole processing can be
divided into two sections and they are InSAR processing
and MT-InSAR processing. We need to set the threshold of
average spatial coherence during multi-baseline
construction. In our processing, we select the threshold as
0.3. It means the baselines are constructed with
triangulation network when the average spatial coherence
is above 0.3. After calculating the atmosphere, the
interference information of the image is used to calculate

the deformation in the subsequent processing. All the QPS
points are connected with a single reference point. The
flow chart is illustrated as Fig. 2.
4. EXPERIMENTAL RESULTS

4.1 The whole subsidence analysis of the study area
According to the above processing, the average
deformation velocity of the Beijing-Tianjin-Hebei region
is extracted. The average deformation map of the whole
study area located in Beijing-Tianjin-Hebei region is
illustrated in Fig. 3(a). The average subsidence velocity
ranges from -155 to 20 mm/a. As Fig. 3(a) shows, the
deformation velocity in the northern region is much faster
than that in the southern region. Several distinct subsiding
centers formed in the northern region, while the
deformation velocity was relatively slow in the southern
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region.

As shown in Fig. 3(b), there are two subsiding areas around
Beijing city. They are located in Tongzhou district and
Langfang city. The maximum subsidence velocity in
Tongzhou district is more than 135 mm/a. The average
subsidence velocity in Langfang city is relatively slower
than that in Tongzhou district and it is about 113 mm/a.
Fig. 3(c) presents the enlarged average deformation map
around Tianijn city. Three subsiding centers are located in
Wugqing, Beichen, and Jinghai districts, respectively. The

Reflectivity map and the

O

maximum subsidence velocity is 152mm/a, and it is
located in Wangqingtuo Town of Beichen district.
Geyucheng town, Yangfengang town, and Tangerli town
are also located in Beichen district affected by serious
subsidence. These areas are newly formed and monitored
settlement centers in suburb of Tianjin. In jinhai district,
Tuanbo town is one of the areas affected by serious
subsidence, and the average subsidence velocity reaches
126mm/a.
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Fig. 2 The flow chart of data processing
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Fig. 3 The average deformation velocity map of the study area located in Beijing-Tianjin-Hebei area. (a)
The whole average deformation map. (b) The enlarged average deformation velocity map around Beijing city. The
two subsidence centers are located in Tongzhou district and Liangfang city. (c) The enlarged average deformation
velocity map around Tianjin city. Three subsidence centers are located in Wuqing, Beichen, and Jinghai districts.
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Fig. 4 The average deformation velocity map of Beijing-Tianjin intercity and Beijing-shanghai high-speed railway
located in Beijing-Tianjin-Hebei Region. The locations of these two high-speed railways are highlighted with black
and blue lines, respectively.

Fig. 5 The partially enlarged average deformation map of Beijing-Tianjin intercity and Beijing-shanghai high-speed
railways. These two high-speed railways are highlighted with the blue and black lines, respectively. (a) The subsiding
centers located in Tongzhou District. (b-d) present the subsiding centers located in Langfang city, Wanggingtuo
and Tuanbo town, respectively.
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4.2 Subsidence analysis along two high-speed railways
Beijing-shanghai and Beijing-Tianjin intercity railway are
two high speed railway across this study area as illustrated
in Fig. 4. These two high-speed railways are highlighted
with the blue and black lines, respectively. Fig. 5 presents
the partially enlarged average deformation velocity map of
these two high-speed railways. Fig. 5(a) shows Beijing-
Tianjin intercity railway is across the edges of the
subsiding center with serious subsidence located in
Tongzhou District. Beijing-Shanghai high-speed railway is
across the subsiding centers located in Beichen, Jinhai
district of Tianjin and Langfang city as illustrated in Fig.
5(b-d). The subsidence rate of these subsiding centers is
more than -100mm/a. The safe operation of the two high-
speed railways is possibly affected by these subsiding
centers.
As shown in Fig. 5(a), the subsiding velocity in Tongzhou
District is from -94 to -45 mm/a. Part of Beijing-Tianjin
intercity railway pass through the edge of this subsidence
center and it is most possibly affected by the subsidence of
this area. The subsidence velocity of other sections along
the railway is not obvious, which is around 20mm/a. Then,
more attention should be paid on these areas with large
spatial difference of deformation velocity.
Beijing-Shanghai high-speed railway is affected by the
serious subsidence located in Langfang city, Wuging,
Beichen and Jinghai Districts in Tianjin. The subsidence
center of Langfang is only 3 km away from the railway.
And the defamation velocity ranges from -86 to -37 mm/a.
The subsidence velocity in Wuging District of Tianjin is
around -107 to -70 mm/a. The maximum subsidence
velocity in Beichen District is -135mm/a and the closest
subsiding center is only 2km away from the railway. In
Jinghai District, the subsidence velocity is from -120 to -
75mm/a, nearly by Hai Industrial Park. The possible
reasons for serious subsidence is due to over-extraction of
groundwater caused by large population density and the
developed industrial parks except for geological conditions
[14-19].
5. CONCLUSION

In this paper, we exploited the potential ability for
monitoring subsidence along high-speed railway with the
use of multi-temporal SAR data from ALOS-2. The results
are presents in Fig. 3, 4 and 5. These results proved that
ALOS PALSAR-2 data has high potential ability for
monitoring subsidence along high-speed railway. The
main subsiding centers along Beijing-Tianjin intercity and
Beijing Shanghai high-speed railways are detected clearly
and they are located in Tongzhou district, Langfang city
and Wuging district, Beichen and Jinghai district,
respectively. ALOS-2 data has longest wavelength and
then it could provide high coherence data even within
nearly one year. That provides us a chance to monitoring
the subsidence within one year with the use of DINSAR
alone. Also, it provides high density coherent targets in
rural area, which couldnot be achieved by other satellites.

The drawbacks of MT-INSAR analysis for monitoring
of subsidence along high-speed railway should be that the
detected PS targets cannot be easily connected with the
actual targets one by one. Moreover, there is a common
case that no PS points can be actually detected on the target
of your interest.
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1. INTRODUCTION

Most ice-rich permafrost landscapes have undergone or
will undergo substantial surface deformation in the
coming century. Such thaw-induced deformation, or
thermokarst, poses a hazard to communities,
infrastructure, and national security in the rapidly
warming Arctic. It also drives shifts in the geomorphic,
hydrological, and biogeochemical functioning of
permafrost landscapes, impacting slope stability, water
resources and the global climate.

Accurate observations of surface deformation and state
variables such as soil moisture are critical for improving
our understanding of the Arctic. Within this project, we
have developed new and refined existing applications of
L-band SAR and INSAR.

This report summarizes our principal achievements and
findings.

2. SURFACE DEFORMATION IN PERMAFROST-
AFFECTED FLUVIAL LANDSCAPES

In regions of continuous permafrost, rivers and their
floodplains are in a complex balance. Surface water can
increase ground temperatures substantially. River water
also promotes permafrost degradation adjacent to the
channel. Floodplains are also prone to permafrost
degradation due to enhanced energy transfer into the soils
during and after a flood, the latter associated with
disruption to the organic layer, sediment deposition and
increased wetness. Equally, however, river floods are
essential to floodplain aggradation following channel
migration. The deposition of fine-grained sediment
promotes increased vegetation cover, soil saturation and
organic matter content. As the active layer thickness
decreases, segregated and wedge ice accumulate over
centuries to millennia. The concomitant increase in
elevation in turn reduces flood frequency and contributes
to ecological succession. Not only does flood-promoted
aggradation of permafrost ground ice shape the
hydrological and ecological functioning of these fluvial
landscapes, but it also makes them sensitive to
disturbance.

A major challenge for predicting permafrost terrain
changes is their inherent variability. The variability is not

restricted to differences between regions or flood events,
as a single flood may induce contrasting patterns in
elevation changes, post-flood subsidence and changes in
vegetation and wetness.

