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1. INTRODUCTION 
 

The Qinghai-Tibet Plateau (QTP) is known as the 
Asian water tower, with an average altitude of more than 
4000 meters [1]. It is bounded by the Pamir Plateau in the 
west, Hengduan Mountain in the east, the southern end of 
the Himalayas in the south and Kunlun Altun Mountain, 
Qilian Mountain in the north [2]. The QTP is a high 
terrain and thus receives more solar radiation energy than 
lower elevation areas [3]. The Chinese mainland climate 
is affected by the South Asian and East Asian monsoons, 
resulting in a diversity of climates in different regions, 
such as the rainy climate in China's southern part of the 
Yangtze River and drought in Northwest China [4]. In 
addition, the QTP has many glaciers, lakes, groundwater 
and surface rivers, making the QTP a super water tower in 
the plateau area, which affects the water system layout of 
all of Asia [5]. The QTP is a region with a large amount 
of permafrost at high latitudes [6]. As a key component of 
the Earth's cryosphere, permafrost plays an important role 
in the surface energy balance, carbon and water cycles, 
terrestrial ecosystem, and hydrological system [7]. In 
recent years, with global warming, permafrost 
degradation has accelerated [8], and degradation has had 
an impact on the environment and the energy and material 
balance. Therefore, it is very important to monitor the 
permafrost status on a large scale for a long time series [9]. 

Traditional measurement methods of permafrost 
deformation include GPS [10], leveling surveys [11], and 
drilling [12]. However, due to the harsh environment of 
the QTP, these methods cannot monitor permafrost on a 
large scale [8]. The multitemporal interferometric 
synthetic aperture radar (MT-InSAR) technique is a useful 
tool to map ground deformation [13]. MT-InSAR has 
been used to monitor the freeze-thaw cycle of permafrost 
[14-32], and to retrieve the thickness of the active layer 
[33-38] and permafrost degradation [39-42]. In these 
studies, some researchers have been committed to 
monitoring permafrost for a long time. Zhang [8] used 
Sentinel-1, ENVISAT and ERS-1 data to evaluate the 
ground deformation of permafrost and the risk along the 
Qinghai-Tibet Railway (QTR) from 1997 to 2018. The 
results show that the estimated deformation rate ranged 
from −20 to +10 mm/year and most of the QTR appeared 

to be stable. Daout [43] used ENVISAT and Sentinel-1 
data to construct the spatial and temporal dynamics of 
permafrost deformation in the northeastern QTP from 
2003 to 2019. The results show that pervasive subsidence 
of the permafrost of up to ∼ 2 cm/year, increasing by a 
factor of 2 to 5 from 2003 to 2019. However, because the 
C-Band SAR data are easily affected by the region’s 
vegetation and the atmosphere, the results may be affected 
by spatial and temporal decorrelation. The ALOS Phased 
Array type L-band Synthetic Aperture Rada (PALSAR) is 
preferred for ground subsidence monitoring in areas 
covered by vegetation and where there is a high rate of 
ground deformation [44]. Therefore, in order to improve 
the coherence of targets, we used L-band datasets to 
monitor the ground deformation of permafrost from 2007 
to 2021. 

The ground deformation process of permafrost is 
complex. With tectonic activity, erosion, and 
sedimentation all interacting in the QTP [45], it is difficult 
to accurately describe the freezing and thawing cycle of 
permafrost. Therefore, research has attempted to 
understand the deformation characteristics of permafrost. 
The sinusoidal model [46,47] and degree-day model 
[8,48] were used to describe the seasonal variation in the 
ground surface due to up-down deformation cycles of 
permafrost. However, it remains controversial which type 
of model is better at describing seasonal deformation [49]. 
To extract the temporal characteristics of permafrost 
directly from the SAR data, Wang [49] directly converted 
the network of interferograms into a deformation time 
series without a preset deformation model. Then, the 
long-term deformation velocity and seasonal deformation 
were extracted. However, for seasonal deformation, Wang 
assumed that the highest terrain elevation occurred from 
January–February, and the lowest elevation occurred from 
August–October. Wang also averaged the intra-annual 
deformation value. The average intra-annual deformation 
may smooth the features of the permafrost deformation. In 
addition, using prior knowledge may not be suitable for 
application to the QTP with spatial heterogeneity. In this 
study, we proposed a long-term deformation velocity and 
maximum seasonal deformation model without any prior 
knowledge to directly extract the deformation features of 
permafrost. 
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To reveal the status of the permafrost, we extracted 
time series deformation directly. First, we used 66 scenes 
of ALOS data (2007-2009), 73 scenes of ALOS-2 data 
(2015-2020) and 284 scenes of Sentinel-1 data (2017-
2021) to reveal the spatial and temporal permafrost 
deformation in the northern QTP. Second, thermal 
collapse of permafrost were detected. Finally, we revealed 
the relationship between the maximum seasonal 
deformation and the long-term deformation velocity.  
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1. INTRODUCTION 
 
The Greenland Ice Sheet has been losing mass 
dramatically due to the glaciers’ acceleration, thinning, 
and retreating, increasing its contribution to sea level rise 
[1,2]. Glacier retreating is one of the processes that 
control the recent speedups of Greenland’s tidewater 
glaciers. As a glacier retreats, it accelerates to compensate 
for the loss of downstream buttress. 
 
At many marine-terminating glaciers in Greenland, their 
termini have been undergoing strong fluctuations at 
seasonal, inter-annual, and decadal timescales. A detailed, 
quantitative assessment of terminus variations can help to 
understand the mechanisms that control such variations. 
Conventionally, the terminus positions are delineated 
manually from remote sensing imagery. But manual 
practices can be labor-intensive and time-consuming 
when processing a big volume of images taken over 
decades and over large area such as Greenland. 
 
This study aims to automatically delineate the terminus 
positions of Greenland glaciers by applying a deep 
learning architecture to multi-sensor and multi-temporal 
satellite images, including PALSAR-2 data. The L-band 
SAR images from PALSAR-2 promise high enough 
spatial resolution for delineating glacier termini and the 
penetration through clouds. 

 
2. RESEARCH ACHIEVEMENTS 

 
Our key achievement was to integrate seven remote 
sensing datasets (including ALOS-1 & -2) into a single 
deep learning network, DeepLabv3+. The network 
architecture is illustrated in Figure 1. We automated the 
delineation of the calving fronts of the Jakobshavn Isbræ, 
Kangerlussuaq, and Helheim glaciers using Envisat, 
TerraSAR-X, Landsat-8, Sentinel-1 & -2, and ALOS-1 & 
-2 images. We successfully applied the network to ALOS-
2 images without using them to train the network. Such a 
successful application showed our method’s 
generalization on L-band SAR images. We also proved 
the network’s generalization on different glaciers and data 
types. The promising results for images with light cloud 
and shadow also attested to the robustness of our method. 
The integration of seven remote sensing datasets offers us 
sub-weekly calving front datasets. The high-temporal-
resolution multi-sensor remote sensing imagery enables 
detailed investigations of seasonal and interannual calving 
front variations and large calving events. The increased 

accuracy, generalization, and robustness of the deep-
learning method demonstrate that our method has the 
potential to be applied to many other tidewater glaciers 
both in Greenland and elsewhere in the world, using 
multi-temporal and multi-sensor remote sensing imagery. 
 

 
Fig. 1 Architecture of DeepLabv3+. The details of the 
architecture are described in [3]. 
 

3. RESULTS 
 

The averaged uncertainty of our method is 86 meters for 
all the datasets used and 75 meters (7.5 pixels) for ALOS-
2 images only.  We produced a total of 1965 calving 
fronts at the three largest outlet glaciers of Greenland. Fig. 
2 shows examples of network-delineated calving fronts in 
the test set. Most of our results show a high-degree 
agreement with manual delineation, even for images with 
light cloud coverage (e.g., Fig. 2c). 
 
The integration of the seven datasets enabled us to 
produce sub-weekly calving front datasets of all three 
glaciers. High temporal resolution enables detailed 
investigations of calving front variations. For instance, we 
could directly obtain the number and the date of large 
calving events from the time series. Moreover, we could 
reliably capture the seasonal and interannual variations 
with high temporal resolution. 
 
Jakobshavn Isbræ’s two branches underwent three-phase 
interannual variations with strong seasonality. The time 
series of Kangerlussuaq’s calving front variation shows 
strong interannual and seasonal variations, and its 
seasonality also changes interannually. At Helheim, the 
time series has two phases: 2002–2011 and 2013–2020. 
The retreat rate of the second phase was double the first 
phase, and the second phase has strong seasonal variations. 
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Fig. 2 Examples of deep-learning-delineated calving 
fronts (red line) in the test set. Background image of 
(d) is an ALOS-2 SAR image taken in June 2015. 
Modified from [3]. 
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1. INTRODUCTION 
 
Rock glaciers are debris-ice landforms widely distributed 
in the mountainous periglacial realm worldwide [1]. They 
serve as important indicators for permafrost which is 
defined by its underground temperature and invisible in 
most other cases, especially for regions such as the 
Tibetan Plateau where in-situ observations are limited in 
spatial coverage due to the harsh and remote environment. 
Surface kinematics of rock glaciers, which manifests the 
characteristic permafrost creep process occurring at depth, 
has become an accessible and quantifiable feature with 
the application of remote sensing methods. 
 
This study extends the use of Interferometric Synthetic 
Aperture Radar (InSAR) from measuring ground 
subsidence to quantifying rock glacier motions in 
permafrost regions in Tibet and Nepal where periglacial 
landforms are still not well studied. Based on the InSAR-
observed surface kinematics, we further classified the 
geomorphological type of a puzzling landform in central 
Tibet and also inferred ground ice content stored in rock 
glaciers in Khumbu Valley, Nepal. 
 

2. RESEARCH ACHIEVEMENTS 
 

Through two InSAR-based studies, we have not only 
mapped surface motions at selected rock glaciers but also 
gained quantitative insights into the geomorphology and 
rheology of permafrost creeping.  
 
The first study, as published in [2], aimed to address a 
long-standing issue concerning geomorphological 
classification from a kinematic perspective. A group of 
periglacial landforms consisting of several lobes were 
discovered in the East Kunlun Mountains of China 30 
years ago [3] but were ambiguously classified as rock 
glaciers and later as gelifluction deposits [4]. We revisited 
the previous research question centering on the 
classification of the periglacial landforms near Jingxian 
Valley, in a way that integrates the kinematic and 
geomorphologic features of the landforms. We employed 
InSAR to ALOS-1 PALSAR and ALOS-2 PALSAR-2 
images to quantify the temporal and spatial variations of 
the downslope creeping velocities (Figure 1). We also 
conducted geodetic measurements, in-situ field surveys, 
and excavated test pits to provide supplementary 
geomorphological information. By critically analyzing the 
influences that the mechanical processes imposed on the 

landform and piecing our observations together, we 
identified the landform as a debris-mantled-slope- 
connected rock glacier, with gelifluction processes 
occurring on the surface as small-scale and discrete 
events. 
 

 
Fig. 1 Velocity maps of one lobe at the Jingxiangu 
Rock Glacier, showing the temporal and spatial 
variations of the downslope velocities as estimated 
from InSAR. The brown circles mark the locations of 
the two test pits.  Figure modified from [2]. 
 
The second study, published as a discussion paper and 
still under review in [5], investigated the potential water 
storage of the rock glaciers situated in Khumbu Valley, 
Nepal by developing a velocity-constrained model to infer 
their ice contents. We adopted a rheological model based 
on adaptations of Glen’s flow law and assumed a 
homogeneous two-layer structure for rock glaciers that 
consists of an ice-free active layer and an ice-rich 
permafrost core. The velocity constraints applied to the 
model were derived from InSAR measurements using 
ALOS-1/2 PALSAR-1/2 images (Figure 2). The inferred 
ice fraction of the studied rock glaciers in Khumbu Valley 
ranges from 71.0% to 75.3%. Extrapolating from our 
findings in Khumbu Valley, the total amount of water 
stored in rock glaciers could be ~10 billion m3 over the 
Nepalese Himalayas. 
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Fig. 2  Velocity field maps show the average movement 
rate of the coherently moving parts of five rock 
glaciers (purple outlines) in Khumbu Valley. The 
boundaries of the landforms delineated in previous 
inventorying work are in red polygons. The 
background is the Google Earth Images. RG: rock 
glaciers. The figure is modified from [5]. 
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1. はじめに 
 

地方自治体にとって豪雪は非常に大きな経済的負

担を与えている。新潟県管理道路の除雪費は年間

100 億円を超えるなど、除雪車の運用は多額の税金

が投入されるが、その運用計画（ルート選択や運用

回数）には作業領域全体の積雪の空間分布が客観的

に反映されていない。しかも年によって降雪の頻度

や量が変わるため、同じ計画を毎年実施することは

合理的でない。 
このような背景を踏まえ、広域の積雪深分布把握

技術は、積雪地域のレジリエンス向上のために不可

欠な技術である。合成開口レーダー（SAR: Synthetic 
Aperture Radar）を用いた衛星観測では、積雪の深度

に応じたレーダー反射強度の減衰が確認されている

[1]。積雪にマイクロ波を放射した場合に後方散乱と

して受信する反射波は露出面での表面散乱、地面で

の表面散乱、積雪層内における体積散乱の 3 通りに

分類できる[1]。 
積雪が液体の水分を含むと、積雪粒子と水の誘電

率の違いによって、後方散乱が著しく減少する[2], 
[3]。従来の SAR による積雪量推定は C-バンドを用

いたものが多く、波長が短いことにより、液体水分

を含む積雪層への適応が大きなハードルとなってい

た[1]– [5]。C-バンドより波長の長い L-バンドマイ

クロ波は、積雪内部構造のより深い部分まで浸透す

るという特徴がある[5]。L-バンドを用いた既存研究

では、積雪深 250 cm 程度まで感度があり、積雪深

と後方散乱強度差分との間に、負の相関関係が確認

された[6]。また干渉 SAR 解析よりも後方散乱強度

差分の方が有用であることも示されている。 
本研究「SAR データ等を用いた豪雪地域の積雪深分

布プロダクトの開発」は SAR（Synthetic Aperture 
Radar 合成開口レーダー）を利用した、湿雪にも対

応する積雪深マップの開発を目的とする。地上計測

点網や積雪深モデルでは達成できなかった高解像度

な空間分布を実現し、ALOS-4 を利用した積雪深情

報提供サービスの構築に必要な基礎的知見を得るこ

とをねらいとする。 
 

2. 対象地域 
 
本研究対象地域は新潟県長岡市付近の平野部から山

間部にかけての地域である（Fig. 1）。信濃川流域圏

の一部であり、沿岸域から標高 1520 m まで含まれ

る。コシヒカリ生産で有名な魚沼も含まれる。 
 

 
Fig. 1) Location of in-situ snow-depth measurement 
and spatial distribution of SAR-based snow-depth 

estimation in the study site. 
 

3. データ 
 
陸域観測技術衛星「だいち２号」に搭載された L-

バンド合成開口レーダーである PALSAR-2 のデータ

について、研究対象地域を観測したものを入手し、

解析に用いた。全て Stripmap モード（HH 単偏波；

空間分解能３ m）であり、2015 年以降の 11 月から

3 月にかけて Descending または Ascending 軌道から

観測したものである。詳細は Table 1 に示した。11
月のデータは無雪時の状況を参照するために用い、

その他の時期は全て積雪域が広く含まれるものであ

る。 
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Table 1) Orbit and acquisition dates of PALSAR-2 
data 

 
 

積雪深の現地計測値は、新潟大学災害・復興科学

研究所が公開する準リアルタイム積雪深分布図

（ https://platform.nhdr.niigata-u.ac.jp/~snow-map/ ） の

作成に使用されているものを用いた[7]。１日おきの

現地計測値と現地計測地点の位置（Fig .1）が記録さ

れたものであり、PALSAR-2 観測日を全て含む。 
現地計測地点周辺の土地被覆を把握するため、

JAXA 日本域高解像度土地利用土地被覆図（10m 解

像度【2018～2020 年】(ver.21.11)）を入手した[8]。
また現地計測地点周辺の標高と地形を把握するため、

JAXA ALOS 全球数値地表モデル  (DSM) "ALOS 
World 3D - 30m (AW3D30)" (ver. 3.2)を入手した[9]。
さらに気象条件が推定精度に与える影響を検討する

ため、気象庁が公開する「長岡」における

PALSAR-2 観測日の当日と前日について、降水量、

積雪深、気温の各情報を入手した（Table 2）。 
 

Table 2) Meteorological data provided by the Japan 
Meteorological Agency 

前日 当日 前日 当日 変化量
-0.793 2015/2/3 Desc 2 2 67 62 -5
-0.781 2018/1/28 Asc 9 3 58 55 -3
-0.712 2016/3/1 Desc 2 13 2 12 10
-0.617 2020/2/23 Asc 0 0 0 0 0
-0.597 2019/2/24 Asc 0 0 0 0 0
-0.539 2017/2/28 Desc 0 0 0 0 0
-0.527 2018/1/30 Desc 18 45 55 94 39
-0.52 2015/3/15 Asc 0 0 13 9 -4

-0.411 2019/2/26 Desc 0 0 0 0 0
-0.361 2018/3/25 Asc 0 0 0 0 0
-0.208 2018/2/27 Desc 1 0 87 85 -2
-0.033 2020/2/25 Desc 0 0 0 0 0

 

 
 

 

 

降雪積雪深
（cm）

全層積雪深
（cm）相関係数 Date Orbit

 

 
 

 
 

 

 

前日 当日
-0.793 2015/2/3 Desc 0.5 0 -0.2 2.4
-0.781 2018/1/28 Asc 5.5 0.5 -1.2 10.3
-0.712 2016/3/1 Desc 22.5 6 -1.1 3.8
-0.617 2020/2/23 Asc 4.5 11.5 3.7 6.9
-0.597 2019/2/24 Asc 1.5 0 1.9 2.4
-0.539 2017/2/28 Desc 0 0 -2.9 -1.2
-0.527 2018/1/30 Desc 16.5 25.5 -3.3 8.2
-0.52 2015/3/15 Asc 4 0 -1.8 15.8

-0.411 2019/2/26 Desc 0 0 1.2 11.7
-0.361 2018/3/25 Asc 0 0.5 4.8 9.1
-0.208 2018/2/27 Desc 3.5 0 -3.1 7.6
-0.033 2020/2/25 Desc 3 9 4.1 9.7

最低
気温
（℃

最高
気温
（℃

相関係数 Date Orbit
降水量
（mm）

 
 

4. 手法 
 

SAR データの解析結果を積雪深現地計測値で校正

することにより、積雪深空間分布を導出する（Fig. 
2）。まず積雪時・無雪時それぞれの PALSAR-2 デ

ータを後方散乱強度の物理量（dB）に変換し、それ

ぞれに共通の平滑化フィルタを実施する。平滑化フ

ィルタとはある半径の円内に含まれる画素値の平均

を中心画素に与え直す画像処理であり、半径を大き

くするほどスペックルノイズの影響が軽減され、見

た目がぼやけた画像になる。そして積雪時と無雪時

の差分値を求める。積雪深現地計測地点における差

分値（dB）と積雪深実測値（cm）の関係を単回帰式

として求め、この式から強度差分画像（dB）を積雪

深マップ（cm）へ変換する。 
 

 
Fig. 2) Processing flow of SAR-based snow-depth 

estimation 
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5. 結果と考察 
 
まずスペックルノイズを除去し、空間代表性を考

慮した相関関係の導出のために、平滑化フィルタを

最適化する必要がある。Figure 3 を見てわかる通り、

積雪深と後方散乱係数変化量は負相関であり、平滑

化フィルタの半径が大きいほど、より強い相関の分

布を示す傾向がある。現地積雪計測地周辺の土地被

覆（半径 300 m 圏内の最尤被覆）を見ると、平滑化

フィルターをかけることによって、土地被覆による

バイアスはほとんど影響がなくなる。同じ積雪深の

場所では水田が比較的低い値を示す傾向が見られる。

都市域で浅く、森林で深い積雪深であるのは、標高

によって土地被覆に偏りが生じていることが原因で

ある。 
 
a) 

 
b) 

 
 

Fig. 3) Examples of scatter plot of snow depth and 
backscatter amplitude difference with (a) 10-m and (b) 

150-m smoothing filters 
 
Figure 3 について、どの程度の規模の平滑化フィ

ルタを実施すれば良いかについて、設定する半径を

変えていった場合の相関係数の変動を調べた（Fig. 
4）。Descending/Ascending orbit それぞれについて、

相関係数の大きさは観測日によって大きく異なる。

強い負の相関（r< -0.5）を示し積雪推定に適した観

測日のデータについては、概ね 300 m 以上の半径で

平滑化フィルタを実施することによって、安定した

相関係数が得られることがわかった。相関係数が０

に近く弱相関の観測日のデータについては、平滑化

フィルタに関わらず、常に弱相関である。 
 

a) 

 
b) 

 
Fig. 4) Fluctuation of correlation efficient with 

different-scale smoothing filters in (a) descending and 
(b) ascending orbits. 