This is due to variability in the drivers and controls of
permafrost terrain changes. Drivers such as water
temperature, shear stress, river ice abrasion and sediment
deposition vary within the flood perimeter. Among the
controls, we emphasize ground ice properties, vegetation
cover and organic layer thickness, as they exert a
fundamental and yet complex influence on the sensitivity
of different geomorphic units to permafrost degradation.
For instance, how does post-flood subsidence vary with
floodplain age? Younger stabilized floodplains host less
perennial ground ice, but the ground ice is also less
protected. These complex interactions highlight the
importance of monitoring permafrost terrain changes on
the landscape scale, and they indicate that even a single
event can further process understanding.

We studied permafrost terrain changes after the 2015
spring flood of the Sagavanirktok River near Deadhorse,
on the Alaskan North Slope. Following extensive aufeis
development, the river flooded various geomorphic units
and 40-year-old infrastructure that had not been flooded
before. The flood damaged infrastructure, most notably
the Dalton highway, and breaches of impounded water led
to localized ice-wedge washout due to thermal erosion.
Conversely, the landscape-scale terrain changes remain
unknown.

The subsidence estimated from ALQOS-2 stripmap
observations from 2015 (midsummer) to 2019 (end of
summer) varied by more than 10 cm across the region
(Fig. 1a). Half of the observations ranged from 0 to 3 cm
(interquartile range). Such low values were found over
most of the study region, irrespective of 2015 flood extent.
Context is provided by the CALM active layer thickness
observations, which varied by as little as 5 cm over this
period. The lowest value was observed in 2018, when the
thawing degree days (TDD) were 20-30% smaller than in
the other years of the 2015-2019 period.

The largest multiannual subsidence of around 15 cm was
observed at the throat of an inactive channel in the north
of the study region that was flooded in 2015. Isolated
hotspots with large subsidence of approximately 10 cm
were observed in the inundated area west of the highway
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and on the abandoned floodplain in the south. Elevated
subsidence estimated generally corresponded to large
standard errors of 2-5 cm (Fig. 1b).

After summer 2016, the satellite observations shown in
Fig. 1c indicate low levels of long-term subsidence.
Between the end of summer 2016 and 2019, respectively,
the estimates are less than 5 cm throughout.

We observed highly variable subsidence, both across and
within geological units. Across units, age (a proxy for ice
content) showed the expected positive association with
subsidence (Fig. 2a). The between-unit differences were
largely due to the tails of the subsidence distributions,
with the largest subsidence in ice-rich inactive and
abandoned floodplains. These results reinforce the notion
that excess ground ice is a necessary but not a sufficient
condition for thaw settlement.

Inundation during the 2015 spring flood was associated
with elevated subsidence in the ice-rich units (Fig. 2). The
association is not necessarily causal. Within a given unit,
the inundated areas differed systematically in their age,
their disturbance history, their drainage conditions, and

thus likely in the profiles of organic matter and ground ice.

These confounding factors could have predisposed them
to increased subsidence in a warm period such as 2015-
2019, even in absence of a large flood. One potential
causal factor is rapid thaw penetration during the flood.
As stated above, soil temperature observations and
thermal calculations suggest it was only a minor factor
where the immediate geomorphic disturbance was limited.

Our work shows the importance of remote sensing for
monitoring the disparate and highly variable terrain
changes in permafrost-affected fluvial lanscapes. These
landscapes are on the cusp of change, raising important
questions about permafrost stability, water resources and
habitat in the coming decades.

We expect the manuscript [1] to be published before the
end of 2022.

3. HILLSLOPE TRANSPORT

Sediment flux and slope instability may be controlled by
force balances within sloping saturated soils, which are
widely thought to be predictable from topographic metrics
(e.g., slope, drainage area). In addition to cohesion
imparted by soil and vegetation, thawing ground ice as
active layers deepen may also control spatial trends in
slope stability. The distribution of ground ice, however, is
poorly constrained and hard to predict. To address
whether slope stability and surface displacements follow
topographic  predictions, we document drivers of
permafrost sediment flux present on a landscape in
western Alaska that range from creep, solifluction lobes,

gullying, and catastrophic hillslope failures ranging in
size from a few meters to tens of meters.

We quantify the timing and rate of surface movements
using a multi-pronged, multi-scalar dataset including
UAV surveys, DGPS, InSAR, and climate data. Despite
clear visual evidence of downslope soil transport of
solifluction lobes, the interannual movement of these
features does not outpace displacement of soil in
topographically smooth areas (horizontal displacement
means: 7 cm/yr for lobes over two years vs 10 cm/yr in
other landscape positions over one year).

Annual displacements are weakly related to slope and
unrelated to drainage area or solar radiation. Timeseries of
INSAR displacements show accelerated movement in late
summer associated with intense rainfall. While mapped
slope failures do cluster at slope-area thresholds, a simple
slope stability model driven with hydraulic conductivities
representative of throughflow in mineral and organic soil
drastically over-predicts the occurrence of slope failures.

This mismatch implies permafrost hillslopes have
unaccounted-for cohesion and/or throughflow pathways,
perhaps modulated by vegetation, which stabilize slopes
against high rainfall. Our results highlight the complexity
of soil transport processes in arctic landscapes and
underline the utility of using a range of synergistic data
collection methods to observe multiple scales of
landscape change.

We have presented preliminary results on this work at the
AGU Fall Meeting [2]. We are currently working on two
separate manuscripts.

4. IMPROVING DISPLACEMENT ESTIMATION

L-band SAR can be strongly affected by ionospheric
Faraday rotation. In contrast to radiometric observables,
the errors in repeat-pass INSAR observations and hence in
deformation analysis are largely unknown.

We conducted a theoretical and data-driven study of
ionospheric Faraday rotation. Even though we were not
able to include ALOS-2 data in the final manuscript due
to space constraints, we report here on the principal
findings, summarized from the abstract of our published

paper [3].

We find that the deformation error may reach 2 mm in the
co-pol channels over a solar cycle. It can exceed 5 mm for
intense solar maxima. The cross-pol channel is more
susceptible to severe errors. We identify the leakage of
polarimetric phase contributions into the interferometric
phase as a dominant error source.

The polarimetric scattering characteristics induce a
systematic  dependence of the Faraday-induced
deformation errors on land cover and topography. Also
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their temporal characteristics, with pronounced seasonal
and quasi-decadal variability, predispose these systematic
errors to be misinterpreted as deformation. While the
relatively small magnitude of 1-2 mm is of limited
concern in many applications, the persistence on semi- to
multi-annual time scales compels attention when long-
term deformation is to be estimated with millimetric
accuracy. Phase errors induced by uncompensated
Faraday rotation constitute a non-negligible source of bias
in interferometric deformation measurements.

5. LAND SURFACE VARIABLES AND PROCESSES

We have pioneered the use of L-band SAR for estimating

shrub biomass and shrub rainfall interception in the Arctic.

The importance of these advances lies in the expansion of
shrubs across tundra regions, which induces complex and
poorly understood changes to the carbon, energy, water,
and nutrient cycles.

Our analyses demonstrate the unexploited potential of L-
band SAR observations from satellites for quantifying the
impact of shrub expansion on Arctic ecosystem processes.
Our most important findings are as follows.

Polarimetric L-band SAR showed strong sensitivity to
shrub biomass and leaf area index across a gradient in
shrub density and stature. SAR captured the high spatial
variability of shrub characteristics on the catchment scale.

Rainfall interception can be modelled by integrating SAR
with meteorological data. We validated our predictions
using in-situ measurements.

With continued shrub expansion, L-band SAR is
projected to become a critical tool for improved
understanding of Arctic ecosystems. It provides critical
constraints on the water, the carbon and energy balances.
Future missions such as ALOS/4 NISAR as well as the
combination with optical remote sensing offer the
potential to greatly enhance shrub mapping and
monitoring in the tundra.