 
現地計測積雪深と後方散乱係数変化量との関係性

を示す単回帰式の傾きについては、観測日によって

0 から-0.01 程度の異なる値を示すこと、また平滑化

フィルタを変えてもほどんど影響が及ばないことが

わかった（Fig. 5）。 
次に積雪深推定に誤差を生じる特性のある地点を

明らかにし、除外する方法を検討する。平滑化フィ

ルタの適応半径を 300 m に固定し、土地被覆ごとの

積雪深に対する後方散乱係数差分値の分布傾向を全

シーンで調べた（Fig. 6）。概ね水田と畑地が差分値

の分布を引き下げている傾向が見られる。森林は回

帰直線に沿って標準的な差分値を示す。相関の弱い

観測日では、特定の土地被覆がばらつきを大きくし
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ているわけではなく、土地被覆全てにおいてばらつ

きが大きい傾向がある。3 月ごろの積雪融解が進行

し、相関がなくなる傾向はもちろんであるが、3 m

以上など十分に積雪があっても相関が弱くなる場合

がある。 
 

 

a) b)  
Fig. 5) Fluctuation of regression-line gradient with different-scale smoothing filters in (a) descending and (b) 

ascending orbits. 
 
a)         b)                c)        d) 

 
e)         f)                g)        h) 

 
i)         j)                k)        l) 

 
Fig. 6) Correlation of in-situ snow depth and backscatter amplitude difference in PALSAR-2 observation dates 
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Figure 6 の分布と Table 2 と比較すると、より直前

に降雪があり前日か当日に新雪層が加わっている場

合には高相関である場合が多いことがわかる。新雪

層の大小が反映されている可能性がある。最低気温

が０℃を上回っている場合、積雪表層部分は融解水

によって含水率が高いと考えられる。このような条

件が期待できる日の場合、低相関であることが多い。

もともと気象庁観測地点「長岡」では積雪がなくな

っているため積雪深の増減がないが、高標高域では

融解が進んでいる可能性がある。回帰直線の傾きに

ついては、r= 0.5 以上の高相関の場合、-0.004 から-
0.01 の値を示す。r= -0.7 よりも顕著な負相関である

場合、より勾配が急になる（傾き< -0.01）特性を持

つ。このように観測全シーンを俯瞰すると、積雪深

と後方散乱係数差分の相関が顕著になる傾向は読み

取れるが、顕著な負相関を示す上での必要条件は見

出せなかった。 
地形に関する分類結果を含めた積雪深と後方散乱

係数差分との関係を Fig. 7 に示す。ここでは Fig. 6
の縦軸横軸を転置させて表している。標高値と斜面

傾斜角について、観測地点の周り半径 300 m での

AW3D30 からの平均値を現地観測地点毎に計算し、

その分布の４分位をもとに上位 25%を赤、下位 25%
を青のドットで示している。どちらも積雪深が大き

いのは高標高・急傾斜の場所であることが示され、

積雪が無いか低いところは低標高・緩傾斜となった。

これらは山間部と平野部の観測地点に分類されてい

て、山間部ほど雪が深いということを示している。

標高値と斜面傾斜角においては、相関関係の改善に

つながるようなサンプルの取捨選択方法は見出され

なかった。 
一方で、高標高ほど気温が低く積雪中に水分がよ

り多く含まれるということは、今後、考慮に含める

べきである。特に高標高エリアと低標高エリアを比

較すると、高標高エリアのサンプルの分布（赤ドッ

ト）が全体の単回帰式に対してより急勾配な分布で

あるように見える。標高値、気温減率、気象観測デ

ータ（気温）を利用して、分布の傾きが変化するよ

うな条件を見出せば、湿雪の存在が相関関係に影響

を与えるかどうかも、わかるようになるかもしれな

い。 
方位角については、Descending orbit の衛星に対し

て正体する斜面（東向斜面）と逆向き斜面（西向き

斜面）に分類した。どちらも回帰直線に対して均一

に分散していて、特定の分布傾向は見られなかった。 
ある 1 箇所の観測地点の後方散乱係数が積雪深の

変 動 に よ っ て ど の よ う に 変 動 す る か を 、

Descending/Ascending orbit それぞれについて、まと

めた（Fig. 8）。もともと後方散乱が大きい点で積雪

深による散乱減少の効果が明確にわかると考え、無

雪時の後方散乱係数が-10 dB 以上のものを色付けし

て示している。どの点も積雪深の増加に対して緩や

かに後方散乱係数が減少する傾向が見られる。加え

て、同程度の積雪深であっても、観測日によって大

きく後方散乱係数が変化する特徴も両軌道で共通し

て見られた。これらのことから、後方散乱係数の減

少は積雪深の増加を反映しているものの、個別のば

らつきが大きく、点レベルではなくより広域での把

握・解釈が適しているという示唆が得られた。 
 

a) 

 
b) 

 
c)  

 
Fig. 7) Correlation of in-situ snow depth and 
backscatter amplitude difference in different 

topographic conditions of (a) elevation, (b) slope 
gradient, and (c) slope aspect. 
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a)  

b)  
Fig. 8) Temporal change of backscatter amplitude 

(dB) in (a) descending and (b) ascending orbits. 
 

6. 結論 
本研究では SAR からの積雪深推定について、ど

こまで統一的な手法やパラメータを設定し、SAR デ

ータから積雪深を高精度に推定できるかを検証した。

現地観測積雪深で校正する際には、300 m 以上の半

径で平滑化フィルタを実施すると、現地積雪深デー

タに対して最もばらつきが小さな後方散乱係数差分

値の分布が得られることがわかった。複数の日時に

おける解析結果を比較すると、2015 年 2 月 3 日に最

もばらつきが少なく理想的な対応関係（r = -0.79; p< 
0.5%）が得られた。同じ校正観測地点であっても日

によって相関関係が弱くなり、これは積雪中に融解

水が予想される日に多く見られる。地形条件（標高、

斜面傾斜、斜面方位）や土地被覆によって相関係数

が弱くなる影響は認められなかった。 
地点毎の偶然のばらつきが大きく、PALSAR-2 デ

ータは細かな道路除雪状況モニタリングに使うには

更なる精度向上が望まれる。しかしながら、流域ス

ケールでどれくらいの積雪を貯留しているかを年々

比較するなど、広域での解析にはより簡単に応用し

やすいのではないかと考えられる。 
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Glaciers are considered key indicators of climate 
change due to their sensitive reaction to even small 
climatic changes. The Tibetan Plateau (TP) hosts the 
largest glacier concentration outside the polar regions, it is 
the water tower of China and several countries in Asia, 
and glacier change in the TP play an important role in 
their production and daily lives.  

To study the applicability of full polarimetric 
synthetic aperture radar (SAR) data to identify alpine 
glaciers in the central Himalayas, six polarimetric 
decomposition methods were used to obtain 20 
polarimetric characteristic parameters based on the 
Advanced Land Observing Satellite 2 (ALOS-2) Phased 
Array type L-band Synthetic Aperture Radar (PALSAR) 
data. Object-oriented multiscale segmentation was 
performed on a Landsat 8 Operational Land Imager (OLI) 
image prior to classification, and the vector boundaries of 
different types of training samples were selected from the 
segmented results. We performed a support vector 
machine (SVM)-based classification on the characteristic 
parameters from each polarimetric decomposition. All 20 
parameters were then screened and combined according to 
different requirements: the degree of separability of 
different types of training samples and the type of 
scattering mechanisms. The results show that the 
classification accuracy of the incoherent decomposition 
characteristics based on the covariance matrix is the best, 
reaching 87%, and it can exceed 91% after adding the 
local incidence angle to the suite of classifiers. Eventually, 
more than 93% accuracy was achieved using a 
combination of multiple polarimetric parameters, which 
reduced the misclassification between bare ice and rock. 
We also analyzed the use of controlling factors on the 
accuracy of alpine glacier identification and found that the 
polarimetric information and aspect of the glacier surface 
are the most important factors. The former is the main 
basis for identification, but the latter will confuse the 
feature distributions of different categories and cause 
misclassification. 

Distinguishing debris-covered glaciers from debris-
free glaciers is difficult when using only optical remote 
sensing images to extract glacier boundaries. According 
to the features that the surface temperature of debris-
covered glacier is lower than surrounding objects, and 
higher than clean glaciers, glacial changes in the Yigong 
Zangbo basin was analyzed on the basis of visible, near-
infrared and thermal-infrared band images of Landsat TM 
and OLI/TIRS in the support of ancillary digital elevation 
model (DEM). The results indicated that glacier area 
gradually declined from 928.76 km2 in 1990 to 918.46 

km2 in 2000 and 901.51 km2 in 2015. However, debris-
covered glacier area showed a slight increase from 63.39 
km2 in 1990 to 66.24 km2 in 2000 and 71.16 km2 in 2015. 
During 25 years, the glacier length became shorter 
continuously with terminus elevation rising up. The area 
of moraine lakes in 1990 was 1.43 km2, which increased 
to 1.98 km2 in 2000 and 3.41 km2 in 2015. In other words, 
the total area of the moraine lakes in 2015 is 2.38 times of 
that in 1990. This increase in moraine lake area could be 
the result of accelerated glacier melt and retreat, which is 
consistent with the significant warming trend in recent 
decades in the basin.  

At the same time, by applying the method of SAR 
interferometry to X-band synthetic aperture radar (SAR) 
image of COSMO-SkyMed, detailed motion patterns of 
five glaciers in the Parlung Zangbo River basin, Tibetan 
Plateau, in January 2010 have been derived. The results 
indicate that flow patterns are generally constrained by 
the valley geometry and terrain complexity. The 
maximum of 123.9 m yr-1 is observed on glacier No.1 and 
the minimum of 39.4 m yr-1 is found on glacier No.3. The 
mean values of five glaciers are between 22.9 and 98.2 m 
yr-1. Glaciers No.1, No.2, No.4 and No.5 exhibit high 
velocities in their upper sections with big slope and low 
velocities in the lower sections. A moraine lake 
accelerates the speed of mass exchange leading to a fast 
flow at the terminal of glacier No.3. These glaciers 
generally move along the direction of decreased elevation 
and present a macroscopic illustration of the motion from 
the northwest to the southeast. The accuracy of DEM and 
registration conditions of DEM-simulated terrain phases 
has certain effects on calculations of glacier flow 
direction and velocity. The error field is relatively 
fragmented in areas inconsistent with the main flow line 
of the glaciers, and the shape and the uniformity of glacier 
are directly related to the continuous distribution of flow 
velocity errors. 
 
APPENDIX 
 
[1] Guo-Hui Yao, Chang-Qing Ke*, Xiaobing Zhou, 
Hoonyol Lee, Xiaoyi Shen, Yu Cai. Identification of 
alpine glaciers in the central Himalaya using fully 
polarimetric L-band SAR data. IEEE Transactions on 
Geoscience and Remote Sensing, 2020, 58(1): 691-703. 
doi: 10.1109/TGRS.2019.2939430. 
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1. INTRODUCTION 

       The warming of the global climate has become an 

indisputable fact of climate change. Under the influence 

of rising global temperature, the frequency of 

precipitation and the melting of glaciers are accelerated, 

resulting in increased flow of rivers, which in turn triggers 

sea level rise.  In China, a large number of glaciers are 

retreating, the frequency of glacier jumps has increased 

sharply, and geological disasters such as glacier collapse 

and glacial lake collapse have occurred frequently. 

      The areas where glaciers are distributed are usually 

steep in terrain and difficult to reach by manpower, so 

long-term on-site dynamic monitoring cannot be 

completed. The emergence of advanced remote sensing 

satellites can obtain glacier movement information with 

high resolution, global coverage and low-cost technology, 

and has become an important means of glacier movement 

monitoring. Optical images obtained by Earth observation 

satellites are commonly used data sets in glacier 

monitoring. Compared with traditional methods such as 

field measurements, they have a wider coverage, shorter 

revisit periods and lower costs.  Many researchers used 

optical imaging early to measure surface displacement, 

glacier topography and velocity[1].Optical remote sensing 

technology is relatively mature, but it cannot overcome 

the limitations of weather conditions such as dependence 

on light and cloud and rain.  In contrast, Synthetic 

Aperture Radar (SAR) can observe day and night without 

the limitation of cloud and rain in glacial regions.  

Currently, techniques for monitoring glacier movement 

based on SAR data include offset tracking, DInSAR 

(Differential Interferometric Synthetic Aperture Radar), 

and MAI (Multi-Aperture Interferometry) [2-8]. 

      In 2016, two major natural disasters occurred near Aru 

lake in Tibet, China. Glacier surging occurred in two 

glaciers of nameless mountain on the west side of Aru 

Lake, and part of the collapsed ice entered Aru lake, that 

had caused serious damage to the lives and property of the 

local people and the fragile ecological environment of the 

surrounding areas. Some studies have shown that the 

collapse of the two glaciers is inconsistent with the glacier 

surging, which is manifested as a cycle between the 

stationary period and the active period[9]. This may 

indicate that these glaciers are now transitioning from 

cold bases to hotter glaciers due to warming conditions in 

the region.  The phenomenon also threatens the stability 

of similar glaciers that are widely distributed on the 

Qinghai-Tibet Plateau.  Therefore, the monitoring of 

glacier movement is of great significance to the 

monitoring and early warning of the Aru region and even 

the entire Qinghai-Tibet Plateau. The study intends to use 

ALOS PALSAR-1/2 L-band and COSMO-SkyMed-X-

band SAR data, mainly using offset tracking technology, 

and to evaluate the surface motion characteristics of the 

two glaciers before and after surging, and evaluate the 

applicability in glacier surging monitoring. 

 

2. 1. STUDY AREA AND DATASET 

2.1.1 Study area 

Aru region, located in the northern Tibetan Plateau, 

is an administrative division of Tibet Autonomous Region, 

and geographical coordinates are 78 23’40’’E-86 11′

51′ ′ E and 29 40′ 40′ ′ N-35 42′ 55′ ′ . Aru 

region is high in elevation, the altitude ranges from 

3862.5 m to 6606.9 m, with an average elevation of 

5450.6 m. The climatic conditions are dry and cold and 

the annual rainfall is small and the temperature difference 

between day and night is large (In august, the daytime 

temperature is above 10℃ while dropping below 0℃ in 

night-time). In July and September 2016, ice avalanche 

occurred in the two glaciers of nameless mountain located 

in the west of Aru Lake. Part of the collapsed glacier body 

entered Aru Lake. Figure 1 shows the location of the two 

collapsed glaciers. 
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Fig.1.  Google Earth image of the two glaciers next to 

Aru lake. (The glaciers are marked with red lines. 

The ID of the northern one is 5Z4120009, and the ID 

of southern one is 5Z412007) 

2.1.2 Data 

ALOS PALSAR-1/2 were launched by Japanese 

Space Agency in 2006 and 2014, respectively. The two 

satellites are equipped with L-band sensors, including 

single, dual and full polarization modes. In this study,5 

ALOS images, collected in 2008, 2009 and 2015 - before 

the glacier surging-, and 2 images collected in 2018 - after 

the glacier surging - were used including reference and 

slave image. ALOS PALSAR-1 images were acquired in 

high-resolution mode (4.68 m in range and 3.15 m in 

azimuth), and the polarization mode is HH. Regarding 

ALOS-2 images, they were acquired in strip mode (4.29 

m in range and 3.78 m in azimuth) and the polarization 

mode is HH. Image registration and geocoding were 

assisted by a 5-meter resolution DSM (digital surface 

model), calculated from the Chinese ZY-3 stereo images. 

In Table 1, the main parameters of ALOS PALSAR-1/2 

data used in this paper are listed. 

Table 1. Main parameters of ALOS PALSAR-1/2 data  

Sensor 
type 

Reference 
image 

date 

Slave 
image 

date 

Ascending/Descending 
Perpendicular 
baseline(m) 

Time 
baseline(d) 

PALSAR1 20081126 20090111 Ascending 445.5 46 

PALSAR1 20090111 20090226 Ascending 164.1 46 
PALSAR2 20151008 20151217 Ascending 160.6 70 

PALSAR2 20180531 20180726 Ascending 24.9 56 

 
COSMO-SkyMed consists of four LEO low-Earth 

orbit medium-sized satellites launched by the Italian 

Space Agency (Agenzia Spaziale Italiana, ASI), each with 

a microwave high-resolution synthetic aperture radar X-

band sensor operating at 9.6 GHz,  The wavelength is 3.1 

cm, and it has the function of left and right vision.  It has 

better resolution and better ground displacement sampling 

rates up to 176.25 MHz than longer wavelength systems. 

The scattering characteristics of the ice surface are 

unstable, and when two SAR images are separated for a 

long time, the decorrelation phenomenon is usually 

serious.  Therefore, data with a smaller time baseline was 

selected to improve its coherence, and the interferometric 

data of 20190920-20190921 were selected for DInSAR 

processing. 

Table 2. Main parameters of COSMO-SkyMed  

Orbit 

direction 

Reference 

image data 

Slave image 

data 

Perpendicular 

baseline(m) 

Time 

baseline(d) 

Ascending 20190920 20190921 -424.5729 1 

Ascending 20190920 20190929 -899.6587 9 

Ascending 20190929 20191006 719.5999 7 

 

3.  METHODS AND PROCESS 

3.1 offset tracking technique 

     The offset tracking technique was used to obtain the 

movement of the glacier surface in both range and 

azimuth directions [10]. In general, the accuracy of offset 

tracking technique can reach more than 1/10 of the pixel 

resolution of SAR image [11]. Thus, for ALOS data with 

about 7 m resolution in ground range, the calculation 

accuracy is better than 1m. 

     The core algorithm of offset tracking technique is the 

normalized cross-correlation algorithm, which generally 

includes the offsets of terrain, ionosphere, orbit and 

glacier movement[4,12-エラー! 参照元が見つかりませ

ん。. 

     The ionospheric offset is related to latitude and sensor 

wavelength. Aru region is located in a low latitude area, 

and the spatial scale of ionospheric variation is small, 

compared with the glacier area, so it can be ignored[14]. 
The offset caused by the terrain is related to the time 

baseline and topographic relief. In this study, the terrain is 

steep, so the influence of topographic relief needs to be 

considered. Firstly, the master and slave image 

registration lookup table was established based on the 

track information of the external DEM (digital elevation 

model) and SAR images, and then the master image and 

the slave image obtained based on the initial lookup table 

were cross-correlated for registration. Then, the offset 

caused by the terrain of the study area was introduced into 

the lookup table to further refine it. This method can 

reduce the offset error caused by inaccurate track 

positioning and improve the accuracy of offset tracking in 

topographical relief areas[15-16]. The accuracy of 

registration can be evaluated by analysing the coherence 

of master-slave images with interferometric fringes. 

Therefore, interferograms and coherence images are 

generated.  
7 ALOS PALSAR scenes were used. Since the area 

covered by the images was different, there was a need to 

crop them all around the location of the two glaciers. 

Then the external DEM was used to assist the SAR image 

pairs’ registration. The interferograms were generated 

from all image pairs in order to check the reliability of the 

registration and analyse the possibility to detect the 

glacier movement with InSAR and MAI. Finally, based 

on cross-correlation calculation of image pair’s intensity, 

the surface flow of the 2 glaciers in different periods were 

measured and analysed by creating 2-Dimensional 

velocity diagrams which were modulo of azimuth and 

range displacement based on offset tracking method. 

3.2 D-InSAR 
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      Differential Synthetic Aperture Radar Interferometry 

(Differential InSAR, DInSAR) is used to monitor small 

changes in the Earth's surface topography on the order of 

a few centimeters or less in the satellite line-of-sight (LOS) 

and provide accurate measurements related to various 

geophysical phenomena.  kinematic data.  For example, 

tectonic and volcanic activity, land subsidence, ice sheet 

and glacier movement, and landslides are involved.  The 

two-orbit differential method is one of the most 

commonly used methods in differential satellite-based 

interferometry, which involves analyzing the phase 

difference between two SAR images from two separate 

flight trajectories and eliminating them using a digital 

elevation model (DEM).  Terrain effects. 

     Ideally, the two imaging of the ground object by the 

antenna are located in the same spatial position, but in 

practice, the technology cannot achieve the exact same or 

repeated orbit platform and parameter settings for the two 

repeated imaging of the antenna.  Therefore, when 

obtaining the interference pair of two SAR images, it is 

necessary to perform image registration, generate an 

interferogram, and obtain the upward change of the radar 

line of sight according to the change of the phase 

difference in the interferogram, so as to obtain the change 

of the terrain information. 

 
 

4. RESULTS AND ANALYSIS 

4.1 offset tracking technique 

Through differential interferometry of the PALSAR-

1/2 image pairs (Table.1), 4 interferograms were 

generated (see Fig.2). At the first glance the fringes in all 

interferograms were very clear. The interferometric 

fringes of flat terrain are straight, while the 

interferometric fringes of mountain area are distributed 

along the terrain trend, which were in line with the actual 

interferometric fringe characteristics. It can be stated that 

the registration of all the image pairs are accurate enough 

to be used for DInSAR, MAI and offset tracking. But the 

fringes disappeared on the glaciers in all interferograms, 

which means that the coherence on glaciers were poor and 

the phase based InSAR and MAI methods can’t be 

applied to detect glaciers’ movement. 

        
(a) 2008/11/26-2009/01/11                   (b) 2009/01/11-2009/02/26 

        
(c) 2008/11/26-2009/01/11               (d) 2008/11/26-2009/01/11 

Fig.  2. The interferograms generated using 

PALSAR-1/2 image pairs 

The differential interferogram (SAR coordinate 

system) of the 1-day time baseline is generated during the 

DInSAR process, with poor coherence and only obvious 

phase information at the tail of the glacier.  It can be seen 

from the figure that the shadow situation caused by terrain 

fluctuations in the study area is serious, and this 

phenomenon occurs in the data of the ascending and 

descending orbits.   

 

Fig.3.  20190920-20190921  

4.2 Analysis of offset tracking results 

4.2.1 PALSAR- 1/2 results 

Based on the offset tracking technique, PALSAR- 1/2 

images were used to obtain the displacement 

characteristics of the two glaciers from both range and 

azimuth direction. The two-dimensional velocity field of 

the 2 glaciers, in four time periods, were calculated and 

the results are shown in Fig.3. 

From Fig.4 (a-d), it can be concluded  that: (1) glacier 

5Z4120009 shows a maximum movement velocity in 

2008-2009, of about 5 cm/d, being the maximum 

movement velocity in 2015 of about 20 cm/d, and the 

maximum movement velocity in 2018 of about 5 cm/d; 

(2) glacier 5Z4120007 shows a maximum movement 

velocity of about 7 cm/d, in 2008-2009,  and the 

maximum movement velocity was of about 12 cm/d, 

reached in 2015. In 2018 the maximum movement 

velocity was about 7 cm/d; (3) comparing with the 

velocities before the glacier surging, the ones after the 

glacier surging are significantly increased. 

The results show that the glaciers’ movement 

velocity accelerate as the monitoring period approaches 

the ice avalanche date. After the glaciers surging in 2016, 

the glaciers’ movement returns to the relatively low 

velocity as before the surging. That’s to say the velocities 

before the glacier surging are significantly increased  and 

significantly decreased  after the glacier surging. These 
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conclusions show that glaciers’ movement velocity can be 

used as a valuable indicator to find and monitor surging 

glaciers. 

    
(a) 2008/11/26-2009/01/11           (b) 2009/01/11-2009/02/26 

    
(c) 2015/10/08-2015/12/17          (d) 2018/05/31-2018/07/26 

Fig.4.  Representation of the 2-Dimensional velocity 

diagram of the 2 glaciers near Aru Lake 

4.2.2 COSMO-SkyMed 

The COSMO-SkyMed data is processed by the 

DInSAR method. After selecting the SAR image, the 

cross-correlation algorithm is used to perform refined 

registration first to generate the interferogram.  A 

differential interferogram is generated by subtracting the 

topographic phase simulated by the DEM from the 

original interferogram.As shown in Figure3, the 

differential interferogram is displayed as a contour map 

composed of fringes, containing changes in surface 

motion in terms of glacier motion information.  In order to 

suppress the decorrelation noise, a multi-view operation is 

performed to process the interferogram, and then a least-

squares-based interferogram filter is performed. The 

stable rock area near the glacier is selected as the 

reference point, and the phase unwrapping is performed 

by the minimum cost flow (MCF) algorithm to generate  

For the results in the LOS direction, the SAR coordinate 

system is finally converted into geographic coordinate 

system data for further analysis, as shown in Figure 5. 