This work has_ been published in Remote Sensing of
Environment [4].
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Disparate terrain changes across the study area
b) 2015-2019 standard error

a) 2015-2019 subsidence )
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Figure 1. a-c) Estimates of post-flood subsidence and its standard error derived from ALOS-2 InSAR; d) late-season
subsidence in 2016 from Sentinel 1; e--f) pre-flood to post-flood changes in greenness and wetness from Landsat-8,
with positive signs corresponding to an increase. The 2015 flood extent is shown in yellow.
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Disparate terrain changes within and across geological units and flood extent
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Figure 2. a) Kernel-density-based distribution of estimated 2015--2019 subsidence for the four dominant geological
units in the focus region, stratified according to whether they were or were not inundated during the 2015 flood. The
vertical line shows the mean.
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1. INTRODUCTION

An earthquake of Mw 5.4 hit the Mirpur region in
Pakistan on 24 September 2019 at 16.02 local time [1]. The
event is a very strong earthquake with a maximum felt
intensity of VII on a Modified Mercalli scale. The event
severely damaged numerous buildings, roads, and bridges.
Damage to the embankments resulted in the flooding of
some villages alongside the canals. The seismic behavior
in the Himalaya and its vicinity is a result of the continental
collision between the Indian and Eurasian tectonic plates.
The tectonic plates are converging at a rate of 4-5 cm/year
with the Indian plate moving beneath the Eurasian plate.
The Himalayan thrust zone mainly comprising of thrust
fault zones such as the Main Central Thrust (MCT), Main
Boundary Thrust (MBT), and the Main Frontal Fault
(MFF) is seismically very active resulting in several
moderate to high magnitude earthquakes every year.

As per USGS, the present Mw 5.4 Mirpur
earthquake is a shallow event occurred at a depth of 11.5
km at 33.078° N, 73.794° E on a fault striking 352°,
dipping 12° with a 164° rake angle [1]. The GCMT
solution is different from the USGS solution, in which the
earthquake happened at a depth of 14.7 km, on a fault
striking 246°, dipping 10° with the epicenter at 32.83° N,
73.85° E. In this study, we use the DINSAR technique to
map the coseismic surface deformation of the 2019 Mirpur
earthquake using ALOS-2 stripmap data. We also derive
source parameters corresponding to the earthquake using
INSAR data.

2. DATA

The Japan Aerospace Exploration Agency’s
(JAXA) ALOS-2 satellite carries an L-band PALSAR
instrument. The sensor acquires data in various modes
(Spotlight, Stripmap and ScanSAR). The L-band ALOS-2

data are downloadable from the JAXA ALOS/ALOS-2
User Interface Gateway (AUIG2). In this study, we used
two ascending pass images acquired on 22-07-2019 and
25-05-2020 to map coseismic surface displacement of the
earthquake. The stripmap data are acquired with a swath
width of 70 km at a spatial resolution of 9.1 x 5.3 m in
range and azimuth respectively.

3. METHODOLOGY

We used the InSAR Scientific Computing
Environment (ISCE) [2] for displacement map generation.
The process starts with coregistration of master and slave
SAR images. We used a 30 m Shuttle Radar Topography
Mission (SRTM) mission digital elevation model (DEM)
for topographic phase removal. The differential
interferogram is then filtered using a Goldstein filter with
a filter strength of 0.8. The interferogram is multilooked by
a factor of 2 x 2 in range and azimuth to reduce the speckle
noise and to improve the signal to noise (SNR) ratio. The
phase is unwrapped using the Statistical Cost, Network
Flow Algorithm for Phase Unwrapping (SNAPHU)
software [3]. The unwrapped phase is geocoded at a 30 m
pixel spacing and converted into line of sight (LOS)
displacement.

The source parameters such as length, width,
depth, dip, strike, strike-slip, dip-slip, location of the
epicenter are necessary to understand the fault responsible
for the earthquake. Here, we invert the INSAR coseismic
interferogram using an elastic dislocation model for a
uniform rectangular fault in an elastic half-space to
determine the causative source parameters. We use the
Steepest Descent Method (SDM) [4] for determining the
geometry of the fault that triggered the earthquake. We
downsample the displacement map to reduce the data
points and improve the computational efficiency during the
inversion.
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4. COSEISMIC DEFORMATION

The coseismic interferograms and displacement
maps shown in Fig 1 indicate two definite lobes of
deformation corresponding to movement towards (+) and
away (-) from the radar. The positive and negative LOS
displacements corresponding to uplift and subsidence
ranging from 20 cm to -14 cm respectively. The uplift is
concentrated in the southwestern side of the MSA
supporting the thrust nature of the causative fault. The
deformed area is approximately 20 sg.km. Several
decorrelated regions and phase discontinuities observed in
the coseismic interferograms are a result of surface
displacement due to shallow fault related folding in the
epicentral region [5], [6].

5. COSEISMIC INVERSION

The optimal source parameters indicate a
rectangular fault of length ~10 km and width ~5 km is
responsible for the earthquake. The data, model and the
residual are shown in Fig 2. Other parameters of the fault
geometry are given in Table 1. The table indicates the
source parameters of the earthquake with a correlation of
0.75 between the INSAR data and the model. The USGS
and the GCMT values of the earthquake are also given for
quick reference and understanding. The epicenter of the
earthquake obtained from the model is close to the USGS
solution. From the inversion result, it is clear that the
earthquake occurred at a shallow depth of approximately 6
km. The causative fault is oriented nearly E-W with a strike
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angle of 279°. The dip and rake of the earthquake are 22.5°
and 92.05° respectively. The depth of about 6 km is in good
agreement with the depth of the Main Himalayan Thrust
(MHT).

Table 1. Source parameters of the earthquake comparing
with USGS and GCMT values.

Parameter USGS | GCMT | Model

Longitude (deg) 73.79 73.85 73.76
Latitude (deg) 33.08 32.83 | 33.09
Length (km) - - 5.00
Width (km) - - 10.00
Depth (km) 11.50 14.70 6.10
Strike (deg) 352.00 | 246.00 | 279.40
Dip (deg) (Mean value) | 12.00 10.00 22.50
Rake (deg) (Mean value) | 164.00 | -- 92.05
Slip (m) (Mean value) -- -- 0.22
Magnitude M54 | Mw5.7 | Mw5.7
Data - Model correlation | -- - 0.75

6. CONCLUSIONS

The present study provides the coseismic
displacement associated with the 2019 Mw 5.4 Mirpur
earthquake. The displacement is spread around 20 sg.km.
which damaged several buildings and infrastructure. The
presence of minor amounts of strike-slip indicates that the
earthquake also resulted in the horizontal motion of the
ground surface. ALOS-2 images cover a larger timespan
resulting in addition of postseismic deformation into the
coseismic displacement. The postseismic deformation may
be of different reasons such as after slip, viscoelastic or
poroelastic relaxation etc. Therefore, the displacement
values derived from ALOS-2 images are slightly greater
compared to C-band results.
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1. INTRODUCTION

As the largest tropical peatland globally, peatland
coverage in Indonesia is estimated about 24.67 million ha.
Within this region, the coverage in Kalimantan and
Sumatra are estimated about 8.4 million ha and 9.6
million ha, respectively. Major problems arise at peatland
area such as deforestation, forest and land fires that
contribute to peatland degradation. Triggered by ENSO,
drought caused the peatland fires causing the release of
oxidized products (CO, CH4, etc.), destructed
environment and severely impacted the community
health®2,

Therefore, effective method to observe the peatland
surface change is necessary for peatland management and
conservation measure to prevent degradation and to
reduce peatland fire incidents. For the observation in
tropical region, SAR image data analysis shows its
effectiveness for wide area monitoring without cloud and
smoke cover. Hence, interferometry SAR can provide the
ground surface deformation with good resolution (in cm)3.
This study applied the interferometry SAR analysis using
PALSAR-2 data during 2015-2021 period for study area
in Central Kalimantan and Riau Province, Indonesia.
Differential of interferometry SAR (DINSAR) analysis
and comparative study with field data are applied to
observe ground surface fluctuation of peatland and the
area before and after peatland fire. This study is done
under collaborative research with JAXA (Pl No.
ER2A2N201) during FY2019-2021. The analysis results
for each application are described.

2. DATA AND METHODS

PALSAR-2 L1.1 datasets mostly in dry season (between
July to October) during 2015-2021 period for study area
in Central Kalimantan and Riau Province were
downloaded from JAXA AUIG2 and G-Portal platform
(Table 1). Pair of PALSAR-2 datasets were processed
using DINSAR method and time series of deformation
processing were computed using the SBAS (Small
BAseline Subset) DINSAR method of GAMMA software.
Optical data, i.e. ASTER, Sentinel-2, Landsat, KLHK’s
Land Cover map4, LAPAN Fire Hotspot map5, and
BMKG’s rain fall data were also observed to gather
information on land cover, smoke cover during peatland
forest fire, hotspot, rain fall, etc. Comparative studies are
done between the derived DINSAR data and field data of
the GWL and the GSL data from the SESAME project6 in
Central Kalimantan and bore field data at study area in

Pulang Pisau, Central Kalimantan and Siak District, Riau
Province. The bore field data consist of the peat depth and
peat characteristics.

3. STUDY AREA

Observed study areas are located in peatland area as
follow (Fig.1),

e Pulang Pisau District, Kalampangan District
Matangai District, and Sebangau National Forest
in southeast of Palangkaraya city, Central
Kalimantan, where several ground water level
(GWL) and ground surface level (GSL) stations
installed (Station Taka-1 and Kalteng—1)6. In this
area, peatland fires widely occurred in 2015-
2016. In the classification of peatland from field
data, the sites mainly drained peatland with peat
depth average 3m and represent swamp shrub
and secondary swamp forest on KLHK’s Land
Use Map 2019.

e Kampar Peninsula, Riau Province where wide
coverage of peatland area exists with deep peat
(>6m) and peat domes (>10m).

Fig. 1 Location of study area within box (top) and
observation station in Central Kalimantan (bottom)

Table.1 List of PALSAR-2 data
[ No. | Datte | Mode |

Direction |
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4. RESULTS AND DISCUSSION

4.1. The observation of peatland surface height
variability

Peatland surface height variability for study sites in
Central Kalimantan have been observed using Differential
SAR Interferometry (DINSAR) analysis of PALSAR-2
data during 2015-2020 period. The comparative study
with the GWL and GSL data from observed stations
shows good correlation with the fluctuation direction of
the GWL/GSL of field data from the SESAME project®.

DINSARVS GWL
(STA. TAKA-1) 2015-2020

DINSARVS GWL
(STA.KALTENG-1) 2015-2020

L]
.02 0.02

-6 -0.1 ® 04 09 s p;0! 04 * op

-0.03

0.08

Fig. 2 Comparison of ground surface variability of
peatland from DINSAR data and field data (GWL) at
a) Sta. Taka-1 and 2) Sta. Kalteng-1

Table 2. The result of comparative study
Mode Date DINSAR vs GSL (cm)
Asc - SM2 150409 -2.6702
Asc - SM3 171005 2.1236
Asc - SM3 180906 0.1189
Asc - SM3 190905 -5.3484
Asc - SM3 200903 0.0599

DInSAR analysis. The difference of peatland surface
height variability between DInSAR analysis with the GSL
data are about +2.6cm for SM2 mode and ~+5.5cm for
SM3 mode. The results were correlated with previous
study that revealed the GWL data follows the GSL data in
peatland area®.

4.2. Peatland drought analysis in ENSO year

ENSO is the development of the El Nifio Southern
Oscillation in the Pacific Ocean and atmosphere involved
extreme warm events for about 2 years and generated
warm and dry climate in the Southeast Asia. The ENSO
event in 2015 correlated with wide forest fires incidents at
peatland areas in Indonesia and affected economy, social
and resident’s health of Indonesia and its neighbor
countries from the haze cover!. As shown in Fig. 3,
DInSAR analysis of PALSAR-2 data over Central
Kalimantan during 2015-2020 period shown downward
vertical movement from DINSAR data for observed
stations in the ENSO year 2015-2016 (-2.8 cm to -4.2 cm)
and 2018-2019 (-4.3 cm to -7.5 c¢cm) during August -
October period (dry season). While, the fluctuation of
presumed stable areas were below -2 cm. Comparative
study with field data shown that the GWL data at
observed station marked the lowest level about -1.44 m on
2019/10/1. Although the lowest downward movement of
ground surface of peatland area is shown in 2019, the
forest fire incidents in this year occurred 0.5 times
compared to 2015, which may indicate the impact of
implementing new regulations on peatland management
since 2016. The study results reveal that the fluctuation of
DInSAR data derived from PALSAR-2 data correlated
with the cycle of the ENSO year in Indonesia occurs
every 2 years and peak every 4 years. Thus, the proposed
analysis methods are useful to monitor the possibility of
peatland forest fire areas that are shown amplified during
the ENSO vyears.

DINSAR Analysis for PALSAR-2 Data

140828 150409 151006 171005 180805
—a—ta Kalteng-1 —s— Lampangtiota

Station; Kalteng 1 GWL Data
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Fig. 3 DINSAR data of peatland area (Sta. Kalteng-1)
on 2015/04, 2017/10, 2018/09 and 2019/09 (top) and the
GWL data (bottom)

4.5. Peatland surface loss due to fires

The variability of peatland surface height affected by
fluctuation of the ground water were observed by
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DINSAR processing is applied on PALSAR-2 data pairs
prior to and post fire incidents for selected fire hotspots
with 80% level coincidence during 2015-2018 period. The
DINSAR data analysis shows that the fluctuation of
maximum height difference of peatland surface for T1-T9
hotspots on downward direction is about -2.9 cm before
fire incidents and -23.5 cm after fire incidents suggesting
the possibility of peat loss after fire. Peat loss is shown
bigger at location around hotspot in barren land (Site 2).
Higher rainfall data affected on fluctuation of peatland
surface due to more water absorption, shown by smaller
downward of DInSAR data for data pair at swamp shrub
and secondary swamp forest. DINSAR analysis results on
ALOS-2 data before/after fire incidents showed that peat
loss after fire incidents could be derived using peatland
surface height difference analysis’.

Fig. 4 PALSAR-2 pair data: (a) intensity image of
master data (15/10/8) and (b) slave data (16/10/6), and
(c) DInSAR image of study area at Pulang Pisau and
Mantangai districts before the fire incident and (d)
after the fire incident
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Fig. 5 Peatland surface height difference retrieved
from DINSAR data before/after peatland fires

4.6. SBAS DINnSAR analysis for peatland fire area

The SBAS DInSAR processing result of a series of
PALSAR-2 data (8 scenes) for period 2015-2021 over
Central Kalimantan is shown on Fig. 6. The retrieved time
series of DINSAR data are located along deforestated
areas and historical hotspots during 2015-2021 period
(dark green represents vegetated area). Whilst, the areas
that are not marked with hotspot, may have burned before

2015. Since SBAS method computed differential
interferometry for the whole data pairs (each pair is
defined with small baseline, i.e. less than 500m), high
coherence data will be obtained from areas where surface
deformation are mainly occurred. Thus, the time series
SBAS DinSAR method can be used to delineate critical
area such as from deforestated area and peatland fire area.
For hotspot with 80% probability (red marker in middle of
Fig. 6), the preliminary result for the average of peatland
surface fluctuation using SBAS DINSAR method is about
-1.89 cm/year.