The 20190920-20190929 interferometric pair based 

on DEM-assisted offset tracking technology is compared 

and analyzed for the daily average velocity results in the 

LOS direction and the 1-day displacement results of 

DInSAR.  According to Figures 5 and 6, it can be seen 

that both methods detect glacier movement, and the 

maximum LOS velocity of the glacier detected by the 

offset is 25 cm/d, which is mainly distributed in the 

middle and upper ends of the glacier, and the glacier's 

maximum LOS velocity detected by the offset is 25 cm/d.  

The high-value area of speed fits well with the area with 

large terrain slope.  The maximum displacement of the 

glacier detected by DInSAR in one day is 6 cm, and the 

displacement is mainly distributed at the end of the glacier, 

indicating that the glacier is still expanding. 

 

Fig.5. 20190920-20190929 offset result (LOS direction) 

 
Figure 6 20190920-20190921DInSAR results 

5. REFERENCES 

The snow cover on the upper part of the glacier is 

obvious, so the ground reflection on the upper part of the 

glacier is strong, and its coherence is poor. Therefore, 

only the information of the tail end of the glacier is 

obvious in this DInSAR survey.  The deviation of the 

results of the two methods is due to the fact that the offset 

is averaged based on the results of 9 days. Therefore, the 

glacier movement rate in the figure is smaller than that 

obtained by the DInSAR method, while the result 

obtained by the offset tracking technique is smaller.  The 

detection results of the tail of DInSAR also verified that 

the glacier is constantly moving and flowing into Lake 

Alucuo.  From the accumulation fan formed at the tail end 

and the ice blocks floating in the Alu Co Lake below it, it 

can be concluded that the glacier movement is very active 

and the flow is rapid, and the ice blocks and meltwater 

formed by the glacier movement enter the Alu Co Lake.  

Therefore, the floating ice and meltwater of the glacier 

become the main water source of Alu Co Lake.  During 

the melting period of the glacier, a large amount of ice-

water mixture was formed and the water flow was 

injected into the lake, and the water level of the lake rose. 
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When the water level of Alucuo Lake rose, the ice blocks 

in the lower part of the glacier fell off and melted, causing 

the glacier to melt faster and the flow rate to increase. 

     5. CONCLUSION 

The migration tracking technique was applied to 3 

ALOS PALSAR-1 and 4 ALOS-2 PALSAR-2 images to 

monitor the surface motion before and after the avalanche 

that occurred on two glaciers near Lake Aru in 2016.  

Two main research conclusions can be drawn: 

(1) Offset tracking technology is more suitable for 

monitoring glacier movement than D-INSAR technology. 

(2) Before the glaciers surging in 2016, the maximum 

movement rate of the 2 glaciers’ surface increased from 5 

cm/d and 7 cm/d to 20 cm/d and 12 cm/d, respectively. 

After the events, the movement velocity of the glaciers 

decreased. The maximum glacier movement velocity in 

2018 decreased to 5 cm/d and 7 cm/d, close to the 

monitoring results of 2008 and 2009. 

    Based on the COSMO-SkyMed data and offset tracking 

technology in September-October 2019 to detect the flow 

velocity changes of the Alucuo Glacier, DInSAR 

detection was carried out on the COSMO-SkyMed data of 

the 1-day time baseline and the ALOS-2 data of the 14-

day time baseline. The results show that the Alucuo 

Glacier moves at an average flow rate of 8 cm/day from 

late September to early October, and the highest regional 

movement rate can reach 22 cm/day;  From the front of 

the glacier to the tongue of the glacier, the area with the 

largest flow velocity is spatially consistent with the area 

with the largest terrain slope. 
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1. INTRODUCTION
The overall objectives of this project are: 

1) Improving sea ice type classification and geophysical
parameter retrievals for operational and scientific
applications. This implies studies of synthetic aperture
radar (SAR) signature changes for different sea ice types
due to variations in meteorological and environmental
conditions, with focus on ALOS-2 and ALOS-4 SAR
systems in comparison to Sentinel-1;
2) Separation of thin ice from oil slicks utilizing the good
signal to noise ratio of L-band SAR
3) Studying the surge initiation phase of the glacier
Kongsvegen on Svalbard.

The motivation fro this study is founded in the climate 
changes enfolding in polar areas. In the light of a 
changing Arctic regime towards an environment with 
thinner sea ice, a longer melt season and potentially 
higher sea ice drift velocities with increased sea ice 
deformation, time series using L-band SAR are here used 
for seasonal sea ice studies. A changing Arctic climate 
regime with longer melt seasons, thinner sea ice and 
changes in the sea ice composition requires further studies 
into SAR-based sea ice classification and geophysical 
parameter retrievals. The longer penetration depth of L-
band SAR has already been established to be beneficial in 
sea ice classification, where it has been shown to be of 
general benefit for characterizing sea ice surfaces and 
classifying sea ice into ice types. It improves 
discrimination between first year ice (FYI) and multiyear 
ice (MYI), and it improves detection and characterization 
of leads and thin ice areas. L-band SAR has also been 
found to be beneficial for monitoring early and advanced 
sea ice melt. This is in particular important for operational 
sea ice mapping.  

In this project we have identified polarimetric and textural 
parameters that can help improve sea ice classification 
during different environmental conditions and incidence 
angles. During the MOSAiC drift study, overlapping C- 
and L-band images were acquired and the sea ice 
characterization capabilities compared to identify 
complementarity of the two frequencies.  

In addition, the well monitored areas on Svalbard, and in 
particular Kongfjorden and the surrounding glaciers such 
as Kongsvegen, allow for studies of SAR capabilities of 
monitoring a cryosphere system from glacier to sea ice 

and open ocean. The satellite monitoring of the upcoming 
surge of Kongsvegen is of specific importance from a 
climate change perspective. The ongoing high resolution 
in-situ monitoring of the glacier and its surroundings, 
combined with the collection of ALOS-2 satellite data, 
provides a unique opportunity to observe a Svalbard 
glacier surge from the start for the first time.  

2. DATA

Multi-channel SAR observations over ice infested areas 
north of Svalbard and in the Fram Strait were acquired. 
Thanks to a much appreciated flexibility from JAXA, we 
were able to acquire data over the MOSAiC sea ice drift 
study, and over the Belgica bank area to overlap one of 
the Nansen Legacy cruises in 2021. In total, 60 ALOS 
scenes were ordered and received for the project. These 
consisted of 18 quad-pol scenes, 16 dual-pol scenes and 
26 ScanSAR wide-swath, dual-pol scenes. Most of the 
scenes were acquired during the MOSAiC cruise 
(September 2019 – October 2020).  

In-situ data, including meteorological observations, and 
sea ice and snow data, was collected during the MOSAiC 
drift campaign, and these data was used to interpret 
observations made in the overlapping C- and L-band SAR 
images.  

In-situ ground-based field data of glacier movement, 
meteorological and mass balance data were collected from 
the  Kongsvegen glacier and nearby glaciers as a part of a 
mass-balance monitoring program conducted by the 
Norwegian Polar Institute. Glacier mass balance has been 
measured since 1987 and velocity data along the centre 
line of Kongsvegen started in 2004. Since the early 1990s, 
ice-penetrating radar surveys were conducted to complete 
existing bed topography maps and to document changes 
in the thermal structure. In 2018, an expanded monitoring 
system was set up, which included five continuously-
logging GNSS receivers, installed at ca. 3 km intervals 
along the glacier centreline, a 330-m long borehole, 
drilled to the glacier bed and instrumented with a 
thermistor string, basal water pressure sensor, and 
cameras to monitor the front. Year-round meteorological 
data are also available from the Ny-Ålesund Research 
Station in Kongsfjorden. 
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3. METHODOLOGIES  

 

A machine learning method was used in [A1, A4 and A6]. 
The method relies on fully polarimetric SAR images and 
consists of two steps; first 18 polarimetric features are 
extracted, and thereafter, patches for training/validation of  
the artificial neural network (ANN) classifier are 
identified. Regions of interest (ROIs) were identified 
manually by using  in-situ data as well as overlapping 
optical images to find suitable areas. A detailed 
description of the ANN is available in [1]. The methods 
classify the observed sea ice scenes into four different 
classes, i.e., open water and nilas (OW), YI, smooth 
FYI(SFYI), and rough first year/multiyear ice (RFYMYI).  

In [A2] the segmentation method outlined in [6,7] were 
used to segment the fully-polarimetric ALOS-2 PALSAR-
2 images. The segments were subsequently classified by 
sea ice expert at the Ice Service at the Meteorological 
Institute of Norway.  

For [A3,A5,A7,A9,A12], the ROIs were identified 
manually, and where possible, the first MOSAiC ice floe 
was included in the analysis. The sea ice types of interest 
here were open water and nilas (OW), YI, smooth 
FYI(SFYI), and rough first year/multiyear ice (RFYMYI). 
The evolution of the SFYI and RFYMYI ice were 
followed from the freeze-up to the early melt season 
stages, and the YI and OW classes were labelled when 
these were found.  

For [A10-A11], were ROIs identified manually in 
spatially and temporally overlapping Sentinel-1 and 
ALOS-2 PALSAR-2 images. The ROIs are then used to 
retrain the method developed in [5] to classify different 
sea ice types in both L- and C-band SAR images.  

In [A13], the InSAR module in the ESA’s SNAP program 
was used for the interferometric study.  

 

4. SUMMARY OF RESEARCH FINDINGS 
 
In total, 1 scientific journal paper, 2 international 
conference proceeding paper, 2 conference presentations, 
and 4 conference posters have been published based on 
the research in this project. In addition, the ALOS-2 
PALSAR-2 data have been a basic data source for one 
MSc thesis. Two ongoing publications, where data from 
this project has been instrumental, are soon to be 
submitted (incl. [A3]) and the part of this work will also 
be presented at the ESA Living Planet 2022 conference in 
May 2022. We appologice for the delay in the 
publications that were in part a consequence of the Covid-
19 pandemic. Below are some research results, where the 
high-lights are pesented in terms of the paper abstracts. 

The first objective of this proposal has been addressed 
using fully polarimetric images from the MOSAiC and N-
ICE2015 expeditions as well as overlapping Sentinel-1 
and ALOS-2 PALSAR-2 images from the Arctic Ocean. 

In [A1], we employ an artificial neural network (ANN)-
based sea ice type classification algorithm on a 
comprehensive data set of ALOS-2 PALSAR- 2 fully 
polarimetric images acquired with over a range of 
incidence angles and different environmental conditions. 
The variability of the data makes it ideal for making novel 
assessment of the robustness of the sea ice classification, 
investigating the intraclass variability, study the seasonal 
variations, and assess the incidence angle effect on the sea 
ice classification results. The images coincide with two 
different Arctic field campaigns in 2015: the Norwegian 
Young Sea Ice Cruise 2015 (N-ICE2015) and the 
Polarstern’s (PS92) Transitions in the Arctic Seasonal Sea 
Ice Zone (TRANSSIZ). We find that it is essential to take 
into account seasonality and intraclass variability when 
establishing training data for machine learning-based 
algorithms. Moderate differences in incidence angle are 
possible to accommodate by the classifier during the dry 
and cold winter season.  

An important finding was also that the incidence angle 
dependency for a set of different sea ice types in L-band 
SAR images are the same across different regions of the 
Arctic; including sea ice from the Canadian Arctic 
Archipelago [2], [3], the area north of Svalbard [A1], and 
the Sea of Okhotsk [4]. The implication of this is that 
overlapping in-situ data and satellite images from 
different regions of the Arctic can be used to establish 
training datasets. This is a cost-saving finding.  
 
MOSAiC expedition:  
In September 2019, the German research icebreaker Po- 
larstern started the largest multidisciplinary Arctic expedi- 
tion, the MOSAiC (Multidisciplinary drifting Observatory 
for the Study of Arctic Climate) drift experiment. Being 
moored to ice floes in the high Arctic for a whole year, 
thus including the winter season, the main goal of the 
expedition is to better understand and quantify relevant 
processes within the atmosphere–ice–ocean system that 
impact sea ice, ultimately leading to improved climate 
models. Satellite remote sensing, especially using multi-
frequency synthetic aperture radar (SAR), plays a major 
role to achieve this goal. The expedition has two major 
objectives related to SAR based remote sensing of sea ice; 
on the one hand, to have a large coverage, and on the 
other hand, to make radar observations that encode as 
much sea ice information as possible. A comprehensive 
set of C- and L- band SAR images were acquired during 
the course of MOSAiC.  
 
In [A3, A5, A7-A9, A12], we evaluate the effects of 
seasonal changes on C- and L-band backscatter from three 
different sea ice types, i.e., Young Ice, Smooth Ice and 
Rough/Deformed Ice, and study how these changes affect 
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the performance of sea ice type retrieval of an established 
algorithm. Areas of deformed, smooth and young sea ice 
were observed in the vicinity of R/V Polarstern and were 
included in the year-long time series of SAR scenes. For 
both frequencies, a change in all polarimetric channels 
can be observed during the early melt season. This is first 
noticeable in the C-band images and later also seen in the 
L-band images. The later observation in L-band compared 
to C-band, is probably caused by the frequencies different 
penetration depth and volume scattering sensitivity.  
 
An oral presentation of the work was given as a solicited 
talk during EGU 2021 [A5]. Here different polarimetric 
features and their evolution from the freeze-up to the early 
melt season are investigated. The MOSAiC floe consisted 
of two parts, one part that was deformed and had high 
backscatter, and another part which had a high proportion 
(>60%) of refrozen melt pond coverage. As has been 
shown before, the separation between smooth and 
deformed sea ice is larger in L-band compared to C-band 
SAR, though once the temperature approaches 0o C, the 
difference is reduced.  
 

Comparing the different sea ice types, we observe that 
during the freezing season there is a larger difference in 
the co-polarization channels between smooth and 
deformed ice in L-band compared to C-band. Similar to 
earlier findings, we observe larger differences between 
young ice and deformed ice backscatter values in the L-
band data than in the C-band data. Moreover, throughout 
the year the HV-backscatter values show larger 
differences between level and deformed sea ice in L-band 
than in C-band. The L-band data variability is 
significantly smaller for the level sea ice than for the 
deformed sea ice, and this variability was also smaller 
than that observed for the overlapping C-band data. Thus, 
L-band data could be more suitable to reliable separate 
deformed from level sea ice areas.  

Within the L-band images, a noticeable shift towards 
higher backscatter values is observed in the early melt 
season compared to the freezing season for all 
polarimetric channels, though no such strong trend is 
found in the C-band data. The change in backscatter 
values is first noticeable in the C-band images and later 
followed by a change in the L-band images, probably 
caused by their different penetration depth and volume 
scattering sensitivities. This change also results in a 
smaller backscatter variability. 
 
The polarization difference (PD; VV-HH on a linear 
scale) shows a seasonal dependency for the smooth and 
deformed sea ice within the L-band data, whereas for the 
C-band data, no such trend is observed. For the L-band 
data, the PD variability is reasonably small for all ice 
classes in the freezing season, with a significant shift 
towards larger variability during the early melt season. 
However, during the early melt season period the	 mean 
PD values remained more or less constant. However, once 

the temperatures reached above 0°C both the variability 
and the mean values increased significantly.  

Overall, our results demonstrate that the C- and L-band 
data are complementary to one another and that through 
their slightly different dependencies on season and sea ice 
types, a combination of the two frequencies can aid 
improved sea ice classification. The availability of a high 
spatial and temporal resolution dataset combined with in-
situ information ensures that seasonal changes can be 
fully explored. This work will also be presented on the 
ESA Living Planet Sympositum in May 2022 [A12], a 
manuscript presenting this work will soon be submitted 
[A3]. 

 
Newly formed sea ice and oil spills 
Newly formed sea ice allow light penetration into the 
underlaying water and aid primary production. The good 
noise floor of the ALOS-2 PALSAR-2 images enabled 
high accuracy identification of deformed and level sea ice 
as well as newly formed sea ice areas. During the N-
ICE2015 expedition significant numbers of ALOS-2 
PALSAR-2 images were collected and this enabled a time 
series analysis overlapping in-situ data collected 
analysing the biological productivity in the water mass 
around the campaign. SAR images were segemented 
using the method outlined in [6,7] and subsequently were 
the percentages of the different ice types estimated and 
combined with the in-situ data were the effect of open 
water and deformed ice areas influence on the biologicaly 
productivity investigated and presented in [A2].  
 
During the MOSAiC expedition had thin ice just started 
to form around the MOSAiC floe when the expedition 
started. Differences in new ice polarimetric signatures 
between the two frequencies are currently being 
investigated as, e.g., the PD show significantly different 
values for the C and L-band images. Improved knowledge 
about the polarimetric signature of newly formed sea ice 
is a part of addressing the objective two to supplement 
ongoing work first presented in [8] about separation 
between newly formed sea ice and oil spills.  
 
Overlapping Sentinel-1 and ALOS-2 PALSAR-2: 
In [A10, A11] overlapping Sentinel-1 and ALOS-2 
PALSAR-2 images have been used to identify sea ice 
types for sea ice classification. The work is investigating 
complementarities through the use of these two 
frequenceies, and the work was first presented on the 
Arctic Science Summit Week in Tromsø in 2022 and will 
also be presented during the ESA Living Planet 
conference in May 2022.  

 

InSAR on Svalbard:  
In recent years, in-situ measurements on Kongsvegen, a 
surge-type glacier located in the Kongsfjorden area on 
Svalbard, have shown an acceleration in the flow speed of 
the glacier. This part of the work addresses the third 
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objective of the proposal. This could indicate the onset of 
a surging event, which in that case would present the 
opportunity to study the dynamics of a glacier surge using 
remote sensing techniques, with in-situ data for reference. 
In [A13] the acceleration of Kongsvegen using InSAR, 
Multiple-aperture InSAR (MAI) and offset tracking was 
investigated. Velocity measurements from the 
combination DInSAR - MAI are then compared to in-situ 
data as well as to offset tracking measurements. For	
image pairs, where InSAR measurements are not possible 
due to phase decorrelation, offset tracking is attempted as 
a back-up. Data from 2015, 2018 and 2019 was available, 
and the evolution of flow speeds over time could therefore 
be evaluated. The image pairs from 2018-2019 were 
acquired with 14 days separation in time, while the 2015 
image pairs were acquired with 28 and 42 days of 
separation. Due to the longer separation in time, the 2015 
image pairs decorrelated in time. In addition, a pair 
acquired in the summer of 2018 decorrelated as a result of 
surface melting on the glaciers.  

For the image pairs from 2018-2019, the InSAR 
measurements were in good agreement with the in-situ 
data, as they also indicated an acceleration of the flow 
speed on Kongsvegen. The offset tracking results based 
on these pairs overestimated the velocity magnitudes, but 
also showed an increase over time. Similar to the InSAR 
estimates, the offset tracking failed to produce reasonable 
results for the images from 2015 image pairs, likely 
because of the large temporal baseline and the lack of 
surface features on Kongsvegen. Overall, InSAR could be 
used to measure the flow speed of Kongsvegen 
successfully, but more data with a short temporal baseline 
is needed for an in-depth analysis.  
 
 

6. SUMMARY 
 

In accordance with the described objectives, the research 
has contributed to improved understanding of monitoring 
capabilities of Arctic sea ice using C- and L-band SAR 
data. The multi-polarimetric, multi-sensor approach has 
been shown to have some complementary capabilities, 
which combined will improve sea ice monitoring. More 
specifically, the research indicates that combined C- and 
L-band SAR data can provide;  

-  Improved sea ice classification methodologies that can 
separate FYI and MYI, locate ridges and leads, and 
provide sea ice characterization of relevance to science 
and industry.  

-  Improved sea ice classification across seasons 
considering variations in meteorological and 
environmental conditions  

-  Efficient approaches for multi-frequency and multi-
sensor data fusion with respect to sea ice classifications   

The project has had participation of PhD and PostDoc 
scolars and in that respect been important for building 
competence to this exiting discipline.  
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1. INTRODUCTION 
 
The deformation process of (sub-) arctic and alpine lands 
underline by ice-rich permafrost caused by the melting of 
massive ground ice, known as thermokarst, alters the local 
land use and affects the local socio-economy. In order for 
local residents to adapt to landform changes including 
ground subsidence, inundation, and thermos-hydrological 
erosions, knowledge about the deformation rates and 
spatial distribution of the phenomena is essential. 
This research project aims to provide information on 
spatio-temporal variation in thermokarst and freeze/thaw-
related deformation to local stakeholders in arctic and 
alpine permafrost regions experiencing rapid climate 
warming. In order to generate the map of spatio-temporal 
thermokarst deformation, we employ a DInSAR 
(Differential Interferometry Synthetic Aperture Radar) 
technique, in a wide range of permafrost regions. 
Objectives in this project are to 1. Measure the spatial 
variation in seasonal and inter-annual surface 
displacement associated with active layer and permafrost 
dynamics by DInSAR, 2. Validate the spatio-temporal 
information on surface deformation by conducting field 
surveys, 3. Reduce uncertainty in radar remote sensing of 
permafrost degradation, and 4. Provide spatio-temporal 
information on thermokarst to local stakeholders.  
Below, we report four case studies of the InSAR-
Thermokarst analyses from Alaska, Siberia, and 
Hokkaido. 

2. NORTH SLOPE, ALASKA 
 
To better understand the nature of DInSAR signals over 
changing permafrost lands, we investigated surface 
displacement caused by frozen ground dynamics and 
thermokarst development triggered by a tundra wildfire in 
Alaska. The Anaktuvuk River Fire (ARF) combusted 
surface vegetation and organic mat of the tundra region 
underlain by variously ice-rich permafrost in 2002. High-
precision GNSS survey, thaw depth, and surface moisture 
were measured along 60 – 200 m transects at three 

representative sites in ARF during snow-free seasons in 
2017 – 2019. The three sites were located in the 
northernmost fire boundary, the central area, and the 
southernmost of the ARF burn scar underlain by 
differently ice-rich permafrost. High-resolution (~1 m) 
DInSAR signals by UAVSAR depicted enhanced seasonal 
thaw settlement not only in the burned area but also a liner 
pattern development of larger subsidence in unburned 
areas, which coincides with slightly concaved linear 
micro-topography at Site N (Fig. 1). Significant 
thermokarst subsidence and seasonal thaw settlement were 
measured along a Yedoma hill slope both by ground 
survey and DInSAR at Site M. The intensive permafrost 
degradation on the slopes was also confirmed by frozen 
ground coring and optical image analysis. The ground 
measurements of surface displacement were aligned well 
with DInSAR displacement using UAVSAR and ALOS2 
data except for the anomaly subsidence along the troughs 
of ice-wedge polygons at earlier thermokarst stages. Less 
intensive ground surface displacement was observed at 
Site S, underlain by less ice-rich permafrost. Our results 
indicate that seasonal thaw settlement was governed 
mainly by spatial variation in soil frost-susceptibility and 
thermokarst subsidence by ground ice distribution.  

Figure 1. InSAR results of ALOS-PALSAR and 
ALOS2 over the northern edge of the Anaktvuk 
River Fire occurred in 2007 on the North Slope, 
Alaska. Green areas indicate stable land, while 
reddish color indicates thermokarst subsidence. 
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3. MAYYA, CENTRAL YAKUTIA 
 
3.1 L-band SAR analysis  

Mayya is located on the right bank of the Lena River and 
40 km southeast of Yakutsk. Mayya area consists of forest, 
deforested areas for farming, mainly in the 1970s, and 
alasses. Alas is the final geomorphological stage of old 
thermokarst development. Mayya is representative of 
residential areas where thermokarst development has been 
reported in Central Yakutia. 
We used ALOS/PALSAR (2007-2010) and 
ALOS2/PALSAR2 (2015-2018) data to investigate 
ground subsidence caused by thermokarst development. 
GAMMA software [1] was used to generate 
interferograms and apply stacking treatment weighted on 
the length of the summer period between two SAR data 
acquisitions. Assuming surface displacement consisted 
only of vertical components, the line of sight (LOS) 
change was converted to vertical displacement.  
We detected ground subsidence with a rate of 1-4 cm/yr in 
both PALSAR and PALSAR-2 results (Fig. 2). Most 
subsidence signals are found in numerous open areas 
(deforested areas), and the PALSAR-2 results clearly 
show the spatial distribution of the subsidence 
corresponding to the visible observation of thermokarst 
development in high-resolution optical images. The 
subsidence rate varied with time and location.  

3.2 Field observation 

To validate our InSAR results, we performed leveling 
surveys within five 30 x 30 m areas, in which about 35 
permanent survey stakes were installed and their heights 
were measured in September 2017 and 2018 (Fig. 3). 
Areas A, C, and E showed a clear subsidence trend with a 

rate of 3-5 cm/yr, and we confirmed the occurrence of 
polygonal ground deformation that suggests thermokarst 
development of ice-wedge polygons. On the other hand, 
the other two areas (B and F) showed negligible surface 
displacement from 2017 to 2018. While the overall 
tendency of the subsidence measured in situ is in harmony 
with the InSAR result (Fig. 2) quantitatively, the 
significant subsidence signals at areas A and E were not 
measured by our InSAR. We revisited and repeated the 
same field survey in September 2019, and found 
significant inter-annual surface subsidence in all surveyed 
areas ranging from 3-10 cm/yr. InSAR analysis including 
2019 SAR acquisitions is underway, and the ground truth 
will be compared with the InSAR in the next step. 
We also visited other sites with significant subsidence 
signals in the interferograms at the end of September 2018. 
The two large subsidence signals were found in alasses. 
The subsidence signals could be caused by ground 
consolidation settlement associated with surface soil 
desiccation under recent dry climate conditions. However, 
judging from the occurrence of the polygonal ground 
depression at the central areas of alasses, it is possible that 
thermokarst subsidence is still in progress. 
This study was published as a result of this project in 
Planets and Space [2]. 
 

4. BATAGAI, NE SIBERIA 
 
Batagay is located in the midstream of the Yana River, NE 
of Sakha Republic. The area is underlain by at least 50-80 
m thick of ice-rich permafrost as its interior structure is 
revealed on the headwalls of a huge thaw slump 
(Batagaika Megaslump; [3]). Recent wildfires burned an 
extensive area near Batagay, which triggered prominent 
thermokarst processes due to the surface disturbance by 
the fires. Furthermore, a heatwave with unprecedented 

Fig. 2 Surface deformation map in Mayya derived 
from ALOS2/PALSAR2 data acquired from 2015 
to 2018. The positive and negative values mean 
uplift and subsidence, respectively. The cross 
marks the reference point of InSAR. The star 
indicates the area of ground observation shown in 
Fig. 3. 

Fig. 3 (left) Locations of field surveys near Mayya; 
(right) Surface deformation by GPS and optical 
leveling in 2017 and 2018. The values show the 
mean and two standard errors (95 % confidence 
interval).  
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high temperature persisted during late June 2020, resulting 
in substantial increases in fire activity above the Arctic 
Circle [4][5]. Large wildfires and following thermokarst 
gathered attention from residents, especially land 
managers and the forestry industry. 
Batagay region experienced wildfires in the last decade. 
We set two areas of interest, AOI1 and AOI2. AOI1 
includes a fire scar burned in July 2014 over 35 km2. The 
2019 fire again burned a portion of the 2014 fire scar. We 
set study sites B14 (381 m asl.) and U14 (254 m asl.) at 
burned and unburned areas with gentle slopes near the 
southern edge of the 2014 fire burn scar, respectively. 
AOI2 consists of two fire scars burned in the 2018 and 
2019 summers. Sites B19 and U19 were set at burned and 
unburned areas in the south-eastern edge of the 2019 fire 
burn scar divided by a firebreak line. 

4.1 Satellite remote sensing analyses  
InSAR analysis to generate ground deformation maps over 
the post-wildfire area was performed by [6]. For this area, 
we used L-band HH-polarized SAR images of 
ALOS2/PALSAR2 (2015-2019) and C-band VV-
polarized SAR images by Sentinel-1 (2017-2018). 
Focusing on the seasonal ground deformation in 2017-
2018, we stacked Sentinel-1 interferograms to set the 
temporal coverages to be nearly identical with ALOS2 
interferograms and compared to each other. On the other 
hand, to estimate the cumulative satellite LOS 
displacement in the post-wildfire area, we used Small 
Baseline Subset (SBAS)-type time-series analysis, using 
50 quality ALOS2 InSAR images taken in 2015-2019. 
To investigate ground surface changes, we also used 
optical satellite images. Five snow-free and cloud-free 
Landsat8 images (Collection2) acquired during 2014-
2018 were used to generate the 2014 fire perimeter based 
on dNBR (difference normalized burn ratio; Miller and 
Thode, 2007). To identify newly formed gullies and active 
layer detachment after the 2014 fire, we used changes in 
the panchromatic band of Landsat8 images (Fig. 4). 
Pansharpened images of Pleiades-1 (7 Jun 2019), 
WorldView2 (6 Jun 2020), and WorldView3 (28 May 
2020) were used to observe gully development and water 
drainage in the area of 2018 and 2019 burn scars. 

4.2 Field measurements 

We conducted fieldwork campaigns in three consecutive 
thawing seasons during 2019-2021. In late September 
2019, we visited AOI1 and measured relative height, soil 
moisture, ground temperature, and thaw depth along a 30 
m transect at B14. Additionally, thaw depths were 
measured at burned and unburned areas near an unburned 
patch within the 2014 burn scar and U14. The same field 
measurements at B14 were conducted at B19 and U19.  
Soil pits were dug for descriptions of soil horizons, 
volumetric water content measurements by a TDR probe 
(Hydrosense, Campbell Sci.), and soil sampling for 

laboratory analyses from the active layer at B14, U14, 
B19, and U19.  

4.3 L-band and C-band SAR analyses  

We detected seasonal deformation from 2017 to 2018, 
whose magnitude and spatial patterns of the tendencies of 
subsidence and uplift were consistent in both InSAR 
results using different satellite data regardless of the 
season (Fig. 4). In particular, Sentinel-1 short-term InSAR 
images revealed detailed seasonal surface displacement 
(thaw settlement and frost heave) from the beginning of 
thawing to the end of freezing. L-band ALOS2 data 
detected long-term deformation. The results indicated that 
thaw settlement in the first year reached up to 15cm in the 
LOS direction and was continuing even three years after 
the fire. The calculated time series indicated that 
cumulative subsidence has been greater than 30 cm since 
October 2015 at the area of greatest deformation and the 
rate of subsidence decreased in the 2018 summer.  

4.4 Changes in thaw depth and soil moisture 

Average thaw depths at burned and unburned areas of the 
2014 fire were 123-124 cm and 45-49 cm, respectively. 
As a 5-year cumulative consequence of the 2014 and 2019 
fires, we found about 2.5 times deeper thaw depth in 
burned areas. Our soil pit survey at the 2014 burned site 
confirmed a shift of carbon accumulation in the soil 

Figure 4. Time series of high-resolution optical 
images (Landsat8) over a burn scar by Fire 2014 
(AOI1). Upper right map shows InSAR line of 
sight surface deformation map derived from 
ALOS2-PALSAR2 data acquired on 30 Jul 2016 
and 29 Jul 2017 [6]. The positive (reddish colors) 
and negative (blueish colors) values indicate 
subsidence and uplift, respectively. The contours 
are elevation in 20 m interval. Areas of gully 
formations and active layer detachment during 12 
Jun 2015 and 8 Aug 2015 are shown as black 
polygons in the upper right map. 
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profile, indicating recent active layer thickening at burned 
sites. The volumetric soil water content profile in late 
September 2019 at the burned sites was about 10-20 % 
higher than that at unburned. 
At B19, average thaw depths in September were 78, 117, 
and 132 cm in 2019, 2020, and 2021, respectively, while 
those at U19 were 66, 71, and 80 cm. Although there was 
a significant (14 cm) increase in the thaw depth at the 
unburned site, the increase at the burned site was about 
fourfold (54 cm). 5-15 % higher soil moisture was 
recorded at B19 from late 2019 through 2020 than at U19. 
However, in late 2021, surface soil moisture at B19 
became slighter drier than at U19, probably because of 
dry weather in the 2021 summer and the deepening of the 
active layer at the burned site. 
 This remarkable difference in near-surface physical 
conditions can be attributed to vegetation and organic mat 
removal due to wildfire. The impact had been prominent 
only about one and a half months after the fire. The 
difference in late-summer thaw depths between U19 and 
B19 kept increasing in the first two years after the fire. 
The complex behavior of soil moisture changes at our 
sites is unclear because of data gaps. However, higher soil 
moisture conditions in the deeper active layer persisted 
after the fire. 

4.5 Gullies and active layer detachment  

In the 2014 burn scar, more than 20 locates of gully 
formations or active layer detachment were identified 
from landsat8 images taken during the 2015 summer. The 
ground surface erosions were detected as significant 
increases in reflectance between 12 Jun and 8 Aug in 
2015, about a year after the 2014 fire. Further 
development of the surface erosions was not noticeable. 
The gully formations occurred linearly along valley lines. 
Old gully features were prominent on the NE-facing 
slopes, and newly-formed gullies were found 
predominantly on the same slopes within the fire scar. The 
area of predominant gully formation coincides with the 
larger seasonal or interannual subsidence areas measured 
by ALOS2 InSAR after the fire. It is probable that the 
increases in soil moisture and thaw depth after the fire 
triggered active layer detachment leading to gully 
formation predominantly on the NE-facing slopes 
underlain by relatively ice-rich permafrost. 
Unlike the natural gully formations in the 2014 burn scar, 
fire-fighting activities against the 2018 and 2019 fires 
triggered severe gully erosions. Both 2018 and 2019 fires 
in AOI2 were stopped by firebreak lines encompassing the 
burning areas. The fire suppression activities created new 
roads to access the burning areas by removing surface 
tundra and forests. The firebreak lines removed all 

vegetation and organic matters on the ground surface with 
a width of a few meters. These bare ground lines acted as 
drainage lines for surface water, especially during 
snowmelt seasons. The surface runoff, particularly parallel 
to the slope, rapidly eroded the firebreak lines and roads, 
as shown in Figure 3.  
Relatively small erosions in 2020 summer escalated in the 
2021 thawing season, and massive ground ice was 
exposed in the lower gully walls. In the 2021 fall (two 
years after the 2019 fire), the depth of a newly developed 
gully between the 2018 and 2019 burn scars was deeper 
than 3 meters. The massive ice layer begins at about 1.5 m 
depth in this area. Moreover, highly ice-rich permafrost 
extends more than 50 meters, as observed in Batagaika 
headwalls. The new erosion gullies could trigger the 
second Batagaika formation because the Batagaika was 
started from a small-scale erosion of an automobile road 
for forestry activities in the past. 
In the high-resolution optical images, we identified a 
number of overflooding flows along with concaved reliefs 
on the slope on 28 May 2021 when the snow has 
completely melted. The overflow transferred a significant 
amount of sediment and water towards the valley bottom, 
where we found newly emerged ice-wedge polygon 
textures due to enhanced erosion. The combination of 
wildfire and fire suppression activities may cause 
significant changes in permafrost ecosystems through 
changing the natural runoff and erosion regimes.  

5. DAISETSU MOUNTAINS 

The occurrence of mountain permafrost has been reported 
at the summit areas of mountains in the Daisetsuzan 
National Park, Japan (e.g., [7] [8]). While some field 
investigations on freeze-thaw-related phenomena have 
been conducted in this mountain area (e.g., [9][10] [11]), 
wide-range investigation on ground-surface displacement, 
especially targeting inter-annual changes, has never been 
done. There is increased attention to the consequences of 
climate warming on the mountain environment due to the 
changes in frozen ground status.  
As a preliminary analysis, we used 13 ALOS2 images 
obtained from 2014 until 2019 for the target area, and 78 
interferograms were examined to further analyze ground-
surface displacement. The interferograms from the pair 
images, including snow cover, showed significant 
decorrelation. Five images obtained in the late summer 
(Aug–Sep) were selected because they only produced high 
coherence (> 0.5) interferograms in the majority of the 
target area and were used to extract areas with marked 
displacement areas within the targeted national park area.  
The five images were stacked to calculate the average 
line-of-sight displacement during five years (2014-2019).  
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Seven areas were identified as areas containing active 
slope movements or ground-surface displacement 
presumably related to permafrost changes, as shown in Fig. 
5. Considering the ALOS2 observation direction and look 
angle, the measured displacement indicates down-slope 
movement of the ground. The displacement rates ranged 
1-4 cm/year depending on the location and the movement 
persisted during the observation period. Permafrost 
distribution in the Daisetuzan was only confirmed at wind-
swept sites on the summit areas of the mountains. 
However, the moving slopes we found were located at a 
height of a several hundred meters lower than the summit 
areas.  Although these moving slopes are slow-moving 
landslides, the consistent displacement indicates 
occurrences of perennially frozen ground in the moving 
slopes, which may be interpreted as periglacial mass 
movement such as frozen debris lobes or rock glaciers. 
To validate the InSAR-measured ground-surface 
displacement, we started precise GNSS surveys at some 
selected sites aiming a long-term in-situ observation.  
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Figure 5. Stacked interferogram over the Daisetsuzan 
National Park. The seven rectangles are the areas of 
marked ground surface displacement persistently 
observed during 2014-2019. 
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1. INTRODUCTION 

The Michigan Tech Research Institute has used ALOS-1/ 

PALSAR-1 and ALOS-2/PALSAR-2 data acquired via the 

Research Agreement with the Japan Aerospace 

Exploration Agency for analysis of fire related variables 

of fuel moisture in the soil, fuel loads in the woody 

aboveground biomass (which are confounding factors for 

soil moisture retrieval) as well as mapping land cover 

ecotypes to determine vulnerabilities of different 

ecosystem types to wildfire. Research is funded by two 

NASA grants which are ongoing (NASA SUSMAP NRA# 

NNX16AN09G and NASA ABoVE NRA# 

80NSSC19M0107). The work on soil moisture retrieval 

during the timeframe of this data grant was limited due to 

COVID restrictions on travel.  Without travel to field sites 

to collect data and to download dataloggers that are 

deployed in both Alaska and Alberta, Canada was 

restrictive. Given that soil moisture is a time sensitive 

variable that must be matched up to satellite overpass 

collections, the data we have analyzed to date is small, but 

the work is ongoing and access to sites in Canada is now 

open for summer 2022 when we will be downloading our 

dataloggers and collecting additional data in Northwest 

Territories Canada (NWT) and Alberta Canada.  

     Work has been focused on developing L-band SAR 

algorithms to map and monitor soil moisture, to produce 

soil drainage maps from a time series of L-band SAR, to 

retrieve fuel loads via biomass retrievals and to 

understand vulnerabilities of uplands versus lowlands in 

wildfire vulnerability.  We also created calibrations for the 

Campbell Scientific Hydrosense handheld CS620 probes 

and Datalogger probes CS616 and CS625 to the soils of 

our study sites in Alberta, and Northwest Territories, 

Canada and Alaska. The Campbell Scientific Hydrosense 

handheld water content reflectometer (soil moisture) 

probes have built in calibration to a loam mineral soil. 

Organic soils of the Boreal-Arctic have characteristic low 

bulk density and the default loam calibration typically 

underestimates actual soil moisture condition.  For that 

reason, we carefully harvested soil samples of 2.5 gallon 

size to use in a laboratory setting to develop gravimetric 

based calibration algorithms specific to the boreal and 

arctic organic soils [after 1].   These calibrations required 

wetting and drying of the samples over several months as 

they dried to capture a range of moisture to calibrate the 

probes. The completed probe calibrations were then 

shared with the NASA Arctic and Boreal Vulnerability 

Experiment (ABoVE) science team for use with the SAR 

data collected over the ABoVE western boreal-arctic 

North America study area via a report.  They are provided 

as a separate document. 

2. CREATING SOIL DRAINAGE MAPS FROM SAR 

    Drainage maps of the boreal and arctic region are of 

interest for a wide range of applications including 

susceptibility to wildfire, fire behavior and fire effects.  

We focused on C-band for burned sites which no longer 

have forest canopy and L-band for the unburned forested 

areas.  Using Sentinel-1 data of fire scars we used 

methods of [2] to map drainage in the region that had 

experienced canopy replacing (crown) fires, exposing the 

ground surface.  Sentinel-1 C-band was suitable for this 

application, given its high repeat cover of the study area. 

For the forested areas, we focused the ALOS-1/PALSAR-

1 data.  We selected imagery over an Alaska study area to 

develop similar methods to map drainage in unburned 

forests and wetlands. The methods rely on a time series of 

SAR data in a principal component analysis [after 2].  The 

new PCA images are then used to compare the loadings of 

each input image date to rainfall patterns to determine 

which PC image appears related to moisture/drainage.  

The PC image most related to rainfall patterns is then 

level sliced to create relative drainage maps.  

    Applying the methods to a time series of ALOS-2 L-

band data proved difficult over the NWT study area, due 

to a lack of time series L-band data availability for a given 

year in Canada.  We therefore focused on Alaska where 

PALSAR-1 data are abundant. In our initial assessment, 

we found aboveground biomass as a confusing factor in 

the L-band PCA analysis for creating a drainage map. We  

Fig. 1. Multi-date PALSAR composite (left), winter 

PALSAR image (center), normalized PALSAR 

composite (right). 
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therefore, normalized the PALSAR summer data, by 

ratioing it with a winter scene when the ground was frozen 

and backscatter should be due primarily to forest biomass 

(Fig. 1). 

    We then ran principal components analysis on the 

multi-date input PALSAR stack from summer 2010, each 

having been ratioed with the winter scene for 

normalization. The PC-4 normalized component appeared 

to be responding to 6-day cumulative rainfall from the 

nearby rain gauge (Fig. 2).  This area is a complex of open 

fens, bogs, treed fens, floodplain white spruce, upland 

conifer, aspen and old burn scars (Fig. 3, Multi-date 

PALSAR and Sentinel-1 land cover classification of the  

Bonanza Creek study area).  We then created a 

preliminary drainage map product from the PC-4 image 

(Fig. 4).  The image appears to have a good deal of 

speckle and areas of very low biomass (e.g. sedge fens) 

appear to be confused as high drainage, likely due to more 

specular reflection in the high water, no vegetation spring 

stage (Fig. 4). The complex landscape of Bonanza Creek 

 

 
Fig. 3. Multi-date PALSAR and Sentinel-1 land cover 

classification of the Bonanza Creek study area  

 

is challenging and a true test of the capability of the PCA 

and L-band approach. It appears that the L-band is 

working for capturing drainage in the forested areas 

(uplands and bogs), but the low biomass, herbaceous 

sedge fens and emergent wetlands are not captured 

properly.  This may be due to high rainfall in one of the 

input images during the overpass collection.  A longer 

time series of input images (only 5 were used for Fig. 4) 

may reduce speckle and improve the drainage map 

product. 

     Our next steps are to apply the methodology to a 

longer time series for the Bonanza Creek study area and 

also to apply it to a purer forested region. This work 

continues through the next year (April 2023), but 

proposals to continue beyond next year are also under 

review. In addition, for these more complex regions 

functional PCA should be analyzed to investigate the 

dominant modes of variation.  

 

 

 
Fig. 4. Preliminary L-band derived drainage map (right) 

of the Bonanza Creek LTER region, near Fairbanks, AK 

compared to a natural color high resolution image (left). 

 

 

3. MONITORING SOIL MOISTURE IN BOREAL 

NORTH AMERICA 
 
 
    For L-band, we have completed an initial algorithm 

development for soil moisture retrieval for the area near 

Fort Providence, NWT, using 25 field samples 

(representing 40 x 50 m areas) of burned and unburned 

sites.  Table 1 lists the ecotypes sampled and whether 

there 

 
Table 1. List of sampled sites in NWT, CA for soil 

moisture and biomass 
Ecosystem 
Type 

# Burned 
soil 
moisture 

 # Burned 
biophysical 

# Unburned 
soil 
moisture 

# Unburned 
biophysical 

Fen 21 21 8 4 

Bog 13 13 10 5 

Upland 9 9 5 4 

Lowland 
Conifer 

15 15 1 0 

Total 58 58 24 13 

 

 was soil moisture or biophysical data collected.  

     Using polarimetric decompositions and parameters 

allows for the dominant scattering mechanisms to be 

Fig. 2. Plot of PC-loadings from time series of ALOS-1 

data over Bonanza Creek Alaska by date.  Also shown is 

the 6-day cumulative rainfall leading up to each image 

date.  
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isolated to better retrieve soil moisture from a surface 

under a vegetation canopy than backscatter alone [3].  For 

the L-band soil moisture retrieval we focused on two of 

the polarimetric decompositions used for C-band by [3]: 

Cloude-Pottier (CP) [4] and the non-negative eigenvalue 

decomposition NNED decomposition [5]. In addition, we 

evaluated the Neumann decomposition [6].  We used the 

NNED decomposition [5] because it corrects the 

overestimation of volume scatter of the Freeman Durden 

decomposition due to negative eigen  

 

Fig. 5.  Predicted vs. actual soil moisture plot for L-band 

SAR at burned and unburned NWT sites (top). 

Application of the polSAR algorithm to the 2017 and 

2019 image dates for the Fort Providence study area 

(bottom). 

 

 

values.  NNED produces estimates of surface, double 

bounce and volume scatter.  CP produces entropy (H), 

anisotropy (A) and alpha (α) parameters, which are not 

assigned to any given dominant scattering component but 

are representative of the complexity of the targeted area. 