" W High:0.2

Low : -0.25

Fig. 6 SBAS DINnSAR result for PALSAR-2 data (in m)
overlay hotspot (A: medium; orange: high
probability; red: 80% probability, T1-T12) for period
2015-2021 over study area in Central Kalimantan

4.7. Peat dome analysis

The analysis of multi temporal intensity of PALSAR-2
data during 2015-2018 period over Kampar Peninsula,
Riau Province shows that peat dome areas have lower
backscattering about 0.067-0.22dB along vertical cross
line. Maximum peat depth for these areas is about 14 m,
while the bore data for non-peat dome area is about 6 m.
DInSAR analysis results for PALSAR-2 data show large
vertical fluctuation (~-40.5cm) in peat dome areas larger
than non-peat dome areas (-27.8 c¢cm) possibly due to
higher moisture and bearing capacity®.

4.8. Peatland subsidence analysis

Past study using DINnSAR data analysis shows that
peatland subsidence occurred by impact of agriculture
activities such as palm plantation in West Kalimantan.
The subsided areas were low in organic matter from
laboratory test (Lost on Ignition method). It is considered
to be affected by the decomposition process®.

Recent study applied SBAS DInSAR method on
PALSAR-2 data over study area in Central Kalimantan
and Kampar Peninsula, Riau Province. The SBAS
DInSAR data analysis results show the tendency of
peatland subsidence at the areas with shallow peat
thickness along coast, river, and canal possibly due to

696



decomposition by water sedimentation transport. From 17
processed interferogram data for Kampar Peninsula, the
average of deformation (subsidence) rate at study sites
along coast is retrieved about 8.5 cm/year (Fig.7, box).

™ High:0.55

Low : -0.77

Km

Fig. 7 SBAS DInSAR processing result (in m) for
PALSAR-2 data over study area in Kampar Peninsula,
Riau Province

5. CONCLUSION

The study results on the application of interferometry
SAR to observe peatland area show that the proposed
methods are useful for peatland fire monitoring, deep peat
assessment and peatland subsidence observation. DINSAR
analysis results on PALSAR-2 data before/after fire
incidents showed that peat loss after fire incidents could
be derived using peatland surface height difference
analysis. The proposed methods can increase the accuracy
of existing monitoring methods using optical satellite
images, without limitation on the observation when
clouds and smoke cover exist.
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FBHEIATRELTWEEEZON, ZDLH7
BHRL, ZhETITEWont2oTELT, #HE
HI7R HIER > AT D OBRFRIZRNL D & L b, FrdE
OEL#EIcHELETHEEZS.

¥ 72, I TIE, Sentinel-1A, 1B i2f8FK N5 Lo
2, BEx 72 SAR 2N TH EiF o, 7 —%FIH
ARE L o TS, %< D SAR AL, ALOS-2 &
W7o DR, AMA, BUFHECEHRSTW
L. ZDED, TNHOT—X ZFAMICHWS Z
LT, KU MREBHOEIREIEIOLEEZD
5. Zhix, ALOS-2/PALSAR-2 O ERAMZED
LHZEICHLENDLEZ TV, AR, EHIC
b FEM &N 7= ALOS-2/PALSAR-2 B L O»°
ALOS/PALSAR 7 — 4% Z# T, EMoiFLH%
HoNcT 5. £72, METEASIL TV RS
B % > SAR iR T — X ZMHMMICH WD Z &
T, WMIREEH LA L0 FEMICEE T E 20 Mt
5.
FRIZARMFZEERBE CIL, PS T SAR i &2 AWV C,
2016 FREARHIZE DT & HIFE% O I F A B O RF R 51

REMEHTE L, MEBELHO XY —2ED LS 7
BRI S ND DT, BRI D F — 2
£ oT, FHitkoELEE B L ORI R H)
W ERHEL, ZNDONRY— &b ook E
EMEDE BN LEDEZHLNI L. H81T
REARMIR E L7- (Fig. 1) . £7=, #E L-HERE
B NN T — X E T 5 2 & T, HEAE L
H R KRALZEE & o BEME A SN2 L7z, T SAR
RERHIBEHT TR O NI IR E BN T K AT LD
F= XV UTICADTHLZ XTI NETIIREN
TWHHL0M, MBI T K AT LOE|E
T SAR WiRAIfEfr CE =2 VY 7 L7I=FEHILiE
EAERN. DD, RFEIL, HEAZ GO
TR AT LADE=LY T ~DF P SAR KR4
BT OB L 72D L EZEZTWD. 2B, AREED
WNEDLIX, RITHMIEREZIT-oTND.

2. BT —F B L OFE

ARFIETIE, 2016 FREAMBERIOT —& L LT,

20074 1 H 7 A6 2011 4F 3 A 5 HOBIZEEITEL
BETES SN 19 > —2 D ALOS/PALSAR 5 —#
(PATH/FRAME: 73/2960) % F\ 7=. 2016 4-HE

ME%OT—42 LT, (1)2016 4F 4 A 18 AND
2018 E 12 H 10 H oOBIZEIfTELE THIfS & 7= 28
3 — /D ALOS-2/PALSAR-2 5 —# (PATH/FRAME:
23/2950, 23/2960) , (2) 20164E7 A 1 H/H 5 2018 4
12 A 10 B ®EICEF1T#0E CHUS & 4172 Sentinel-1 7
— % (PATH/FRAME: 163/483) ¥ X 1%, (3) 2016 4F
11 A 16 B2 5 2018 4F 6 A 15 BH ORNCILITELE T
1% & 7= Sentinel-l 5 — % ( PATH/FRAME:
156/105) % M\ 7=. FEAT#LE CHUS S 4u7z ALOS-
2/PALSAR-2 5 —# B L O Sentinel-1 T —Z %, i
FNOT = NLHETE S EEE D —ET 50
EHMERT D2 LT, RYUMORIEEIToT2. £z,

LATELE B K O THLE CTHUS S 47z Sentinel-1 7
— 2%, 25 WufEMHTIc LY, ¥ELETRBLOHERRE
FmOMFEER ZHEET D DI HW .

AWFIE T, PS T¥ SAR f#HT 2 I\ TSRS ISR
EENOHETE 1T - 7=. PS T ¥ SAR fi#rix, PS &M
XD~ A 7 v O% T EELRE I L O ZE
LTCWAHEZvDHhE W THELEZHTT D
FIETHD[3][4]. £7=, PS T SARfEMTIE, KK
FTO~A 7 a P ARRE R O T WAL F~D 28
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EHIEE T L ORI LD TN AH~DREL L Y
PRSERMS 2/ LTV 5. ARBFETIE, 7240 T¥ SAR
% & {E K 3 5 72 »IZ, Radar interferometry
calculation tool [5]3 & TN GAMMA software [6]% H U
72. PS T SAR fEHTICIE, [71B X O] THHVS
NTWBHHEEO T 0 7T KE -,

HEE LR E B OS2 RFET 5720, EL
HPRREANEH % GNSS Blllf@TdH 5 GEONET D
F3 fift % =, AT %5121%, GEONET B A% 2
/A (Kumamoto, Jonan) & ¥ (Fig. 1b) , 1 &
(Jonan) ZE¥ES L L, 40 1 4 (Kumamoto) O
RER AR 2 E) & L 21T 572, GNSS & PS T4
SAR T T BN RERFIMEB LT & i3 5 720,
GNSS DO IR B I H RS A~ AT 7.
PS T SAR fEMT CHEE S AL 7RI HI R DB O FF
WEMRT B2, KRIIMEBLEETT LA AW,
ARG TIE, HEE SN BRI HELSEN 1 FE0JE
& b OFEEOME LR L ORI 722 R AL )
THERL S D & LT, FHIEOMERZENL, FHEitk
DO FARNZALIZHE S HELEH 2 L TBY,
HAPE DI EEIL, 2016 FEREARMEIC E- THRAEL
TARJE W 2 bl i IR A B A L=, 2 OFH
MoFR AL, ERWOY 1 K TETEL,
EHIM 2RISR cET MLz, Th
LOETMIEFEENDLIEHL, R/ _FETHEL
7.

3. fRAT XIS DR

AHFGE D M7k S 1k © b 2 AU X, JuMl o
DECAE L, BERM T KEENGFET DS EN
HHILTWAD. MK # k1L oo PEEE Tl L,
HZIZH » CREARMIR A L, FHMEICRET 5.
REAHSI O M Ze HUVET 1T, P30 C T IS P ig e T Ak
S A, HEIT EICPIER K HERE Y CTRERL S VD
(Fig. lc) . #KJE1ZEIC 2 Ok KR HERS ) T
D ENEOSINTWD., O UK 1T iR r T
LUK AEHERES) CTHERR S D 23, TREROHIKE 11X &
O E VK IAHEREY) THERR S, EICHIERKE TH
L. ESOHERE O E X, RRAHUEHE O AT
0200 m ThH Y, FEIHOWMEFE TiE-50-0 m T
HD. EEI LR EKBIZT DI KIEES
= REZHEAELTWD EREINTWVS [9].
2016 FFREAMEIL, 4 A 14 H (Mw 6.2) & 4 H 16
H (Mw 7.0) |ZHRAWEH I L O )l <
¥4 L7 (Fig. 1b) . ZOHFEICHE- T, HTFAKAL
AL BII S, REART.LE T m o BN R A
L7-@ATicinCiE, g% 3045 HiX, HiFAKAL
DR TN EICBH SN, —JF, REAHIE S <l
AN OMFER 7 BB BI S 7. [10] 1%, 2
DREAR MR A T O N AN 1T, 2016 FEREAHM
BITPE - TR LD S O T KB & 2388 L 7=
T EHELTND.
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Transient displacement during the first year
from the first SAR image
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Transient displacement during the first year
from the first SAR image
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N B e REB ORYO 1 FMICI T 5 i
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PALSAR-2 3 L T8 Sentinel-1 DO FEITELED S5 5 H
727 —4% @ PS T SAR fiEATHEFITIEAS L T\ DH 2
ENGD. BEHmEETEOME N & LT,

i - B &AW oAb ic B W CTHERE IS D
FEOMBEEE NS LN TWDS., —J, o
gL D (Figs. 3 BE N 4128175 1) BLOW
EROWEFEATUT (Figs. 3B LN 4128175 1) Tl

T — & & HITERITE I D RO MK L) HE
EINTWD. 1IZBIT 2K 1 FEMOMEEE
HI135-1.1 cm (ADOEITFHEDE I D FIH ZR
T) THY, 11 TIEH2.0 cm Tho7l-. Z=HiftkDH
REBHEICBWTE, W7 —% & bICiFrEapHo
seids L OVEED (Figs. 3B LN 41CB 5 D) 10k
W, F05emDKEEITRAELTWDZ ERG0
7.

Sentinel-1 OFITHLE & ALITILED T —Z N H5E 5
N B e R EEB O RO 1 FHOLE &% H
W 2.5 IRoTHRAT A L 72k % Fig. 5 12T

AHWFFE TR Sentinel-1 D ALTELE DT — Z D]

M 201645 11 H 16 AX5 20184 6 H 15 A TH Y,

AR THWEZFEITIEO T —Z O L H=°
R, FOT®, 2.5 WITHENT TIX, mMITELEIC
BWTH 20164 11 H 22 H2vS 20184 6 9 HD
WOF —% O REZ bW, dfTiEn T —

2O ERIE—ETHLIIC L. Fig 5 £,

WD T —H 1% 2016 FREAMELY 7 »HEKETH
A0, PROIBICUNICBITAHENOEIND
FROEFHNIEZ BN TWD. £72, ZOFREND
WENDHFEOMBLET, FITULTF T O AL
HTHDH I EN, 2.5 WILMBHTREREID oot

(Fig. 5) . F7=, A0 HEJIKrfEHEL O KA I,

W HMOMBBEE AT L2 LN 0hoTz

PALSAR-2 & Sentinel-1 O HiIZRZEBE) 3 & OFLFERE A
LTV D NERMICFHET 2720, BHlS -k
FENENEIZEREF MO Th D (HERPE RO
HIFZB OZEDHERHES 0.05 cm LT TH D) His
ICBWTCEEFHRE L. MERTE 5 m o MR A &1T
R 2.5 WL OFERZ R nio. ZORER,
PALSAR-2 & Sentinel-1 DFF{THLE DT — & IS H#E
ESNTAEMMELEOZEDO I 0.55 cm THo
7=. ¥7-, PALSAR-2 OF{T#LiE & Sentinel-1 4L4T
IE DT — X OFERMEBELEEEOZDO I 0. 54
cm CT& o 7. Sentinel-1 DFE{T#IE & Sentinel-1 DAk
ITEE DT — 2 BB LN ERME LB EDED
X 024 em Thoto. ZOEE, [11]ICXkDA
U RR VTR RUERIZEB T BRI O A 0.75
cm THolZZ taEZxDHE, LWKE CHRLEH
EHEETETWAHLEEZ 5. 77, R Cisimg
179 WAL E) (B 21%, Figs. 3,4, 5285 L1111
DOEE) IFEELID FRICREVWESZ 5.

5. MBEEHNONDIHT K 2T LDE(L

KB 72 MR IR, TR KRAL N LT 5 FHlT =
NETIZEZLMESHTWD [12] [13]. ZOHUEIC
PES T ARMOIE T D A B =X 50%, BIFKEDZE
b [14]°02 B MEDZEAL [15], 7 T v 7 OFEE [16]5%
OEBERNEHINL TS, 2720, ZokH7%
1R ARALZEACIC R 4 5 M SR 25 8 2 48 2 7= AT,
B KEDZILIZ DWW T, [14]R°[17]72 ERH 5
B, FNLSMZONWTIE, REEOELICHE S T
KNLEAVIC K 2 A B /T REME 2 [8] THEfE L T
HOHTHY, MELMTIAKMNE, HMELEHEOD
FIAAERIZOWTH LI TRV B 0.
2016 FFREAR MR % 0O RE A Hits D Ml R 8 8l 0 — I,
[18]=C[191iC L » T, FHERHMEKE X E#i~> Frod
MM ARIC L VFHAN S TWD. 2, HE
2 X BISHECIZE S T, FERHIERC L~ L
DG ATE L, HEREECEN DI LD THD.
IS OFATHITE TIE, REHMEAE & 9 2RI
20-80 km EHEE SN TWAD. AR THE 2 72 RTHY
7o MR A E) (Figs. 3B KN4 ICH1T 5 LI, 1D 133K
km DOZEM A7 — LV OMBEENTH B2, JRIKIZ
FE D REAMEE T TIERBA D D72 v, £, EIR
Wrig s tEZOFEMEOT R EZEZITZLICL
STHELEEBNBAET I L LML TWVDA,
Figs. 38 L4 @ I, 11, Il TOMELEE DL/ X
—VIFEFEEE O E G- TWRWed, ZDk
IIRA T = RN THRBANHEE L.