The Neumann decomposition was developed for 

describing the morphological characteristics of vegetation 

for crop classification and has three polarimetric 

parameters (|δ|, τ, φδ).  It is similar to the Cloude-Pottier 

(CP) decomposition in that it produces 2 outputs that have 

similar physical meaning to CP-H and CP-α.  However, 

[6] uses a generalized volume scattering model to describe 

the morphological vegetation traits; the particle scattering 

anisotropy δ and the degree of orientation randomness τ.  

The third parameter, the phase of the particle scattering 

anisotropy φδ, is related to the particle orientation 

direction.  τ is an indicator of the degree of scattering 

randomness, similar to CP-H.  These polarimetric 

parameters were used in a multi-linear regression to 

retrieve 12 cm surface volumetric soil moisture (VMC), 

we found the best fit for the model using the parameters 

CP-H, Neumann – δ and Van Zyl surface with an adjusted 

R2 of 0.84:  

 
VMC = 22.8242 + (185.78039(NNEDsurface) + 

(53.521114*CP-H) + (0.25463* Neumannδ) 

 
    A plot of the predicted vs. actual soil moisture is 

presented in Fig. 5, along with the output maps from 

application of the model to the 2017 and 2019 UAVSAR 

data collections.  This analysis shows great promise and 

we have many more images to evaluate. The L-band data 

from UAVSAR and PALSAR-2 are under further 

investigation. We recently received soil moisture data 

from September 2019 from colleagues at Canadian Forest 

Service, that are coincident to the NASA UAVSAR 

September 2019 airborne campaign.  Our field data from 

August 2019 were of little value since soil moisture is 

time sensitive. The results of the L-band and C-band soil 

moisture analyses will be reported at the NASA ABoVE 

Science Team Meeting (STM8) in May 2022 and the 

NISAR conference this fall (August 30-September 2, 

2022).   
 

4. L-BAND ANALYSIS OF UAVSAR AND            

PALSAR-2 FOR BIOMASS MAPPING                       
 
    This biomass work was done in cooperation with P. 

Siquiera, NASA ABoVE Co-I on grant 

80NSSC19M0107. As mentioned in the introduction, field 

data have been limited due to COVID.  Using 14 of the 

field collected biomass sites in 2019 in NWT, we used the 

in situ biomass data (Fig. 6) to relate to the co- and cross-

polarized radar cross-section (RCS) plotted over time. 

This was done for both UAVSAR and PALSAR-2.  The 

pre-processing of the UAVSAR RCS data was a non-

trivial process.  Measures of the RCS collected in terms of 
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σ⁰, were converted into units of γ⁰ [7] in order to remove 

the effects of area projection and to normalize for the 

effects of incidence angle in the UAVSAR data, before 

they could be compared to PALSAR-2.   

     Results from the time series dependencies for these 

varying areas, over the time of observation are shown in 

Fig. 7.  In this figure it can be seen that there is variation 

in the RCS, mostly likely due to changes in soil moisture, 

and time of year (early through late summer).  Because the 

 

Figure 6. Map of study area plots near Great Slave 

Lake, NWT. UAVSAR 2019 flightlines and ALOS-2 

PALSAR-2 imagery are shown for comparison. 

 

 Figure 7.  Time-series of RCS values for 4 areas 

showing both UAVSAR (red) and ALOS-2 (black) data.  

vegetated areas of the Great Slave Lake region of the 

NWT are relatively sparse, the variations in conditions of 

the ground surface have a greater effect on RCS than they 

would be in higher biomass areas.  This makes the region 

more challenging for remote sensing of aboveground  

biomass (AGB), but is a good test-site for low biomass 

analysis with microwave sensors such as ALOS-2 or 

NISAR. 

 

                                           

Table 2. Summary of L-band SAR data collected for the 

Great Slave Lake region.  The first six rows of the table 

refer to ALOS-2 data collections with the bottom two 

rows being from UAVSAR. 
 Tile ID 2017 2018 2019 2020 2021 

001000 13 Jul 12 Jul 11 Jul 9 Jul  

001001 3 Jul 2 Jul 1 Jul 29 Jun 31 May 

001002 13 Jul 12 Jul 11 Jul 9 Jul  

001003 4 Jul   30 Jun  

001004  24 Jun 23 Jun   

001005  24 Jun 23 Jun   

Behcho 14 Jun, 9 Sep  22 Aug 5 Sep   

Provid 14 Jun, 9 Sep 21, 22 Aug 4, 5 Sep    

     For biomass retrieval algorithm development, we have 

explored different methods for dealing with the variability 

of RCS due to varying soil moisture.  We found that 

simple averaging made the best relationships between 

RCS and ground validation measures of AGB (Fig. 8).   

 

Fig. 8.  Examples of the empirical curve-fit relating 

AGB (x) to the radar cross section, γ⁰, for the different 

sized Areas of Aggregation (0.1, 2.5 and 14 ha) for 

varying combinations of the ground validation data 

collected for the Great Slave Lake region.   

    While polarimetric data could likely result in an 

improved model, given the likelihood of dual polarization 

data into the future on a global scale, the 2-band algorithm 

provides a coefficient of determination of 0.68, with 

outliers removed.  Outliers from the fit can be attributed to 

particularly low regions of AGB (and hence a heightened 

sensitivity to surface roughness and soil moisture).  After 

removing those regions from the parameterization of the 

model and the assessment, the overall curve fit that relates 

AGB to γ⁰ is much improved, with the best fit appearing 
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for regions that had a medium-sized Area of Aggregation 

(2.5 ha).   

    With the analyzed data thus far, and using the empirical 

relationship between AGB and γ⁰ derived from this     

study, the parameterized curve was applied to collected 

data by ALOS-2 data specified in Table 2.  Using a 

mosaic of collected scenes averaged over time, a map of 

AGB was created for the region (Fig. 9).  The methods 

and map are in review at JSTARS [8]. These data are 

being uploaded onto the ABoVE science cloud so that 

other researchers can access the provided estimates of 

AGB and it will be archived on the NASA ORNL DAAC. 
 

 
 

Figure 9.  A map of AGB values derived from ALOS-2 

data and sorted into 20 Mg/ha bins for the Great Slave 

Lake region of Canada’s Northwest Territories.  Shown 

too are the location and values of AGB for the 14 test 

sites used in the analysis [8]. 

 

Estimating Carbon Storage from Peatland Biomass 

    We assessed using the map of [8] versus field data in 

estimating C storage in AGB for the study area peatland 

sites. As a comparison in our calculations of C content 

from field data vs. the map of [8] (fig. 9), Above ground C 

estimates for treed fen were 8.87 Mg/ha from the field 

data and 9.77 MG/ha from the model, for bog estimates 

were 9.74 Mg/ha from the field data and 6.36 Mg/ha from 

the model, and for shrub/open fen were 1.81 Mg/ha from 

the field data and 35.17 Mg/ha from the model. While the 

model worked well in peatland classes with high biomass 

(e.g. treed fen and bog), the model was greatly 

overpredicting in areas with low biomass (e.g. shrub/open 

fen) where soil moisture is most strongly influencing 

backscatter, as mentioned above.  Fen peatlands are very 

wet. This is a limitation in the biomass model that will be 

further assessed with data collected in 2022.  A separate 

biomass retrieval algorithm may be needed for wetlands, 

but it may also be a limitation of SAR in the summer.  

Winter data when the ground is frozen may be a better 

time to estimate biomass.  One thing to note is that in Fig. 

9, the first set of sites on the x-axis were burned in 2014 

or 2015 (label starting “BS-“), thus the PALSAR-2 model 

is measuring dead standing biomass in comparison to field 

measurements of the dead standing biomass.  Most of the 

biomass is in the remaining boles, but they are no longer 

transpiring/living.  All site names that do not start with 

“BS-” on the x-axis were unburned. 

 
Figure 13. Comparison of [8] modeled biomass (flue 

bars) with high biomass classes treed fen and bog 

showed a close match between field estimates (orange 

dots) and the ALOS-2 biomass model. Note that the sites 

labeled “BS-“ are burned sites and the biomass map of 

[8] is measuring dead standing tree biomass. 

 
5. BROADSCALE ASSESSMENT OF ECOSYSTEM 

VULNERABILITY TO WILDFIRE 

 

    The broadscale assessment of 136 wildfires that 

affected 3.3 M hectares in 2014 and 2015 in the Great 

Slave Lake area of NWT, CA was made possible by the 

integration of L-band ALOS-1 and 2 data in mapping land 

cover ecotypes provided via this data grant (Fig.14 (top 

left [9, 10]).  This map was then intersected with a burn 

severity map (Fig. 14 (bottom left) [11,12]) produced for 

the organic soil layer (since all fires are crown fires) to 

understand the effects of fire to the organic soil layer and 

resulting seed beds. This allowed us to assess the 

vulnerability of different ecosystems to wildfire across 

gradients of ecoregion: Taiga plains ecoregion vs Taiga 

shield; permafrost status: discontinuous vs. sporadic; by 

fire year: 2014 vs. 2015; and season of fire (using a fire 

progression map from MODIS after [13]): early, middle 

and late (Fig. 14).   It also allows us to understand the 

585



6 

 

consumption and C loss from the wildfires via modeling, 

such as CanFIRE [14].  

 

 

 

Fig. 14. Study parameters were parsed by ecoregion 

consisting of Taiga plains and Taiga shield, year by the 

2014 and 2015 wildfire perimeters, season by early, 

middle, and late season fires, and by ecotype.  

    Wildfire and climate are drivers of change in boreal 

ecosystems. Understanding the tipping point of drought 

conditions at which the landscape becomes connected, and 

peatlands are susceptible to wildfire with deeper burning 

of the organic soil layers is important for understanding 

the potential future effects of climate change and 

projected increases in wildfire on peatlands. 

     In this study, we used empirical field data and remote 

sensing to assess the vulnerability of the landscape [as 15] 

to wildfire by exposure (defined by areas burned and 

unburned islands by ecotype) and susceptibility (assessed 

by evaluating severity of burn to the soil organic layers).   

 

 
Figure 15. Violin plot of burn severity by ecotype across 

all 136 wildfires in the Great Slave Lake area of NWT, 

CA. 
 

While overall, we found open fens to be burning the least 

severely and upland conifer the most severely (Fig. 15), 

we found great differences in ecotypes burning and at 

what severities within fire perimeters on the Taiga shield 

and plains, which both reside in the same fire regime. The 

rocky landscape, with greater topographic gradients and 

shallow soils of the Taiga shield seemed to have reached 

the threshold of drought conditions in 2014, where the 

landscape became connected, and all ecotypes had high 

susceptibility to wildfire.  Everything was burning on the 

Taiga shield in these extreme years, even emergent 

wetland marshes.  Despite having fragmentation by 42% 

of the area by unburnable (water/exposed bedrock) cover 

on the Taiga shield, there were few unburned islands and 

on average >92% of the area within fire perimeters 

burned.  There was also consistency across ecotypes in 

proportional area burned at the various fire severities (Fig. 

16), with a dominance of light fire severity across 

ecotypes, in all seasons and in both 2014 and 2015.  In 

contrast the wildfire on the Taiga plains affected large 

areas, but fire severity within fire events was much 

patchier than on the shield, and larger differences were 

observed across seasons of fire (Fig. 16) and years of fire. 

 

 

 

Figure 16. Plots of expected (grey bars) and actual 

proportional area of each burn severity for each ecotype 

by (A) Early season on the Taiga plains; (B) Early 

season on the Taiga shield; (C) Mid-season on the Taiga 

plains; (D) Mid-season on the Taiga shield; (E)Late 

season on the Taiga plains; and (F) Late season on the 

Taiga shield. 
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1. INTRODUCTION 

 
Permafrost, which accounts for 24% of the land area in 
the Northern Hemisphere, exhibits great variability due to 
repeated thawing and freezing depending on climate. The 
seasonal freeze/thaw process of the permafrost active 
layer has been a sensitive indicator of changes in climate 
conditions. To understand the changes in the active layer, 
spatially detailed monitoring methods such as optical and 
Synthetic Aperture Radar (SAR) remote sensing 
technologies have been extensively applied to the 
observation of the permafrost environments. 
Optical remote sensing has been mainly used to monitor 
permafrost-related land cover information [1]. Optical 
remote sensing has also been used to monitor changes in 
the permafrost ecosystem. However, high-altitude areas 
where permafrost is located are difficult to obtain optical 
images except during the summer period. Synthetic 
Aperture Radar, which enables continuous acquisition of 
a wide range of images in all weather conditions, is 
capable of effective monitoring of permafrost areas, so in 
this study, topographic, geologic and hydrological 
characteristics of permafrost can be identified and 
monitored through the development of technologies using 
optical data and polarimetric SAR data.  
SAR observations have been actively used to observe 
permafrost local environments and spatiotemporal 
changes in the active layer. Due to the advantages of 
periodic observations independent of cloud coverage and 
solar elevation, early SAR applications focused on the 
identification and detection of freeze/thaw states of the 
active layer ecosystem with seasonal SAR backscatter 
timeseries [2], [3]. 
Although both optical and SAR remote sensing 
techniques have been widely used to retrieve and monitor 
the unique ecological and periglacial features of 
permafrost area, each method has its own challenges or 
limitations. Permafrost regions have a long winter season 
with low solar intensity and angle and a short and rapidly 
progressing summer season. The geographical constraints 
limit the acquisition of optical remote sensing data, and as 
a result, it is often difficult to obtain appropriate data 
corresponding to the regions and timing of interests. On 
the other hand, SAR remote sensing has the advantage of 
being able to continuously acquire data for high latitude 
regions regardless of the season. Therefore, this study 
aims to explore the possibility of combined interpretation 

of optical and SAR data for identifying and understanding 
spatiotemporal details of the short- and long-term changes 
occurring in the permafrost active layer. 
 

2. STUDY AREA AND DATA SETS 
 
The selected study area is central Yakutian lowlands, 
eastern Siberia (Fig. 1). The alluvial terraces of the Lena 
River in eastern Siberia are composed of silty and sandy 
loams, which has high ice content, and the study area has 
been highly affected by thermokarst due to ice wedges [4]. 
The study site is covered with forests, shrublands, and 
thermokarst landforms. Particularly, one of the distinct 
features of the central Yakutian lowlands is the abundance 
of thermokarst lakes. The red and black rectangle in the 
Fig. 1 indicates Landsat and ALOS-1 PALSAR-1 data 
coverages, respectively. and the white box is the location 
of the main study area. 
 

 
Fig. 1. Location of the study area and the topography 
obtained from the Copernicus 30-meter global digital 

elevation model (GLO-30). 
 

3. ECOSYSTEM CHANGES IN OPTICAL DATA 
 
In order to examine both land cover changes and 
cryogenic processes throughout the thawing and freezing 
periods, two Landsat data acquired during the summer 
season in August 2006 (LS1) and 2007 (LS2). Previous 
studies were focused only on the detection and area 
change of thermkarst lake, but the study area has a 
regional characteristic that it is very difficult to identify 
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changes in the ecosystem due to changes in the soil 
environment unless changes in other land covers are 
comprehensively considered. The method of using the 
vegetation index of optical images is not easy to specify 
temporal and spatial changes in the active layer ecosystem, 
and thus, this study used the support vector machine 
(SVM) classification approach that can appropriately 
classify various topographical features and changes in the 
region based on the spectral characteristics of optical 
images. The change detection of Landsat data between 
2006 and 2007 summer period was carried out to 
minimize the effects of atmospheric or phenological 
conditions in the interpretation of the bi-temporal data to 
understand land cover changes as shown in Fig. 2(a) and 
(b). To reduce errors related to classification performance 
in the analysis of land cover changes, five classes with 
distinct spectral characteristics in both data were selected 
including dense forest (DF), sparse forest or shrub (SF), 
grassland (Gr), barren or bare surface (BS), and water 
(Wa).  
 

 
Fig. 2. SVM-based classification results for (a) LS1 

(2006) and (b) LS2 (2007) data, and (c) areal 
percentage of different land cover classes of the study 

area. 
 
Overall accuracy (OA) and Cohen’s kappa index (Kappa) 
were used to evaluate the accuracy of each Landsat data 
as shown in Fig. 2 (c). In order to assess the spatial 
pattern of changes in these four main classes, a grid-based 
analysis of the areal fraction of changes was applied as 
shown in Fig. 3. 
Fig. 3 shows the spatial change distributions for the four 
main classes, , , , and , per 1 km2 grid cell. In 
the change analysis, riverine lowland areas with the 
elevation below 100 m were masked to exclude land 
cover changes related to the fluvial regime of the Lena 
River. The gridded change distribution for DF class 
exhibits that there were specific areas where the forest 
areas were primarily reduced, and in some areas, the 
forest coverage within the grid cell was rather expanded. 
The DF class mainly decreased in the thermokarst terrace 
on the right bank of the Lena River, while the SF class 
increased in this region, which indicates that a significant 
part of the dense forests was changed to the sparse forests 
or shrublands in this area. 
 

 
Fig. 3. Grid-based spatial class changes (km2/ km2/yr) 
over 2006-2007 for (a) DF, (b) SF, (c) Gr, and (d) Wa 

classes. 
 

4. CHANGES IN POLARIMETRIC SAR DATA 
 
The data obtained in September 2006 (PA1) can be said to 
have been obtained at the end of the thawing period, and 
the data obtained in November 2006 (PA2) can be said to 
have been obtained at the beginning of the freezing period. 
The data obtained in March (PA3) and May 2007 (PA4) 
can be said to be the end of freezing period and the 
beginning of the thawing period, respectively. The status 
of acquiring ALOS-1 PALSAR-1 data is shown in Fig. 4, 
and is shown with meteorological data from the global 
atmospheric reanalysis ERA-5 data of European Center 
for Medium-Range Weather Forecasts (ECMWF). 
 

 
Fig. 4. Overall meteorological conditions during the 

study period (red: Landsat, blue: PALSAR) and 
PALSAR images of the main study area. 

 
The polarimetric SAR data with radiometric and 
geometric correction can be represented in the form of the 
covariance matrix [C]. In order to better clarify the 
change in scattering processes associated with the frost 
actions during winter, we have adopted additional 
polarimetric parameters called HHVV correlation 
coefficient that can provide additional 
information on the microwave scattering mechanism. The 
magnitude  can be a good indicator of signal 
depolarization that varies from 0 for a completely random 
signal to 1 for a pure single scattering. On the other hand, 
the phase  can be used to distinguish surface and 
double-bounce scattering mechanisms [5] and can 
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indicate dielectric properties of subsurface-layer of dry 
soil [6]. In addition to , the polarimetric 
correlation defined in the right (R) and left (L) handed 
circular polarization basis has been also used as another 
indicator of scattering characteristics. The magnitude of 

, i.e., , has been proved to be an effective 
parameter for estimating the roughness of scattering 
surfaces regardless of the dielectric properties of the 
scatterer [7]. On the other hand, the phase term  has 
been found to be directly related to the local orientation 
angle of the scattering surface [8]. 
The changes of HHVV correlation and RRLL correlation 
are shown in Fig. 5, and the Pearson correlation 
coefficients between polarimetric parameters and optical 
data and between polarimetric parameters and 
meteorological data are summarized in Table 1. 
 

 
Fig. 5. Changes of , , and . 

 

Table 1. Pearson correlation coefficients for the 
relation of land cover changes in three polarimetric 

parameters , , and . 

 
 
A decrease of  in Fig. 5 indicates an increase in the 
level of depolarization in the signal [9]. The scattering 
properties could be changed from single dominant surface 
scattering in the early freezing period to an increase of the 
stochastic scattering process from the frozen active layer 
in the late freezing period. The decrease in  during 
the freezing period can be interpreted as a decrease in the 
effective dielectric constant of the active layer scatterers 
[10]. Soil cryogenic process, such as increased frozen ice 
content and the development of ice lenses, can be one of 
the ground characteristics resulting in an increase in 
signal depolarization. On the other hand, the increase in 

 during the freezing process indicates an increase in 
the roughness of the scattering surface independently of 
the change in dielectric properties of the scatterer. 
Consequently, experimental results illustrate that 

polarimetric SAR timeseries data acquired in the freezing 
period may indicate the areas where the soil cryogenic 
process actively occurred, and such areas can be linked 
with changes in the ecosystem, such as reduction of forest 
and expansion of shrub.  
 

5. DISCUSSIONS  
 
Changes in both the land cover and the winter scattering 
characteristic, which can be experimentally identified 
through Landsat and PALSAR data, showed distinctive 
spatial patterns between the left and right terraces of the 
Lena River as shown in Fig. 6. Fig. 6 (a) shows the SVM-
based classification results for Landsat data in 2002 and 
2010, and Fig. 6 (b) shows the changes of  between 
PA2 and PA3 acquisition time. 
 

 
Fig. 6. (a) SVM-based classification results for 

Landsat data in 2002 and 2010, (b) changes of . 
 
Among the land cover classes, increasing SF classes and 
decreasing DF classes were found to be related to RRLL 
coherence during the winter of 2006-2007 in both the left 
and right terraces of the Lena River. As discussed earlier, 
the RRLL coherence can be related to the 
microtopography of the scatterer that could be attributed 
or related to the patterned surface properties. 
 

 
Fig. 7. Relationship between the winter changes in 

polarimetric parameters and the changes in DF, SF, 
Gr, and Wa classes for the (a) left and (b) right 

terraces of the Lena River. 
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6. CONCLUSION  
 
In this study, we analyzed ecological and geo-cryological 
dynamics in the central Yakutian region throughout the 
summer and winter seasons between 2006 and 2007 by 
using Landsat and PALSAR data obtained during the 
summer and winter seasons, respectively. The optical data 
with the advantage of being able to distinguish different 
land covers through spectral response measurements were 
used to elucidate ecosystem changes between consecutive 
summers. The results of post-classification-based change 
detection using Landsat data confirmed that vegetation 
cover also changed significantly between 2006 and 2007 
in the Yakutian lowlands, where lake area expansion had 
been previously reported. To understand the effect of the 
soil freezing process on ecosystem change, the radar 
scattering characteristics in winter were evaluated 
between the summer Landsat data acquisition period. We 
analyzed scattering mechanism indicators from the SAR 
data to highlight soil’s dielectric and roughness properties. 
The result of analyzing the relationship between 
information obtained from optical and SAR sensors 
revealed that there was a significant correlation between 
winter changes in scattering properties observed in SAR 
data and summer land cover changes observed in optical 
data. The scattering characteristics of winter soil were 
found to be particularly related to the ecosystem changes 
in areas that can be explained by the thermokarst 
development process. Additional data from independent 
sources, such as elevation data, meteorological data, and 
long-term optical data, consistently supported the 
relationship between the winter SAR observations and the 
thermokarst-related ecosystem changes. 
Based on these experimental results, information on the 
soil cryogenic processes related to the distribution and 
change of thermokarst landforms could be obtained 
through SAR observations during the freezing period. It is 
worth noting that polarimetric scattering mechanism 
indicators played a decisive role in deriving information 
about the permafrost process from the winter SAR data. 
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1. INTRODUCTION

Ice sheets are acknowledged by WMO and UNFCCC as
an Essential Climate Variable (ECV) needed to make
significant progress in the generation of global climate
models. Information requirements include ice velocity
(IV), grounding line position (GP), Ice front position
(IP), all of which can be derived using spaceborne SAR
data [1,2].
We are funded through a NASA MEaSUREs project to
generate high-quality Earth Science Data Records
(ESDR) in Antarctica. To do so, we utilize
multi-mission spaceborne SAR data and, more recently,
optical data. Our primary information products are ice
velocity and grounding line position, but we also
provide ice front position as well as basin boundaries.
Our maps are provided continent-wide, though coverage
is limited by the data availability for the corresponding
observation period. A list of available products is
provided in section 4.
The primary objective of this report is to evaluate the
utility of ALOS-2 PALSAR-2 data for ice sheet
monitoring. We show the utility of L-band data for both
ice velocity and grounding line measurements and
evaluate limitations of the mission for this task. Our
experience with L-band SAR data is based on our
extensive work with ALOS PALSAR data acquired in
Antarctica between 2006 and 2010 in several
campaigns. We used all available data for our products.
For ALOS-2 PALSAR-2, we employed a more regional
approach. The primary reason for this is more regulated
access to high resolution stripmap data from the
mission. We have been working with JAXA to define a
number of key geographic areas for repeat pass data
collection to maximize the scientific impact of the data
acquisitions.