—05, MR AKMECITHE D R LB TH 2 ZARMEN
FBWEEZEZTWD. T ORI TIX, 2016 FREAME
ORBOWMBEFHOBITICL D, HEHROBEI I
ZHNTWD [20]. £72, ZORENE ST
BWT, 474 m O FARMOEKTABHISATEY,
ZOHTFARMOIETIE, 2.7X107 m3 OEBEOH T
KOALBEHENTZZ ERBF LR TWD [21]. ARBF5E
TR F2NBUA S 7= Mg, 2438 A4 it s L OV
TAMME TR EEALTRBY, #FAMOETIC
PEO MFBEE L fRINTE 5.
FEATHUBCRGES (I O HuE) CHEE S 7=k Pk TIg,
2016 FEREA MBS (CH FAKAZ2Y I miZ & EH LT
HZEWyInoTWA, ZOWLTFEMTARMD EF
X, WIRILIC K > THBT22 &R TED 52D
N5, L FAHEE S - ik T, 2016 FEREAHITE
BAIZHCIRALIZHE D I SRR S - il T 5 .
REA IS O H FKALIZFRHitE DR — v HoRmd 2 &
DEBNTWD. BEREITZ 6 A 8 H Z AN
L, KL 6 A 10 A ZAICEENMoE R %
AT AR TCIR 2 - it O R A E) (Figs. 3, 4
O I O OFEIE, HTFKMOBEHE RKELE
—E L THY, HTFKRMEIZHE S FEHMEO IR
AR ZT-bDEEZ BN S. ALOS/PALSAR D
Wrcix, ZoOFEHEOMBEEHN IR ZONT
WRWHAEEZ D L, 2016 FEREARHELIEIC Z 07
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ARWFIEORRIL, FEAHIBO FRKE=FY T~
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LONG-TERM DUAL-FREQUENCY SAR BACKSCATTER DYNAMICS OF A
SALT FLAT IN NORTHERN CHILE

PI ER2A2N178
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2 Hémera Centro de Observacion de la Tierra, Facultad de Ciencias, Universidad Mayor, Santiago, Chile

1. INTRODUCTION

Detritical and evaporitic environments known as salt flats
or salars evolve following physicochemical processes
(crystal growing, precipitation, dissolution, others) that
are not dominant or even present in other widely-studied
environments such as soils, ice, and oceans.

This study is aimed to analyze the behavior of SAR
backscattering over a highland salt flat using
multitemporal analyses with Sentinel 1 (5.40 GHz, 5.55
cm) and ALOS 2/PALSAR 2 (1.23 GHz, 24,3 cm).
Dual-frequency SAR images allow capturing information
at different depths according to the wavelength of
operation. Microwave response of halite crystal
aggregates is linked to surface roughness of the salt crusts
by means of the single-scattering surface-only model
Integral Equation Model with multiple scattering at
second order (IEM2Mc) and two-layer scattering model
based on the second-order scattering solution of the Small
Perturbation Model (SPM) in media with complex
permittivity such as the brine-soil mixtures found in
salars.

2. MATERIALS AND METHODS
2.1 Study Area

The Salar de Aguas Calientes Sur is a 476 km?2 salt flat
located in the high puna of northern Chilean Andes
(67°41'16"W/23°58'27"S), at an altitude of approximately
4,000 m (Figure 1). The containing basin is endorheic and
intra-volcanic. Overall, the northern and southern margins
have shallow lakes. The most abundant evaporitic
minerals found in the salt flat are gypsum and halite. To
the west it is located the Salar de Capur and to the east the
Laguna Tuyajto.

In Andes Highlands, geographical and climatic conditions
are particular with two winter seasons per year (Altiplanic
and austral winter), facing snow falls and strong winds.
These features are underexplored with SAR in other salt
flats.

Field observations and morphological analysis over the
Salar de Aguas Calientes Sur were conducted on April 3,
2018 (Figure 2). Field observations showed highly
heterogeneous pan crust environments that could be
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grouped into three different crust types.

The first is a hard crust (referred to as hard pan crust 1
(Figure 2(a)) formed primarily by gypsum, halite and
detrital particles. It is characterized by an irregular
concave shape, uplifted rims, and salt enrichments
crystallized as granular forms and thin sheets covering the
gypsum pan over the borders indicating that most of the
time remains not flooded. These salts with granular form
indicate that they were formed from evaporation and rise
of brines by capillarity. This crust surface is rough over
microwave scales from millimeter to centimeter such that
of the sensors Sentinel 1 and ALOS 2.
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Figure 1: Sentinel 1B image, VV polarization in
decibels (dB), acquired on April 3, 2018 over the study
area. Location and boundary of the Aguas Calientes
Sur salt flat is shown in light yellow.

The second crust type is referred to hard pan crust 2
(Figure 2(b)), and it is distributed along the east edge of
the salt flat, formed by gypsum and halite containing
cavities that indicate dissolution of salts due to infiltration
and percolation of water causing loss of stiffness. The
surface is somewhat soft, as can be noted from the
footprint tracks left over as seen on the right in Figure
2(b).



A third salt crust with soft consistency is distributed over
the northwest and southwest (Figure 2(c)). Almost flat
with mud-crack polygons that contain a mixture of
moistened salts, mainly halite, and some gypsum. The
polygons indicate water loss after flooding events. This
crust is over a lower part of the pan so that it is easily
flooded. Its surface appeared smooth to microwave
frequencies.

Towards the north and south of the salt flat, a few
perennial lagoons are observed. The permanent inflow
prevents them from drying out entirely by evaporation.

In the rest of the salt pan, the deposition of halite and
gypsum crystals through evaporation and the following
halite growth by the upward movement of capillary water
plays an essential role in the temporal variability of the
backscattered signal on the surface of the salt flat.

Figure 2: Types of salt crust observed in the field on
April 3, 2018. (a) Upper panel: Hard pan crust 1,
mixture of salts and sediments (rough surface); (b)
Center panel: Hard pan crust 2 (gypsum and halite);
(c) Bottom panel: Soft pan crust with contents of
organic matter and thrust polygons by interaction
with water.

2.2 Multitemporal SAR data
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Sentinel 1A/B (C-band, 5.55 cm) and
ALOS-2/PALSAR-2 (L-band, 23.4 cm) sensors provided
the SAR imagery for this study. The former was acquired
in Interferometric Wide Swath (IW) mode, level 1
processing, and Ground Range Detected (GRD) with a
spatial resolution of 20 m x 22 m (range by azimuth) and
a swath width of 250 km. The latter in StripMap (SM)
Fine [10 m] mode with a spatial resolution of 10 m and a
70 km swath. The Sentinel 1 dataset encompasses five
scenes per month from July 1, 2017 to December 29,
2018, in dual polarization (VV and VH) and ascending
passes. In the same period, ALOS-2/PALSAR-2 dataset
has three images in HH and HV polarization in ascending
orbit.

For Sentinel 1, image processing started with usual
preprocessing steps such as orbit correction and thermal
noise removal. Then, Sentinel and ALOS images are
radiometrically calibrated. Subsequently, a Refined Lee
filter with a 7x7 pixel window was used to improve
radiometric quality. Finally, the geometric terrain
correction was applied by assigning the digital elevation
model SRTM 1Sec HTG and bilinear interpolation,
resulting in an image with a nominal pixel size of 10 m x
10 m. As a final product, output bands of backscattering
coefficients ¢° for Sentinel 1 (VV, VH) and
ALOS-2/PALSAR-2 (HH, HV), along with their
corresponding local incidence angle, were generated.

2.3 Microwave rough-surface scattering model

The Integral Equation Model with multiple scattering at
second order for complex-permittivity media, referred to
as [IEM2Mc [Alvarez-Perez 2012] is the name given to an
improved, enhanced version of the Integral Equation
Model originally developed by Fung [Fung 1994] to
describe rough-surface scattering in the field of radar
remote sensing for Earth observation. Surface parameters
for IEM2Mc are complex dielectric constant, surface
standard deviation s, power spectrum and correlation
length /. Research on dry salt lakes suggested that s/1~0.10
[Aly 2007, Lasne 2008, Liu 2016], with s on the
millimeter scale. An exponential power spectrum is
known to better fit natural surfaces [Barber16].

2.4 Microwave two-layer scattering model

In this work, the small perturbation method SPM will be
used, which is based on solving Maxwell's equations in a
perturbative way. A remarkable result is that, at second
order perturbations, the SPM conserves energy [Johnson
1999, Demir 2003, Tsang 2004]. Furthermore, this model
can be used both to solve the EM scattering problem only
with a rough interface and in a layered medium. In the
latter case, the scattering geometry includes volume
scattering effects [Tabatabaecenejad 2006, Demir 2012]. A



schematic view of the two-layer model is shown in Figure
3. Layer parameters are the same as the one surface case
but adding the layer depth d.