2. DATA

ALOS-2 PALSAR-2 has a 14-day repeat orbit, which is
advantageous over ALOS PALSAR as data correlation
is even higher, particularly for fast glaciers. The shorter
repeat will reduce the signal to noise ratio for
ionospheric noise, so ionospheric perturbations will
have a greater impact compared to longer repeat data,
especially in slow moving areas. No Antarctica-wide
interferometric acquisition strategy is in place for
ALOS-2, and access to stripmap data is somewhat
restricted due to a limitation on data quotas. Throughout
the project, we worked with JAXA to identify regions
of interest where a smaller number of acquisitions has a

high scientific impact given the sensor properties. We
focussed on fast glaciers to optimally use our data
quota. These areas are distributed around Antarctica and
include the Antarctic Peninsula (from an earlier project
phase), the Amundsen Sea Embayment, and the Getz
Coast in West Antarctica, as well as Totten and Denman
Glaciers in East Antarctica (from different RA
projects). We found for early ALOS-2 PALSAR-2 data
that the range displacement component is affected by
strong shifts in range direction, an issue that JAXA also
identified and subsequently resolved. None of the data
sets delivered to us in recent years are affected.

3. METHODOLOGY

The primary method to measure ice sheet velocity from
spaceborne SAR data is speckle tracking [1]. Clear
advantages of the method include its robustness and the
availability of 2-D measurements from a single data
pair. Using the method, we have published the first
continent-wide ice velocity map for Antarctica [2] and
an ice sheet wide ice velocity map of Greenland [3].
Our processing infrastructure is built on
well-established methods [2,5,8], more than 20 years of
expertise in the field, and long term funding through the
NASA MEaSUREs program to produce and provide
Earth Science Data Records for Antarctica. In recent
years, we started to integrate optical data processed with
feature tracking [8] into our ESDR production. For this,
we synergistically process SAR and optical data,
automatically calibrate the resulting velocity maps and
merge them to seamless, ice sheet wide products. This
approach allows us to provide annual mosaics of ice
motion in Antarctica (and Greenland) with all available
data acquired in a particular year [8].
A detailed description of our technical approach to
generate ice velocity maps is provided in [5,8]. We use
single look complex images in stripmap mode (CEOS
format at the processing level 1.1). To process ice
velocity, we derive displacement-offset maps from
successive PALSAR-2 pairs. The offset map is
calculated using ampcor from JPL’s ROI_PAC package.
The offsets are then converted to 2D velocities. To
reduce error and mitigate ionospheric artifacts, we
average multiple measurements from all available
sensors in the generation of the Antarctica-wide
reference ice velocity map. Less averaging takes place
for velocity maps covering shorter time periods, like
annual maps and, more recently, monthly maps.
A second, more accurate method to measure ice
velocity from spaceborne SAR is to utilize the
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sensitivity of the interferometric phase to displacement
in rage direction [9]. This approach has a more stringent
data requirement, as it requires data to be collected in
both ascending and descending direction. No single
mission to date provides such coverage, we achieve it
by mixing data from different sensors acquired over
multiple years. The resulting ice velocity product is
vastly more accurate compared to speckle tracking
based results, particularly in areas of slow ice flow. For
fast flowing areas, the method cannot be used, so we
generate a high-precision Antarctica-wide reference
map by combining phase-based velocity measurements
with tracking based maps. . Ionospheric perturbations
do affect the L-and interferometric phase, however, the
impact can be greatly reduced using a split band method
[10]. A detailed description of the reference ice velocity
map based on InSAR phase as well as method used to
produce it is provided in [11]
The grounding line of a glacier is the boundary where
the ice starts to float in ocean waters. The floating
section moves up and down with rising and falling tide.
The resulting vertical displacement can be measured
using a spaceborne SAR using double difference
interferometry [3,6,7]. The method requires the
availability of two interferometric pairs (generated
either with three consecutive acquisitions, or two times
two consecutive acquisitions). We have previously
shown the potential of ALOS PALSAR for grounding
line measurements [3], however, the shorter revisit time
of ALOS-2 PALSAR-2 is highly advantageous for this
application.

Fig. 1: MEaSUREs Annual Antarctic Ice
Velocity Maps 2000-2020, V1 [8].
http://nsidc.org/data/NSIDC-0720

4. MEASURES EARTH SCIENCE DATA
RECORDS

Our efforts resulted in a number of ESDR’s that are
freely available for use:
http://nsidc.org/data/measures/data_summaries

● MEaSUREs Multi-year Reference Velocity
Maps of the Antarctic Ice Sheet, V1
http://nsidc.org/data/NSIDC-0761
(Note: link not yet active at the time of report submission)

● MEaSUREs Phase-Based Antarctica Ice
Velocity Map, V1
http://nsidc.org/data/NSIDC-0754

● MEaSUREs Annual Antarctic Ice Velocity
Maps, V1
http://nsidc.org/data/NSIDC-0720

● MEaSUREs Antarctic Boundaries for IPY
2007-2009 from Satellite Radar, V2
http://nsidc.org/data/NSIDC-0709

● MEaSUREs InSAR-Based Antarctica Ice
Velocity Map, V2
http://nsidc.org/data/NSIDC-0484

● MEaSUREs Antarctic Grounding Line from
Differential Satellite Radar Interferometry, V2
http://nsidc.org/data/NSIDC-0498

● MEaSUREs InSAR-Based Ice Velocity of the
Amundsen Sea Embayment, Antarctica, V1
http://nsidc.org/data/NSIDC-0545

● MEaSUREs InSAR-Based Ice Velocity Maps
of Central Antarctica: 1997 and 2009, V1
http://nsidc.org/data/NSIDC-0525

Our original continent-wide Antarctica ice velocity map
(NSIDC-0484) is based on speckle tracking of data
collected using ALOS/PALSAR along with
ENVISAT/ASAR, RADARSAT-1&-2, Sentinel-1a/b,
ERS-1/2, TerraSAR-X and Landsat-8. Based on our
expertise, we also produced a series of annual surface
ice velocity maps of the Antarctic Ice Sheet between
2000 and 2021 (NSIDC-0720), as shown in Figure 1
[5]. Both data sets were processed using speckle or
feature tracking and are published at the National Snow
and Ice Data Center (NSIDC). The latest generation
Landsat satellite (Landsat-8) proved to be a useful
addition to the suite of SAR satellites providing data for
our products. We process SAR and optical data in a
synergistic fashion, automatically calibrate, mosaic, and
integrate these data sets together into seamless,
ice-sheet-wide products.
The aforementioned products are solely based on
tracking methods (speckle tracking for SAR, feature
tracking for optical), which limits the accuracy on the
ice motion to about 10 m/yr, which impacts the
determination of flow direction in slow moving areas.
These limitations impact our ability to accurately define
drainage basins of glaciers in the region or to model and
understand the ice flow in slow moving areas.
The utilization of the InSAR phase allows us to measure
ice velocity much more accurately, particularly in slow
areas in the interior of the ice sheet. This advantage
comes at the cost of more stringent data requirements.
While speckle tracking provides 2d flow results from a
single pair, InSAR phase analysis requires data acquired
in ascending and descending orbits to combine two
range-only velocity vectors to form a 2d flow map [9]
[11]. We solved this issue by combining ascending and
descending InSAR phases from ALOS-2/PALSAR-2,
ALOS/PALSAR,  ERS-1/2,
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Fig. 2: MEaSUREs Phase-Based Antarctica
Ice Velocity Map, V1 [11].
http://nsidc.org/data/NSIDC-0754
Contributions of the various missions are shown in
the top row.

Envisat/ASAR, COSMO-SkyMed, RADARSAT-1/&-2,
and TanDEM-X/TerraSAR-X and achieve phase-based
ice velocity coverage for more than 71% of the area
[11]. In areas of fast flow on the coast, InSAR phase
analysis is no longer possible due to phase
decorrelation. Due to the high signal, tracking-based
results have an excellent SNR for these regions and
combining tracking with phase-based results leads to
the most precise ice velocity reference map of
Antarctica to date (NSIDC-0754, see Figure 2).

Figure 3 shows the published grounding line product
[3,6,7] divided by sensor as well as by year of data
acquisition. All grounding lines were measured using
double difference interferograms by utilizing the
sensitivity of the interferometric phase to vertical
displacement due to tide lift of the floating portion of
the ice. Grounding mapping efforts are ongoing,
particularly using ALOS-2 PALSAR-2, Sentinel-1,
RADARSAT-2, and Cosmo SkyMED. We are also
shifting to measuring multiple grounding line positions
per year to account for tidal induced short term
variations of the grounding line position and define a
grounding zone.

5. ALOS-2 PALSAR-2 EXAMPLE RESULTS

In an effort to evaluate ALOS-2 PALSAR-2 data for ice
sheet monitoring, JAXA kindly agreed to acquire, on a
best effort basis, repeat pass interferometric data in
several key areas, where acquisitions with limited
geographic coverage still have significant scientific
impact. Figure 4 shows the distribution of the areas of
interest around Antarctica. We chose fast glaciers in
coastal Antarctica that undergo changes as observed in
[12]. Also shown in Figure 4 are ALOS-2 PALSAR-2
sample ice velocity maps, all with good correlation.
Figure 5 shows a double difference interferogram of
two adjacent frames in the Denman Glacier region. Data
correlation is excellent and the differential tide leads to
a vertical displacement of the floating portion of the ice
resulting in a dense fringe pattern that allows the
delineation of the InSAR grounding line position, which
is the upstream boundary of the dense fringes.

Fig. 3: MEaSUREs Antarctic Grounding
Line from Differential Satellite Radar
Interferometry, V2 [3,6,7].
http://nsidc.org/data/NSIDC-0498

A phase jump is visible between the two frames,
because they were processed separately. The area has a
complex grounding line, which was previously mapped
using COSMO SkyMed X-band SAR data with 1 day
repeat orbit [13]. The ALOS-2 PALSAR-2 example
shows excellent correlation and a grounding line signal
even on the trunk of Denman Glacier, an area that
suffers from decorrelation in 6-day Sentinel-1 C-band
data.

Figure 6 shows several example ALOS-2/PALSAR-2
double difference interferograms for Totten Glacier,
East Antarctica. Data acquisition was on a best effort
basis, so interferometric pairs are dispersed throughout
the year. We use all available interferometric pairs to
generate double difference interferograms, even though
a preferred way of doing so is with interferograms that
were acquired close in time (less than 6 months apart).
The examples show a difference in fringe patterns
depending on the acquisition dates used to form the
interferograms. Similar tide level differences between
the acquisitions can potentially limit the vertical
displacement of the ice thus resulting in no discernable
grounding line fringes.

6. SUMMARY AND CONCLUSIONS

We evaluate 14-day interferometric L-band SAR data
from ALOS-2 PALSAR-2 for their utility for ice sheet
monitoring. The higher correlation of L-band data
compared to data with shorter wavelength and
comparable temporal baseline makes PALSAR-2 an
excellent instrument to monitor land ice. For the data
we have available, tracking results show generally good
correlation. Grounding line measurements are possible.
The sensitivity of L-band data to vertical displacement
is smaller compared to C- or X-band data resulting in
fewer fringes for the same differential tide. The primary
benefit for L-band is the higher correlation compared to
higher frequency bands, however, phase decorrelation
on fast flowing areas can occur for some of the areas
where we have data (predominantly in West Antarctica).
Another (frequency band independent) limiting factor
for grounding line mapping are interferograms with
similar differential tides, resulting in no discernable
fringe pattern related to vertical displacement due to
tide. This risk can be mitigated by acquiring multiple
interferograms, not just two, the minimum needed to
form a double difference interferogram. We also find
that short term, tide related grounding line migration
patterns can be observed if multiple grounding line
measurements are available for a year. These aspects are
addressed by our request to JAXA to acquire multiple
interferograms in the course of a year for a given test
site. The developed acquisition plan (best effort InSAR
acquisitions in targeted, high-impact areas), together
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with the examples shown, illustrates how ALOS-2
PALSAR-2 can be used for ice sheet monitoring under
the current BOS with high scientific impact. The
number of sites for acquiring multiple interferograms
per year could be increased to cover the grounding lines
for more glaciers around Antarctica.
ALOS-2 PALSAR-2 has the capability to collect data in
left looking mode, thus making it one of the few
missions able to collect data in Ross and Ronne ice
shelves, particularly the grounding zone regions of
these ice shelves. Collecting multiple interferograms in
a given year for these regions would contribute to the
sparse grounding line record for the area.
ALOS-2 PALSAR-2, under the BOS, collects stripmap
data collected in right-looking mode over large portions
of coastal Antarctica, geared towards geographic
coverage. Few InSAR acquisitions are available outside
the defined Areas of Interest defined for this and similar
projects. Given the excellent correlation for
tracking-based ice velocity generation, a comprehensive
collection of interferometric SAR data in Coastal
Antarctica would be an asset for ice velocity mapping.
Such a coverage would likely require an adjustment of
the BOS, but could be achieved by extending the time
frame allowed to achieve a full geographic coverage
with stripmap data to allow for 14-day repeat InSAR
data collection thus vastly improving the scientific
impact of stripmap data collected in Antarctica.
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1. INTRODUCTION 

 

The Arctic sea ice is very sensitive to climate change and 

its spatiotemporal changes influence the operation of the 

Northern Sea Route [1-2]. Therefore, observation of the 

changes in the Arctic sea ice is very important. In the high 

latitude region, the spatiotemporal variations of sea ice are 

small, whereas the variations of sea ice in the marginal ice 

zone are very large [3]. Various characteristics of sea ice 

such as size, thickness, surface roughness, and 

distribution of melt ponds are rapidly changing from 

spring to summer when sea ice melts (thaw-up phase) and 

from autumn to winter when sea ice freezes (freeze-up 

phase). Particularly, the Pacific Arctic Ocean, including 

the East Siberian Sea, the Chukchi Sea and the Beaufort 

Sea, is characterized by faster melting and freezing region 

than the other Arctic regions [4].  

Due to recent climate change, the transition periods of 

Arctic sea ice is changing and the characteristics of sea 

ice change accordingly. Thus, characterizations of sea ice 

at the marginal ice zone during the transition periods in 

the Pacific Arctic Ocean should be performed for 

understanding the response of the sea ice due to the 

climate change and for determining more economic 

Northern Sea Route. 

Polarimetric synthetic aperture radar (SAR) data can be 

effectively used for characterizing sea ice because it 

provides physical and structural information of the target. 

Many studies have been conducted to analyze sea ice 

using polarimetric SAR data. However, few studies for 

sea ice in the marginal ice zone of the Pacific Arctic 

Ocean during the transition periods have been performed. 

This research aims to characterize sea ice in the transition 

periods of the previously unexplored marginal ice zone of 

the Pacific Arctic Ocean by using ALOS-2 polarimetric 

SAR dataset and develop analytical techniques for the 

generation of sea ice information. The objectives of this 

research are 1) to classify sea ice types using the ALOS-2 

polarimetric backscattering signals, 2) to characterize the 

physical properties of sea ice such ice thickness, 3) to 

develop the sea ice characterization models for ALOS-2 

polarimetric SAR based on machine learning approaches, 

and 4) to assess the accuracy of the derived sea ice 

characteristics with in-situ measurements. 

 

 

2. CLASSIFICATION OF SEA ICE TYPES 

 

Accurate mapping of Arctic summer sea ice is necessary 

to assist in safely conducting human activities and to 

provide meaningful information related to climate change. 

Since the 1970s, passive microwave sensors have made 

observations of sea ice distributions based on distinct 

microwave radiation properties between sea ice and open 

water and have provided sea ice concentration data every 

day with a grid size of ~25 km. The sea ice concentration 

derived from the passive microwave sensors has been 

used as a primary data source for ship navigation. 

However, significant inaccuracies occur in the summer 

season, especially in the marginal ice zone [5], so that 

exhaustive verification of the accuracy is required.  

SAR has been widely used to map sea ice because it can 

provide high quality images regardless of weather 

conditions and sun altitudes. Particularly, polarimetric 

SAR can obtain various information on sea ice, which is 

extremely useful for sea ice mapping.  

In this research, we developed machine learning-based 

sea ice classification models for ALOS-2 polarimetric 

SAR data in Arctic marginal ice zone. Random Forest, a 

rule-based machine learning approach, was used for the 

model development. Random Forests generates a number 

of bootstrapped samples from the original data and 

constructs multiple no-pruning classification and 

regression trees [6]. A series of independent trees are 

grown by a randomly selected subset of the training 

samples and splitting variables of the tree, which can 

solve classification and regression problems.  

A total of 24 ALOS-2 polarimetric (HH and HV) SAR 

images over the Chukchi Sea in Arctic in September 2015. 

Fig. 1 shows an example of the ALOS-2 SAR images of 

the Arctic sea ice obtained on 15 September 2015. The 

HH-polarized SAR images shows higher backscattering 

signals for sea ice compared to the HV-polarized SAR 

image. In the study area, there was no multi-year sea ice 

and all sea ice was defined as first-year sea ice.  
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Fig. 1. ALOS-2 HH- and HV-polarized SAR images of 

Arctic sea ice obtained on 15 September 2015 

 

 

By helicopter survey of the Arctic expedition based on ice 

breaking research vehicle (IBRV) ARAON operated by 

the Korea Polar Research Institute (KOPRI) and sea ice 

charts provided by the Russian Arctic and Antarctic 

Research Institute, we constructed the reference samples 

(pixels) for thick sea ice, thin sea ice, and open water 

from the ALOS-2 SAR images. A total of 12,600 samples 

(4200 thick sea ice, 4200 thin sea ice, and 4200 open 

water) for HH- and HV-polarized backscattering 

coefficient were selected. Eighty percent of the total 

samples (3360 samples for each class) were randomly 

selected and used as training samples, and the remaining 

samples (840 samples for each class) were used as test 

samples.  

The HH- and HV-polarized backscattering coefficients 

were used as the input variables for the Random Forest-

based sea ice classification model. Table 1 shows the 

performance of the classification model. The developed 

model’s performance was low, with the overall accuracy 

of 75.2% and the Kappa coefficient of 62.9%. Fig. 2 

shows the sea ice map classified from the SAR data of Fig. 

1 based on the developed model.  

 

 

Table 1. Performance of sea ice classification model 

developed by using ALOS-2 HH- and HV-polarized 

backscattering coefficients 

Reference 

 

Classified  

Thick 

sea ice 

Thin 

sea ice 

Open 

water 
Sum 

User’s 

Accuracy 

Thick sea 

ice 
533 51 60 644 83.28% 

Thin sea 

ice 
215 704 141 1060 66.41% 

Open 

water 
72 85 639 796 80.28% 

Sum 840 840 840 2520  

Producer’s 

Accuracy 
65.83% 83.81% 76.07%   

Overall 

Accuracy 
75.24% 

Kappa 

coefficient 
62.86% 

 

 

 
Fig. 2. A map of sea ice classification derived from the 

model developed by using ALOS-2 HH- and HV-

polarized backscattering coefficients 

 

 

We computed entropy, anisotropy, and alpha angle from 

the ALOS-2 SAR images by using H-Alpha dual-

polarimetric decomposition method. The calculated 

polarimetric parameters and the backscattering 

coefficients were used as input variables for classification 

of sea ice types. The newly developed model showed 

- 35 

- 5 

Backscattering 

coefficient (dB) 

HH - pol 

HV - pol 

Thick ice Thin ice Open water 
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much higher performance (overall accuracy of 89.8% and 

Kappa coefficient of 84.6%, respectively) compared to the 

model using only the backscattering coefficients (Table 2). 

Fig. 3 shows the sea ice map for the SAR data of Fig. 1, 

derived from the newly developed model.  

 

 

Table 2. Performance of sea ice classification model 

developed by using ALOS-2 polarimetric parameters 

and backscattering coefficients 

Reference 

 

Classified  

Thick 

sea ice 

Thin 

sea ice 

Open 

water 
Sum 

User’s 

Accuracy 

Thick sea 

ice 
747 29 16 792 94.32% 

Thin sea 

ice 
60 729 38 827 88.15% 

Open 

water 
33 82 786 901 87.24% 

Sum 840 840 840 2520  

Producer’s 

Accuracy 
88.93% 86.79% 93.57%   

Overall 

Accuracy 
89.76% 

Kappa 

coefficient 
84.64% 

 

 

 
Fig. 3. A map of sea ice classification derived from the 

model developed by using ALOS-2 polarimetric 

parameters and backscattering coefficients 

 

 

Table 2 and Fig. 3 demonstrates that the polarimetric 

parameters of ALOS-2 SAR data much improved the 

performance of sea ice classification compared when 

using backscattering coefficients only. We could not use 

full polarimetric ALOS-2 SAR data for developing the 

Arctic sea ice classification model ice because there were 

no full polarimetric data for the marginal ice zone during 

transition period. Nevertheless, if the full polarimetric 

ALOS-2 data is obtained, it can be expected that the sea 

ice mapping performance will be much better, and we 

think that the ALOS-2 will greatly contribute to the field 

of sea ice research.  

 

 

3. BACKSCATTERING CHARACTERISTICS BY 

SEA ICE THICKNESS 

 

Radar backscattering can vary with changes in sea ice 

thickness. Several studies have analyzed the variations in 

backscattering characteristics observed by SAR 

depending on sea ice thickness changes. The previous 

studies showed a meaningful relationship between the 

backscattering and sea ice thickness. However, few 

studies on snow-covered sea ice has been performed so 

far.  