Relative dielectric constant of primary constituents of dry
lake saline soils are silicates (€=5.90), halite (e=4.48), and
gypsum (e=6.88) [Wadge 2003], all exhibiting a
negligible imaginary part and a frequency-independent
behavior in the microwave band [Ulaby et al., 2014,
4-8.1]. The dielectric loss in the media is entirely given by
the brine under the dry lake floor through salts dissolved
in the water therein. Salinity of the water is expressed in
psu which is approximately equal to parts per thousand of
solid salt in grams dissolved in 1 kg of solution.

Rough
interfases

Fig. 3: Layer distribution within the salt flat volume.

Over the study area, subsurface brine salinity ranges
between 2 and 45 psu as reported in 2013 by [Troncoso
2013]. A salinity of 66 psu was measured recently in the
northern lake.

The brine layer within soil is a mixture consisting of solid
particles and saline water allocated within soil's pores. A
simple mixing model is used for modeling complex
dielectric constants of saline soils. The dielectric constant
of saline soil (g,) was calculated using the dielectric
values calculated for dry soil (g4) and saline water (&)
following [Ulaby et al., 2014], each weighted by its
respective proportion of the combined mixture,
Es = (1'(p)8ds + PEsy (l)
where ¢ is the medium's average porosity. Typical
average porosity ranges 0.34-0.45 [Lasne 2008]. In
Equation (1), &, is a function of frequency, salinity and,
to a lesser extent, soil temperature. Table 1 summarizes
the computed dielectric constants for each layer at the two
study frequencies.
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TABLE 1. Dielectric constant of media modeled after
Ulaby 2014.

Fng}lIeZn]cy Medium Relative dielectric constant
5.40 1 (dry) 4.23+0i (lossless)
5.40 2 (saturated) 28.8+7.32i - 22.0+16.61
1.23 1 (dry) 4.23+0i (lossless)
1.23 2 (saturated) 31.0+1.82i - 23.4+53.1i

4. RESULTS
4.1 Multitemporal analysis

Time series of Sentinel 1 VV-polarized and ALOS-2 ¢°
over the three crust types mentioned in Section 2.1 is
shown in Figure 4. Precipitation information is also
shown as a bar plot for rainfall and as occurrence
instances for snowfall.
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Fig. 4: Dual-frequency temporal backscattering

observed over the salt pan. Sentinel 1A (magenta) and
Sentinel 1B (blue) in ascending passes. VV
polarization is indicated as triangles, and VH are
circles. ALOS-2 is indicated with yellow markers. The
vertical dashed line indicates field visit on April 3,
2018 (see Figure 2). (a) Soft pan crust, the local
incidence angle is between 35.2°-35.4° (Sentinel) and
27.5°-28.4° (ALOS); (b) Hard pan crust 2, the local
incidence angle is between 39.9°-40.1° (Sentinel) and
31.8°-32.0° (ALOS); (¢) Hard pan crust 1, local
incidence angle is between 39.2°-39.3° (ascending).
Accumulated rainfall is shown as bars and snow
occurrence is indicated as cross marks above the black
x-ayis.



In this respect, Salar de Aguas Calientes Sur underwent
an increase in the available water due to continuous
snowfall events and some rainfalls from July to late
September 2017. The availability of water and the
evaporation that followed has driven the formation of
crusts and henceforth the change in surface roughness
detected at C-band. The rainfalls during February 2018
prevented c° from further increasing. Over the dry period
that followed, crust development resumed until late June
2018. A third cycle occurred during the dry period after
October 2018.

Changes in the backscattered power showed different
patterns depending on the salt pan spatial distribution and
composition. For type 2 and type | hard crusts, Figure 4
(b) and (c), respectively, o° increase-and-decrease pattern
accounted for inter-annual wet and dry periods. This is
more evident on the hard pan crust 1, where
backscattering coefficient had a 10-dB-increase between
the flooded and the well-developed crust surfaces in the
five-month period from September 2017 to January 2018.
On the other hand, for the soft pan crust, Figure 4(a),
annual seasonality had little impact on c°.

In what follows, microwave rough-surface scattering from
modeling is presented for hard and soft pan crust sites.
Modeled against measured ¢” is compared on dates when
L- and C-band measurements are available.

4.2 Rough-surface analysis

Table 2 and 3 indicate ¢” measurements for the rough,
hard pan crust 1 and smooth, soft pan crust. Figures 5 and
6 show contour levels in dB modeled by IEM2Mc
[Alvarez-Perez, 2012]. The contours are computed at
approximated angles 31° and 28° at L-band and 39° and
35° at C-band. The combinations of ¢’ at L- and C-band
for in May 2018 is well modeled by the single-scattering
surface-only model, in accordance with a media with
homogeneous profile at several cm depth. On the
remaining dates, the salt pan condition is such that the
scatters dominating the VV polarized ¢° are at the top
surface whereas those of HH are deeper.

4.3 Simulation study for two-layer model

Backscattering coefficients modeled by a two-layer SPM
as a function of the normalized layer distance is shown in
Figure 4. The periodic features are due to a coherent
effect on the layer distance and enhanced responses occur
at certain layer depths. Interestingly, certain combinations
of depths result in HH at L-band close to VV at C-band.
Therefore, sub-surface profiling with L-band is feasible
(i.e. shallow water bed monitoring).

TABLE 2. ¢° measurements for hard pan crust 1.

0
Date Sensor Inc. angle o
(pol.) (deg.) (dB)
11 Sept., 2017 ALOS 2 (HH) 30.9 -20.0
11 Sept., 2017 SENTINEL 1 (VV) 39.2 -18.4
7 May, 2018 ALOS 2 (HH) 30.9 -18.5
9 May, 2018 SENTINEL 1 (VV) 39.2 -11.1
3 Dec., 2018 ALOS 2 (HH) 30.9 -18.2
5 Dec., 2018 SENTINEL 1 (VV) 39.2 -11.4
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Figure 5: Contour levels in dB modeled by IEM2Mc
for the hard pan crust. The contours are computed at
approximated angles 31 and 28 at L-band and 39 and
35 at C-band.

TABLE 3. ¢° measurements for soft pan crust 1.

Date Sensor Inc. angle a®

(pol.) (deg.) (dB)
11 Sept., 2017 | ALOS 2 (HH) 28.1 -18.9
11 Sept., 2017 | SENTINEL 1 (WV) 35.1 15.6
7 May, 2018 ALOS 2 (HH) 27.8 -26.3
9 May, 2018 SENTINEL 1 (VV) 35.3 -11.8
3 Dec., 2018 ALOS 2 (HH) 27.6 -22.0
5 Dec., 2018 SENTINEL 1 (VV) 35.1 -18.6
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Fig. 4: Backscattering coefficients for C-band (5.40
GHz), VV-polarized (upper) and L-band (1.23 GHz)
HH-polarized configuration at several incidence
angles using a two-layer SPM.
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5. FINAL REMARKS

Research on evaporitic environments can largely benefit
from fully polarimetric data. L-band ALOS 2/PALSAR 2
measurements are combined along with that of C-band
Sentinel 1A/B to study an evaporitic environment in an
highland salar by means of its microwave response.
Disregarding any scattering mechanism other than surface
scattering, previous research has shown that C-band
VV-polarized ¢° has a strong dependence on surface
roughness, whereas the scatters dominating the HH
polarized ¢ are located in the subsurface.

In a previous study [Barber & Delsouc, 2021], a
single-scattering  surface-only model showed its
limitations to predict single-frequency (C-band) o°
measurements assuming that the dominant scatterers are
located on the surface.

A two-layer composite model seemed better suited when
dual-frequency microwave response of a salt flat is
available. The uppermost layer might be of salt crusts
whereas below it a brine-soil layer arises. However,
further research is needed in this way. Due to continuous
support from JAXA, this study will continue under a
EO-RA2 contract on a salt flat in Northern Argentina.
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