In this study, we collected ALOS-2 polarimetric SAR 

images of landfast sea ice in Barrow, Alaska, and 

compared the backscattering characteristics of the sea ice 

with its thickness. From January to April 2015, 8 dual-

polarimetric (HH and HV) and 2 full polarimetric ALOS-

2 SAR images for the landfast sea ice were acquired. The 

image acquisition period corresponded to the sea ice 

thaw-up phase (transition period). We used in-situ sea ice 

thickness measured at the sea ice mass balance site 

(71.37725° N, 156.55350° E) by University of Alaska 

Fairbanks (Fig. 4). Fig. 5 shows a HH-polarized ALOS-2 

SAR image of the study site obtained on 25 April 2015. 

The red dot in Fig. 5 represents the location of sea ice 

mass balance site shown in Fig. 4.  

 

 

 
Fig. 4. A picture of sea ice mass balance site 

(https://seaice.alaska.edu/gi/data/barrow_massbalance

/brw_2015/) 

 

Thick ice Thin ice Open water 
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Fig. 5. ALOS-2 SAR image for the landfast sea ice in 

Barrow, Alaska. The red dot represents the location of 

sea ice mass balance site 

 

 

Fig. 6 shows the scatterplot between the in-situ measured 

sea ice thickness and ALOS-2 backscattering coefficients 

at HH-polarization. The ALOS-2 L-band backscattering 

coefficient at HH-polarization strongly correlated with the 

landfast sea ice thickness, showing a R2 value of 0.933. 

This represents that it can be possible to develop a model 

for estimating sea ice thickness from the ALOS-2 

polarimetric data in the transition period.  

 

 
Fig. 6. Scatterplot between sea ice thickness and 

ALOS-2 HH-polarized backscattering coefficient 

 

 

Fig. 7 show the scatterplot between the in-situ measured 

sea ice thickness and ALOS-2 backscattering coefficients 

at HV-polarization, of which the value of R2 was 0.019. 

The landfast sea ice thickness could not be estimated from 

the ALOS-2 HV-polarized backscattering coefficient.  

A model for estimating sea ice thickness from ALOS-2 

polarimetric data could not be developed in this research 

because of a lack of ALOS-2 data capturing the sites of 

field observations. Nevertheless, our results showed that 

the ALOS-2 polarimetric data can be used to estimate 

accurate sea ice thickness in the transition periods.  

 

 

 
Fig. 7. Scatterplot between sea ice thickness and 

ALOS-2 HV-polarized backscattering coefficient 

 

 

4. POSSIBILITY OF USING ALOS-2 DATA FOR 

ESTIMATING CHANGES IN SEA ICE PHYSICAL 

PROPERTIES 

 

In this research, we analyzed the incidence angle 

dependence of multiyear sea ice in the marginal ice zone 

on the ALOS-2 L-band backscattering. We focused on the 

marginal ice zone of the western Beaufort Sea, north of 

Alaska. A sea ice drifter buoy with an integrated GNSS 

positioning system and Argos satellite-based data 

transmission system was installed on the surface of sea ice 

floe during the field campaign on August 12, 2019. The 

time and coordinates of the tracker on the ice floe were 

used to select ALOS-2 PALSAR2 images that capture the 

sea ice floe within its swath. However, there was few 

ALOS-2 polarimetric SAR images for the ice floe. Instead, 

we used Sentinel-1 dual-polarimetric SAR images, and 

analyzed the incidence angle dependence of the C-band 

backscattering coefficients of HH- and HV-polarization 

by using a robust linear regression model. The 

determinant coefficient and root mean square error 

between the measured and calculated backscattering 

coefficients were analyzed. Then, a polynomial regression 

model to determine a temporal trend of the normalized 

backscattering coefficients over the surface of multiyear 

sea ice during the SAR observation period was 

determined. Based on this result, we expect that ALOS-2 

full-polarimetric SAR data can be used for analyzing the 

temporal changes in sea ice physical properties.  
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1. INTRODUCTION 
 
Glacier flow rates are affected by changes in mass balance 
gradient due to snowfall on the glacier surface, changes in 
physical properties occurring inside and below the glacier, 
and basal sliding [1]. Many studies have been conducted 
on the observation of glacier flow rates due to changes in 
mass balance gradients and physical properties due to snow 
cover and erosion [2]. In addition, studies on flow rate 
changes due to the basal sliding are receiving great 
attention. 
The flow rate change due to the basal sliding is greatly 
affected by the water in the base. The pressure of thick ice 
lowers its melting point, allowing liquid water to exist at 
lower temperatures between the Antarctic ice and bedrock. 
Molten water is an important factor in changing the flow 
rate of glaciers. This is because the melt water reduces 
friction between the ice and the bedrock, accelerating the 
flow of the glacier [3, 4]. Molten water travels along the 
topography of the bedrock, creating channels and being 
stored in watersheds to form subglacial lakes. [5] suggested 
that large subglacial lakes initiate rapid ice flow. 
The study of subglacial lakes began with the discovery of 
elliptical depressions in the ice sheet. The first subglacial 
lakes were first discovered by Radio Echo Sounding (RES) 
from 1968 to 1979 [6]. Interactions between the ice sheet 
surface and subglacial lakes were unknown at the time of 
discovery, but were analyzed in the 1990s [7]. Most 
subglacial lakes were discovered using Ice-penetrating 
Radio Echo Sounding and Satellite Altimetry techniques [8, 
9, 10]. Observations of subglacial lakes using RES showed 
that the intensity of the reflected signal from the subglacial 
lake surface was much stronger and flatter than the 
reflected signal from the bedrock due to the dielectric 
constant. 
Subglacial lake detection using satellite altimeter was 
performed by detecting the flat surface of an ice sheet 
appearing from above in a large subglacial lake, or by 
detecting a sharp difference in altitude between the ice 
sheet around a subglacial lake and the ice sheet above the 
subglacial lake. Large subglacial lakes, such as Lake 
Vostok, can be detected by optical satellite imagery 
because the ice sheet surface is wide and flat. The 
difference in altitude above subglacial lakes are caused by 
changes in the water level below the ice sheets. The water 
system at the bottom of the ice sheet is pressurized by the 
thick ice above it. Changes in water level under these 
pressure conditions can change the elevation of the ice 

surface and can be observed from satellites [11]. The melt 
water below the ice sheet is driven by hydraulic pressure to 
discharge and rechange the subglacial lake, causing the 
upper ice to fall or rises as the water level changes. 
[12] found a total of 124 subglacial lakes in Antarctica 
using the ICE-Sat radar altimeter. [12] defined an active 
subglacial lake as a subglacial lake in which elevation 
displacement occurs due to hydrological activity. However, 
since RES and satellite altimeters measure using lines, it is 
difficult to detect small subglacial lake between lines. Also, 
when an altimeter detects the flat surface of the upper ice 
sheet of a subglacial lake, the physical properties of the ice 
sheet can make the surface appear flat, just as the low shear 
stress at the bottom make the surface of the ice sheet appear 
flat. In addition, the upper ice surface of subglacial lakes 
less than 4 km in diameter may not be flat, limiting 
detection [13]. 
The satellite Synthetic Aperture Radar (SAR) is very 
effective for research in Antarctica, where access is limited. 
In addition, it has the advantage of providing high-
resolution images in all conditions as it is not affected by 
the illuminance of the sun and weather conditions. 
Differential-interferometric SAR (DInSAR), one of the 
SAR image processing techniques, can be applied to 
measure ice displacement with cm accuracy. For example, 
[14] calculated the exact flow velocity of the Campbell 
Glacier Tongue using the DInSAR technique and tidal 
correction. Since DInSAR technique also includes vertical 
displacement, changes in the elevation of the glacier 
surface can also be observed. [15] used InSAR to observe 
changes in glacial surface elevation due to movement of 
subglacial water. [16] determined glacial subsidence due to 
drainage of subglacial lake, considering that displacement 
using InSAR is in the Line-Of-Sight (LOS) direction. 
In this study, DInSAR was applied to CookE2, one of the 
active subglacial lakes discovered by [12], to observe 
discharge and recharge, and to analyze the 2D surface 
change accordingly. The study area and data are described 
in Section 2 and the study methods are presented in Section 
3. The results were discussed in Section 4, and Section 5 
concludes this report. 
 

2. STUDY AREA AND MATERIALS 
 
Stretching from the coast George V in East Antarctica to 
Mount Prince Albert in West Antarctica, the Wilkes 
Subglacial Basin of Wilkes Land is covered by an ice sheet 
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1,400 km long, 400 km wide and 3 km thick. The Wilkes 
Subglacial Basin was observed with airborne radar dataset 
performed in the 1970s, and the deepest part of the basin is 
deeper than 2100 m below sea level [17]. Of the entire 
basin, the area observed in this study is approximately 100 
km west of Talos Dome in East Antarctica. Near this area, 
there is an Ice Divide that divides the direction of the ice 
flow into three directions, and this area is included in Cook 
Glacier. In particular, this area is drawing attention from 
many researchers as drainage progressed rapidly from 2006 
to 2008. 
The study area is included in the list of active subglacial 
lakes in Antarctica presented by [12]. [12] determined that 
2.7 km3 of water drained from CookE2 from November 
2006 to March 2008 using ICESat (Ice, Cloud and land 
Elevation Satellite) laser altimeter data. A decrease in 
height of 44 m was observed in track 227 and a decrease of 
48 m in track 1325, which is approximately five times the 
height decrease found in other subglacial lakes [12]. [9] 
combined ICESat and CryoSat-2 data to construct a time 
series for the elevation model and observed that the height 
of the CookE2 upper surface decreased sharply from 2006 
to 2008 at an average rate of 35 ± 14 m/year and then 
increased again to 5.6 ± 2.8 m/year. [18] observed an 
elevation decrease of about 70 m from November 2006 to 
October 2008 through ICESat. They also found that an 
elevation increase of about 13 m occurred when comparing 
the October 2008 altitude with the SPOT5 DEM obtained 
in February 2012 [18]. [19] show a decrease in elevation of 
59.6 m from February 2006 to October 2008 due to 
drainage, followed by steady increase at a rate of about 1.1 
m/year from January 2011 to November 2016 using ICESat 
and CryoSat-2 data. 
This study observed CookE2 using satellite SAR images. 
Since the satellite SAR system uses an active imaging 
system using microwaves, it can acquire high-resolution 
images of a large area in all weather conditions. In previous 
studies, satellite altimeters were mainly used to check 
changes according to lines. Satellite SAR imagery allows 
the identification of two-dimensional structures by 
analyzing images of the entire scene. 
In this study, images from the Advanced Land Observing 
Satellite (ALOS) Phased Array L-Band Synthetic Aperture 
Radar (PALSAR) operated by the Japan Aerospace 
Exploration Agency (JAXA) were used. ALOS was 
launched on January 24, 2006 and operated until May 12, 
2011. Its primary mission is land observation, and is used 
for mapping, regional observation, disaster monitoring, 
and resource surveys. ALOS has three sensors: 
Panchromatic Remote Sensing Instrument for Stereo 
Mapping (PRISM) for digital altitude measurement, 
Advanced Visible and Near Infrared Radiometer type-2 
(AVNIR-2) for precision land cover observation, and 
PALSAR with L-band SAR (1.27GHz) for all-weather 
land observation. As shown in Table 1., ALOS PALSAR 
has Fine Mode, Scan SAR Mode, and Polarimetric Mode. 
In this study, SAR images acquired in FBS(Fine Beam 
Single polarization) mode were used, and level 1.1 
SLC(Slant range single look complex) products acquired 

in October 24, 2007, November 15, 2007, December 9, 
2007, December 31, 2007, October 20, 2010, and 
December 5, 2010 were used. 
 

 

Fig. 1 Study area 
 
Table 1 ALOS PALSAR imaging acquisition modes 
characteristics 

Mode Swath 
(km) 

Spatial 
resolution 

(m) 
Polarization 

Fine 
FBS 70 10×10 Single  

(HH or VV) 

FBD 70 20×10 Dual  
(HH+HV or VV+VH) 

Scan SAR 360 71-157×100 Single  
(HH or VV) 

Polarimetric 30 31×10 Quad-pol 
(HH/HV/VH/VV) 

 

 
 

Fig. 2 ALOS PALSAR observation modes [20]. 
 

3. METHODS 
 
A satellite SAR system can detect subtle differences by 
observing the same object more than once. There are two 
methods of observation. The first is a method of acquiring 
images with a time difference using the repeated orbit of a 
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single radar mounted on a single satellite. The second way 
is to take images with two radars at the same time. In this 
method, two radars can be installed on one satellite to take 
images at the same time, or two satellites are equipped with 
radars respectively and fly together. Most satellites such as 
ALOS-1/2, ERS-1/2, Sentinel-1A/B, and COSMO-
SkyMed use repeated orbits, while TerraSAR-X and 
TanDEM-X take images in parallel. In the method using 
the repeated orbit, the displacement is represented by 
fringes and can be considered as a concept of velocity. 
When using two radars at the same time, it is mainly used 
to generate global DEM by observing the altitude. 
The geometry of the SAR Interferometry technique is 
shown in Fig. 3. InSAR configuration is usually achieved 
by imaging a target point 𝑃𝑃 from two radar positions at 
𝑆𝑆1 and 𝑆𝑆2. The distance between 𝑆𝑆1 and 𝑆𝑆2 is baseline, 
𝐵𝐵. The line passing through 𝑆𝑆2 and perpendicular to the 
slant range of 𝑆𝑆1 is called 𝐵𝐵⊥. The height of 𝑆𝑆1 from the 
surface is 𝐻𝐻 and the radius of the Earth is 𝑟𝑟𝑒𝑒 . 𝜃𝜃𝑙𝑙 is the 
look angle, and 𝛼𝛼𝐵𝐵 is the angle between the line 
perpendicular to 𝐻𝐻  and baseline 𝐵𝐵 . If the slant ranges 
from 𝑆𝑆1 and 𝑆𝑆2 to the target points 𝑃𝑃 are 𝑅𝑅1 and 𝑅𝑅2, 
respectively, and the slant range difference between 𝑅𝑅1 
and 𝑅𝑅2  is Δ𝑅𝑅 , the interferometric phase 𝜙𝜙  can be 
expressed as follows using the radar wavelengths 𝜆𝜆 and 
Δ𝑅𝑅: 
 

 𝜙𝜙 = −
4𝜋𝜋
𝜆𝜆
Δ𝑅𝑅 (1) 

 
Phase represents a displacement of 2𝜋𝜋, and a single 
fringe means displacement of 𝜆𝜆

2
. Δ𝑅𝑅 can be expressed as 

follows by applying the second law of cosines: 
 

    Δ𝑅𝑅 = �𝑅𝑅12 + 𝐵𝐵2 − 2𝑅𝑅1𝐵𝐵 sin(𝜃𝜃𝑙𝑙 − 𝛼𝛼𝐵𝐵) − 𝑅𝑅1. (2) 

 
The elevation 𝑍𝑍 from the surface to the target point 𝑃𝑃 is 
calculated by the following equation: 
 

 z = �(𝑟𝑟𝑒𝑒 + 𝐻𝐻)2 + 𝑅𝑅12 − 2𝑅𝑅1(𝑟𝑟𝑒𝑒 + 𝐻𝐻) cos𝜃𝜃𝑙𝑙 − 𝑟𝑟𝑒𝑒 . (3) 

 
The height sensitivity of InSAR can be expressed as 
 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
≈ 4𝜋𝜋

𝜆𝜆
𝐵𝐵⊥

𝑅𝑅1 sin 𝜃𝜃𝑙𝑙
. (4) 

 
This means the change of the interferometric phase 
according to the amount of change in the elevation of the 
surface. The height ambiguity indicated by single fringe in 
InSAR can be expressed as follows: 
 
 ℎ𝑎𝑎 = 2𝜋𝜋 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
≈ 𝜆𝜆

2
𝑅𝑅1 sin 𝜃𝜃𝑙𝑙

𝐵𝐵⊥
. (5) 

 
If the perpendicular baseline becomes too large, coherence 
will be small, and information may not be obtained. 
Therefore, the perpendicular baseline should be considered 

when selecting the DInSAR piar. We determined the 
InSAR pair as shown in Table 2 by considering the 
perpendicular baseline. 
The interferogram shows fringes that include both the 
phase by topographical elevation and the phase by ground 
displacement. To observe the displacement of the surface, 
it is necessary to remove the phase by topographical 
elevation. Therefore, the Differential Interferometric SAR 
(DInSAR) technique using a reference Digital Elevation 
Model (DEM) was applied to remove the topographic 
phase. Since there is very little ice flow in the study area, 
the DInSAR images show areas with different flow 
velocity than the surrounding areas. Note that one fringe in 
the DInSAR image means a displacement in the Line-Of-
Sight (LOS) direction corresponding to half the 
wavelength of the band. 
 

 
 

Fig. 3 InSAR geomerty 
 
Table 2 Used data. 

InSAR Pair Perpendicular 
baseline (m) 

Temporal 
baseline 
(days) 

20071024_20071209 -791.9373168945 46 
20071115_20071231 880.2124023438 46 
20101020_20101205 1020.9151611328 46 

 
 

4. RESULTS AND DISCUSSION 
 
The study area is the upper part of subglacial lake CookE2 
included in [12], who first collected the entire Antarctic 
subglacial lake list. The circular fringe signal shown in the 
DInSAR image means the LOS displacement according to 
the volume change of the subglacial lake. [18] used an 
altimeter and a DEM to observe changes in elevation at the 
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surface of lake CookE2. As a result, it was confirmed that 
from the end of 2006 to the end of 2008, the altitude 
decreased sharply by more than 60 m [18]. 
As a result of DInSAR processing of ALOS PALSAR 
images on October 24, 2007 and December 9, 2007, about 
56.6 circular fringes appeared, confirming that there was a 
decrease in altitude of about 6.7±0.2 m. In [18], the 
elevation decrease during a similar period was about 
5.5±1.6 m, and considering the error range, it shows a 
similar value to the elevation decrease obtained from the 
DInSAR image. Additional DInSAR processing was 
performed at similar times on the ALOS PALSAR images 
from November 15, 2007 and December 31, 2007 to 
observe some regions that were not acquired in the image 
frame of the first DInSAR pair. About 52.5 fringes appear, 
and it can be seen that an elevation decrease of about 
6.2±0.2 m occurred during 46 days. In the DInSAR images 
generated from the ALOS PALSAR images on October 20, 
2010 and December 5, 2010, an elevation increase of about 
0.5±0.2 m was confirmed after the elevation decrease was 
completed. In [18], the elevation increase was 1.13±1.6 m 
during the same period. 
The rates of elevation decrease in 2007 estimated in this 
study are about 53.16 m/year and about 49.2 m/year. In 
addition to the study of [18] compared above, the previous 
study had a value of from a minimum of about 21.7 m/year 
to a maximum of about 40 m/year, which was generally 
smaller than the results of this study [9, 12, 18, 19]. This 
can be seen as the result of calculating the initial rate of 
elevation decrease at which the discharge occurs rapidly in 
this study. Since the discharge rate can be change, 
additional data analysis is required until the discharge is 
complete in order to accurately analyze the change in the 
rate of elevation decrease over time. 
The area of the circular anomaly observed in the DInSAR 
images of the discharge of a subglacial lake is much larger 
than the area of the circular anomaly when the water level 
is recharged after discharge is complete. This is thought to 
be because the displacement including the surrounding 
area occurs due to the elasticity of the ice when the altitude 
decreases rapidly when the lake is discharged. Considering 
the elevation change patterns observed in previous studies 
and this study, it is thought that the water level of Lake 
CookE2 is gradually being recharged after discharge 
occurred for about 1 year and 6 months from the end of 
2006. Through comparison with previous studies, it was 
possible to verify that the behavior of the subglacial lake 
surface can be continuously observed using satellite SAR 
images. In addition, since the location of the circular 
fringes and the location of the subglacial lake are exactly 
the same, the SAR interferometry is being considered as a 
method to detect the presence and volume change of the 
subglacial lake. 
 

5. CONCLUSIONS 
 
In this study, the displacement in the LOS direction was 
analyzed using the SAR interferometry technique and the 
elevation change of the upper surface of the subglacial lake  

 
Fig. 4 time series of elevation difference at surface of 

CookE2 Subglacial Lake in [18]. 

 
Fig. 5 20071024_20071209 ALOS PALSAR DInSAR 

imagery. 
 

 

Fig. 6 20071115_20071231 ALOS PALSAR DInSAR 
imagery. The blue line is CookE2 in [12]. 

 
Fig. 7 20101020_20101205 ALOS PALSAR DInSAR 

imagery. 
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was estimated. Lake CookE2 is located in an area where 
glacial flow rates are slow, allowing DInSAR images to 
detect anomaly that differ from surrounding areas. In the 
DInSAR image, the flow velocity appeared as in form of 
circular fringes, and since there was almost no 
displacement in the surrounding ice, these fringes are 
thought to be due to vertical displacement. It is known that 
the subglacial lake exists in this area, so the circular fringes 
are thought to be due to the volume change of the 
subglacial lake, and it can be seen in comparison with 
previous studies. From the end of 2006 to the end of 2008, 
the elevation appears to have decreased sharply and has 
been increasing since then. In addition, it is judged that a 
more precise analysis using the SAR images is required for 
the increasing signal of the upper part of the subglacial lake 
to the present, which has been revealed in recent studies. 
Through this study, it was confirmed that the positions and 
volume changes of subglacial lakes can be observed using 
the SAR interferometry as well as the RES, satellite 
altimeter, and DEM that have been used in previous studies 
of subglacial lakes. Also, SAR interferometry is considered 
capable of detecting small subglacial lakes that have not 
been discovered in previous studies. Through this, it is 
thought that it will be helpful in site selection for subglacial 
lake field exploration. 
 

6. REFERENCES 
 
[1] R.M. Bennett, and N.F. Glasser, “Glacial Geology Ice 
Sheets and landforms,” John Wiley & Sons., pp. 65-82, 
1996. 
[2] E. Rignot, D.Vaughan, M. Schmeltz, T. Dupont, and D. 
Macayeal, “Acceleration of Pine Island and Thwaites 
Glaciers, West Antarctica,” Annals of Glaciology, vol. 34, 
pp.189-194. 2002. doi:10.3189/172756402781817950 
[3] H.J. Zwally, W. Abdalai, T. Herring, K. Larson, J. Saba, 
and K. Steffen, “Surface Melt-Induced Acceleration of 
Greenland Ice-Sheet Flow,” Science, vol. 297, 5579, pp. 
218-222, 2002. doi:10.1126/science.1072708 
[4] K. Macgregor, C. Riihimaki, and R. Anderson, “Spatial 
and temporal evolution of rapid basal sliding on Bench 
Glacier, Alaska, USA,” Journal of Glaciology, vol. 51 
(172), pp. 49-63. 2005. doi:10.3189/172756505781829485 
[5] R. Bell, M. Studinger, C. Shuman, M. Fahnestock, and 
I. Joughin, “Large subglacial lakes in East Antarctica at the 
onset of fast-flowing ice streams,” Nature, vol. 445, pp. 
904–907, 2007. doi:10.1038/nature05554 
[6] M.J. Siegert, “Antarctic subglacial lakes,” Earth-
Science Reviews, vol. 50, pp. 29-50, 2000. 
[7] G.Q. Robin, C.W.M. Swithinbank, and B.M.E. Smith, 
“Radio‐echo exploration of the Antarctic ice sheet,” IASH 
Publ., 86 (Symposium at Hanover 1968 - Antarctic 
Glaciological Exploration (ISAGE)), pp. 97-115. 1970. 
[8] M. Siegfried, and H. Fricker, “Thirteen years of 
subglacial lake activity in Antarctica from multi-mission 
satellite altimetry,” Annals of Glaciology, vol. 59 (76pt1), 
pp. 42-55, 2018. doi:10.1017/aog.2017.36 
 
 

[9] M. McMillan, H. Corr, A. Shepherd, A. Ridout, S. 
Laxon, and R. Cullen, “Three-dimensional mapping by 
CryoSat-2 of subglacial lake volume changes,” 
Geophysical Research Letters, vol. 40(16), pp. 4321-4327, 
2013. 
[10] H.A. Fricker, M.R. Siegfried, S.P. Carter, and T.A. 
Scambos, “A decade of progress in observing and 
modelling Antarctic subglacial water systems,” 
Philosophical Transactions of the Royal Society A: 
Mathematical, Physical and Engineering Science, vol. 374, 
2016. 
[11] H.A. Fricker, T. Scambos, A. Bindschadler, and R.L. 
Padman, “An active subglacial water system in West 
Antarctica mapped from space,” Science, vol. 315, no. 
5818, pp. 1544-1548, 2007. 
[12] B.E. Smith, H.A. Fricker, I.R. Joughin, and S. 
Tulaczyk, “An inventory of active subglaical lakes in 
Antarctica detected by ICESat (2003-2008),” Journal of 
Glaciology, vol. 55, No. 192, pp. 573-595, 2009. 
doi:10.3189/002214309789470879 
[13] M.J. Siegert, and J.K. Ridley, “An analysis of the ice-
sheet surface and subsurface topography above the Vostok 
Station subglacial lake, central East Antarctica,” Journal of 
Geophysical Research Solid Earth, vol. 103(B5), 1998. 
doi:10.1029/98JB00390 
[14] H. Han, and H. Lee, “Surface strain rates and 
crevassing of Campbell Glacier Tongue in East Antarctica 
analysed by tide-corrected DInSAR,” Remote Sensing 
Letters, vol. 8(4), pp. 330-339, 2017. 
doi:10.1080/2150704X.2016.1271158 
[15] L. Gray, I. Joughin, S. Tulaczyk, and V. Spikes, 
“Evidence for Subglacial water transport in the West 
Antarctic Ice Sheet through three-dimensional satellite 
radar interferomery,” Geophysical Research Letters, vol. 
32, 2005. 
[16] S. Palmer, M. McMillan, and M. Morlighem, 
“Subglacial lake drainage detected beneath the Greenland 
ice sheet,” Nature Communications, vol. 6, 8408, 2015. 
doi:10.1038/ncomms9408 
[17] F. Ferraccioli, E. Armadillo, T. Jordan, E. Bozzo, and 
H. Corr, “Aeromagnetic exploration over the East 
Antarctic Ice Sheet: a new view of the Wilkes Subglacial 
Basin,” Tectonophysics, vol. 478 (1–2), pp. 62-77, 2009. 
doi:10.1016/j.tecto.2009.03.013 
[18] T. Flament, E. Berthier, and F. Remy, “Cascading 
water underneath Wilkes Land, East Antarctic ice sheet, 
observed using altimetry and digital elevation models,” 
The Cryosphere, Copernicus vol. 8 (2), pp. 673-687, 2014. 
doi:10.5194/tc-8-673-2014 
[19] Y. Li, Y. Lu, and M.J. Siegert, “Radar sounding 
confirms a hydrologically active deep-water subglacial 
lake in East Antarctica,” Frontiers of Earth Science, vol.8, 
294, 2020. doi: 10.3389/feart.2020.00294 
[20] A. Rosenqvist, M. Shimada, N. Ito and M. Watanabe, 
“ALOS PALSAR: A Pathfinder Mission for Global-Scale 
Monitoring of the Environment,” IEEE Transactions on 
Geoscience and Remote Sensing, vol. 45(11), pp. 3307-
3316, 2007. doi: 10.1109/TGRS.2007.901027 

605



FINAL REPORT OF THE 2ND RESEARCH ANNOUNCEMENT ON  
THE EARTH OBSERVATIONS(EO-RA2)  

“EVALUATION OF GLACIER MOVEMENT AND CRUSTAL REBOUND IN 
THE GREENLAND WITH A TIME-SERIES ANALYSIS USING MULTI-

TEMPORAL ALOS-2 PALSAR-2 OBSERVATIONS” 
" 

PI No.: ER2A2N177  
Sang-Hoon Hong 1 

 
1 Department of Geological Sciences, Pusan National University, Pusan, 46241, Korea 

 
 

1. DATA RETRIEVAL 
 
We have ordered and downloaded SAR images through 
ALOS-2/ALOS User Interface Gateway (AUIG2) until the 
system does not operate anymore. After the transition to 
Globe Portal System (G-Portal), the download system will 
be improved shortly. We made the mistake of losing some 
quota by ordering the same scene because we were 
unfamiliar with the new download system. We believe the 
system could be significantly improved by maintenance in 
the next EO-RA3 stage. 
 

2. DATA ARRANGEMENT USING RSP PATH 
CALCULATION 

 
Our interferometric data processing chain automatically 
arranges the downloaded data by calculating the path 
number with the orbit accumulation number from the file 
name notation. In the case of the ALOS PALSAR image, 
we found the below equation to calculate the RSP path 
number and used it.  
 
RSP Path for ALOS  = [46 * orbit accumulation No. + 84] 
MOD 671 + 1       (1) 
 
However, we could not find yet similar equation for the 
ALOS-2 PALSAR-2 image. After gathering the 
information on the ALOS-2 orbit from the JAXA website, 
the below equation could be written.  
 
RSP Path for ALOS2 = [14 * orbit accumulation No. + 
24] MOD 207        (2) 
 
So far, the above equation allows us to calculate the path 
information of ALOS-2 correctly from the orbit 
accumulation No. 
 

3. ALOS-2 PALSAR-2 STRIPMAP DINSAR 
ANALYSIS IN JAKOBSHAVN ISBRAE 

 
The polar regions play an important role in the Earth 
system. Monitoring the glaciers from the space-based 
synthetic aperture radar observations could be very useful 

to understand the polar regions and forecast how much sea 
level will increase in the near future in the global warming 
environment. Differential radar interferometry (DInSAR) 
provides a displacement map with high spatial resolution 
from an earthquake, volcano, water level change in the 
mm to cm accuracy. However, When it is covered with 
glaciers or snow, it is challenging to apply DInSAR 
because the shift in topographic altitude over time is 
relatively severe compared to other land topography. L-
band has a longer wavelength than X- and C-band, so it 
has advantages for coherence analysis with relatively high 
coherence in applying interferometry. To observe surface 
displacement in Jakobshavn Isbrae, we used the L-band 
ALOS-2 PALSAR-2 SAR observations from Sep-16, 
2014, to Mar-26, 2019. DInSAR provides more precise 
surface displacement than the offset tracking method. Still, 
the rapidly changing glacial environment also affects the 
decorrelation between the two images, which can cause 
errors and limited measurement. As for the results, it was 
possible to have a relatively good coherence because the 
area where the surface displacement was only partially 
observed is the glacier’s bedrock. As the glacier that was 
pressing the crust on the earth’s surface melts and the 
weight of the surface decreases, it is possible that the 
surface rebounds and the displacement is observed. We 
want to apply the SBAS technique to monitor possible 
displacement of bedrock and estimate surface 
displacement would be validated with a global positioning 
system in the near future. 
 
 

4. OFFSET TRACKING VELOCITY MAP USING 
ALOS-2 PALSAR-2 OBSERVATIONS IN 

JAKOBSHAVN ISBRAE  
 
Ice velocity is an important factor in analyzing the effects 
of various glaciological applications and global 
environmental changes. Field surveys of ice velocity along 
glaciers are difficult to access, time-consuming and 
expensive, limiting long-term observations. Synthetic 
aperture radar (SAR), which has been used to observe 
various surface displacements, is also helpful in observing 
glacier displacements. Differential Radar Interferometry 
(DInSAR) can detect relative surface displacements with 
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high spatial resolution from mm to cm accuracies at the 
surface, such as ground subsidence, volcanoes, water level 
changes, and earthquake. However, DInSAR application 
is often limited by the decorrelation effect due to much 
larger displacements than the radar wavelength, a large 
temporal baseline, volume decorrelation caused by snow 
melting or accumulation, etc. Therefore, the DInSAR 
technique has limitations in measuring the displacement at 
high rate glaciers. Offset tracking can be applied to 
glaciers because it estimates a direct displacement by 
measuring the same feature between two images. We 
measured the ice velocity using intensity offset tracking 
with an appropriate window patch size. In Figure 2, the 
areas with a consistent blue color are bedrock, compared 
with a flowing glacier. We tried to find a proper window 
patch size. Jakobshavn Isbrae had limitations in measuring 
the velocity at the glacier’s end due to the temporal 
baseline and the faster ice velocity approaching the 
terminus. We will estimate a time series of glacier 
movement using the STBAS technique based on speckle 
tracking in the near future. 
 

 
Fig. 1. Surface displacement map generated by using 
DInSAR. The interferograms show the displacement of a 
portion of the bedrock around which a fast-moving glacial 
region is not observed due to decorrelation. 

 

 
Fig. 2. Offset tracking ice velocity map of Aug 16-Sep 13, 
2016, scaled from 0 to 200 m. The ice velocity is faster 
toward the terminus and the center of the mainstream. 
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1. INTRODUCTION 

Reclamation land has long history in human history, 

due to the special geographical conditions and complex 

geological environment of reclamation area, land 

subsidence always the most series problem of these areas. 

Due to the special geographical conditions and complex 

geological environment of reclamation area, land 

subsidence becomes most series problem of these area. It 

will cause elevation loss, uneven settlement and other 

issues which will have a direct impact on the industrial 

engineering, flood control, municipal pipeline roads and 

other facilities in the area, and indirectly threaten the 

stability of the construction and economic development of 

the region as well. The hazards of land subsidence mainly 

include the destruction of buildings and production 

facilities and the impact on the construction and resource 

development [1]–[3]. Interferometric Synthetic Aperture 

Radar (InSAR) technology integrates the principle of 

Synthetic Aperture Radar imaging and electromagnetic 

wave interference technology, and theoretically can obtain 

very accurate digital elevation model and surface 

deformation information of millimeter scale [4]–[6]. 

Compared with conventional methods such as GPS and 

level monitoring, InSAR can observe the target all day 

and all day. With wide coverage and high spatial 

resolution, continuous surface monitoring can be 

implemented in a large range. Compared with the 

accuracy it can achieve, the cost is low and it has the 

characteristics of stable data source. These characteristics 

show that if InSAR technology is used to monitor land 

subsidence, it can not only reduce the cost, but also 

monitor the land subsidence displacement in the whole 

radar image coverage area in a quasi-real-time and 

dynamic manner [7]–[9]. 

The research project under the ALOS Research 

Announcement (RA) by the Japan Aerospace Exploration 

Agency (JAXA), was intended to use L-band SAR data 

acquired from ALOS-1 and ALOS-2 satellites for earth 

surface subsidence monitoring [10]–[13]. Considering the 

phase loss correlation and atmospheric delay effect of 

conventional DInSAR, the time series InSAR technique 

which only tracks the targets with relatively stable 

scattering characteristics in the imaging region, while 

abandoning the targets with serious loss of correlation. 

These stable targets can maintain high coherence in a 

long-time interval and can also maintain high coherence 

when the spatial baseline distance exceeds the critical 

baseline distance, the interference image pairs with long 

baseline distance can be fully utilized to maximize the 

utilization of data. Therefore, by analyzing the time series 

of these stable points and eliminating the influence of the 

atmosphere, the subsidence of stable points can be 

accurately measured, so as to monitor the movement of 

the ground and accurately reflect the relative displacement 

of the monitored area. The studies carried out in this 

project mostly cover Tianjin Binghai and Zhongshan 

reclamation area, meanwhile we also studied the 

conventional InSAR and time series InSAR technique in 

monitoring the subsidence of mining area and landslide 

monitoring and some results are given in this report. 

 

2. STUDY AREA 

 

 
 

Fig. 1 The location of the study area which covers 

Zhongshan city area located at Pearl River Delta plain, 

Reclamation activities in the Pearl River Estuary can be 

traced back to the Song and Yuan Dynasties. From 1950 

to 2014, nearly 930 km2 was accumulated in the Pearl 

River Estuary area (Red rectangle). 

The Pearl River Delta plain is a loose sediment 

accumulation plain. Under the influence of human 

engineering activities and natural consolidation, serious 

land subsidence has occurred in some areas, resulting in 
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varying degrees of damage to houses, highways, Bridges, 

water conservancy facilities, embankments and 

underground pipe network facilities, and causing serious 

economic losses. A large area of soft soil is distributed in 

the plain area of the Pearl River Delta, and the distribution 

thickness is relatively large. The soft soil is mainly silt 

and silty soil deposited by Marine facies, followed by peat 

soil, silty sand, carbonized plant debris and shell 

fragments. Due to the low strength and high 

compressibility of soft soil, the soft soil foundation is 

particularly prone to settlement deformation under various 

loads, resulting in huge economic losses for engineering 

construction, as shown in Fig 1. The terrain in this region 

is relatively flat, mainly consisting of flat land, farmland, 

small towns, mountains, hills and platforms. From the 

perspective of geological structure conditions, there is a 

small scale fault at the southern foot of Wugui Mountain, 

which runs through Doumen District in a northeast-

southwest direction. From the hydrogeological point of 

view, this area is adjacent to the South China Sea, with 

numerous internal river networks and abundant rainfall, 

which can be well supplied to the ground water. 

 

 

Fig. 2 The location of the study area which covers the 

Chongqing area. The yellow color area is about one 

scence of PALSAR-2 stripmap dataset. 

Chongqing is one of the geological disaster areas in 

China with severe geological disasters such as landslides 

and landslides ranks first among the 70 cities in China. 

Chongqing is the largest industrial and commercial center 

in southwest China. Especially after chongqing becomes 

the municipality directly under the central government. 

Landslide, collapse and other geological disasters are 

mainly determined by geological structure, stratigraphic 

lithology, hydrology and meteorology. Chongqing is 

located in the eastern Sichuan basin, mountain and basin 

margin slope zone with deep creek, complex geological 

structure, the surface of the weak layer, and sometime 

with heavy rain, make the geological disasters in this area 

wide spreaded and great harm. 

 

 
 

Fig. 3 The location of the study area which covers the 

Fengfeng mining area. The yellow color area is about one 

scence of PALSAR-2 stripmap dataset. 

Hebei Fengfeng coal mine is an old mining area in China, 

with a history of more than 100 years. The west side of 

Fengfeng mining area is a mountain basin, and the east 

side is a sloping plain, with the highest elevation of 891 

meters. Fengfeng mining area is located at the eastern foot 

of the south part of Taihang mountain, which is the 

transition zone between Taihang mountain and north 

China plain. There are more than 30 kinds of proven 

mineral resources in Fengfeng mining area, including coal, 

iron ore, China clay, bauxite, limestone, marble and 

gypsum. In order to reduce overcapacity in the coal 

industry and eliminate backward production capacity in 

the thermal power industry, the city have arranged the 

withdrawal of two coal mines and the shutdown of seven 

coal-fired power units. The SAR image covers the 

northern part of the Fengfeng mining area and part of the 

Wuan area. The central part is the remaining vein of the 

Taihang mountains, with the altitude of more than 800 

meters at the highest and less than 100 meters at the 

lowest. 

The area around bohai sea is to point to encircle bohai sea 

whole and yellow sea part of littoral area place forms 

extensive economy area. Land subsidence is one of the 

major environmental geological disasters in the bohai rim 

region, which includes tianjin, hebei and shandong 

provinces. Dongying City is a very serious subsidence 

area in this region. The coastline of Dongying City is 421 
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kilometers, and the coastal tidal flat area is 1159 square 

kilometers. The shallow underground brine reserves are 

about 1.16 billion cubic meters, and the estimated 

geological reserves of salt mines are 600 billion tons. 

According to the statistics of Dongying Salt Industry 

Association, the salt fields in Hekou District cover an area 

of 450,000 mu, with a raw salt production capacity of 

2.55 million tons. With the strengthening of salt mining 

capacity and the increase of mining intensity, the ground 

subsidence of salt mining area is becoming more and 

more serious. Although there are few reports on land 

subsidence caused by salt mining, the cause and 

mechanism of subsidence have been studied clearly. With 

the increase of water gushing at the wellhead, the ground 

subsidence is intensified. When the ground surface 

subsidence reaches a certain degree, the cavity is 

gradually filled. When the stress redistribution makes it 

reach a new equilibrium. 

 

Fig. 4 The location of the study area which covers the 

Dongying city salt mining area. 

 

3. DATA SET 

 

The data set used consists of ALOS-1 and ALOS-2 

SAR data, both datasets were acquired in strip map mode, 

part of them are bi-polarimetric dataset. The format of the 

single complex looking data of ALOS-1 and ALOS-2 has 

very small different, so most part of the code for read-out 

software for them are the same. This reduce lots of works 

to migrate code from ALOS-1 data to ALOS-2 data. 

In this report, eight scences of ALOS-2 dataset acquired 

between Dec 2014 to May 2020 were used in Zhongshan 

area, the polarimetric mode is HH; nine scenes of ALOS-

2 dataset acquired from 2015-Jul-11 to 2018-Oct-27 were 

obtained in Chongqing area, the polarimetric mode is HH, 

and the fly direction is ascending. While in Fengfeng area, 

we obtained 4 scenes of ALOS-1 data and 3 ALOS-2 data, 

both fly directions are ascending, and the polarimetric 

mode are HH. In Bohai sea area, four scenes of ALOS-2 

data are obtained during 2015 to 2018 in ascending mode, 

and two interferogram are generated. 

The external DEM used is from Shutter Radar 

Topography Mission (SRTM). 
 

4. METHODOLOGY 
 

The mining of underground coal will cause the goaf. 

Under the action of the gravity of the upper rock and soil 

layer itself, the deformation will occur in the upper part of 

the goaf, thus causing the subsidence of the mining area 

surface. Along with the mining of the long arm, the 

surface subsidence center will then move, in general, the 

fastest sedimentation generally formed in the goaf on the 

surface of the earth after a few months, then the 

sedimentation rate tends to be stable, in the initial stage, 

the surface subsidence may reach several centimeters 

every day, at this point you can ignore the influence of the 

atmosphere.  

Since the SAR uses the synthetic method to image the 

surface, ideally the surface deformation of the mining area 

can be clearly reflected on the radar interferogram, so as 

to realize the monitoring of the surface subsidence or 

underground mining activities [13]–[16]. The SAR 

interferometric phase map contains information about the 

difference in the length of the propagation path from the 

radar antenna to the target during two imaging periods. 

The length of the propagation path is generally affected 

by the change of satellite measurement position, the 

change of measurement time and the change of 

atmospheric conditions. In the case of ignoring the 

influence of the atmosphere, the deformation interference 

phase can be obtained by removing the topographic 

interference phase caused by the change of satellite 

measurement position through a certain algorithm, so as 

to realize the monitoring of the surface deformation. For 

C-band radar sensors, such as the ASAR SAR sensors 

carried by ERS and ENVISAT satellites, the one-period 

variation of the deformation interference phase represents 

the surface variation of 2.8cm. For L-band radar sensors 

such as PALSAR deformation interference phase change 

one period corresponds to the surface change of 11.75 cm. 

              (1) 

where with  being the wavelength of the SAR sensor,  

is the phase on the interferogram and the simulated terrain 

phase.  

There are various SBAS processing strategies. In this 

study we use Small BaselineSet (SBAS) method [17]–

[20]. First N scenes of SAR images are coregistrated on 

the super master image, then the images pairs are formed 

so as to obtain interferograms, here we should take care 

that the InSAR pairs with heavy atmospheric effect 

should be removed from the list. For each interferogram 

pair, the master image acquisition time is less than the 

slave image acquisition time for later processing 

convenience. Then the first round we could select possible 

stable point with amplitude dispersive index, and with the 

selected candidates, we estimated the atmospheric and 
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deformation together with the elevation error of the points. 

In common situation, the phase model could write as: 

 
Then stable points candidates with significant deviation 

are removed from the stable point’s subset. The next step 

is to remove the height error phase of each point from its 

observed phase. The residual phase is then containing the 

spatially high pass topographic error and the noises along 

with the displacement phase information. After this 

processing we could be estimated the ensemble phase 

coherence so as to estimate the error of the results, and 

select the possible stable points, after that, the networks 

are established and the deformation are estimated at last. 

In this study we only estimated the linear deformation.  
 

5. EXPERIMENTS AND RESULTS 
 

 

Fig. 5 The SBAS deformation results of Zhongshan City, 

most of the area is relatively stable while the reclamation 

area in the upper right corner has obvious land subsidence. 

In Zhongshan region, 8 scenes ALOS-2 SAR data 

are used and the image acquired between December 2014 

and May 2020 are selected. The climate in this region is 

humid and the atmospheric phase screen is obvious. From 

the result of time series InSAR processing, the land 

subsidence is concentrated in the southwest corner of the 

thick soft soil layer and the northeast corner of 

reclamation. The maximum subsidence speed of this 

region is more than 50mm/year. This result is consistent 

with that of ground monitoring. From the optical image, it 

can be seen that the highly coherent target points of time 

series InSAR are mainly concentrated on the cofferdam in 

the reclamation area, in the reclaimed area, it is difficult 

to obtain the target point with high coherence because of 

the obvious vegetation cover.  

 

 

Fig. 6 The Reclamation activities area in the Pearl River 

Estuary. 

In Chongqing region, 9 scenes ALOS-2 SAR data 

are used and the image acquired in November 2017 is 

selected as the master image. Fig.7 shows the baseline 

distribution of the images, the whole period is about three 

years of the acquired ALOS-2 dataset, and the maximum 

perpendicular baseline is about 300 meters. Generally 

speaking, the spatial and temporal baseline distribution is 

relatively uniform, but the data volume is small.  

 

 

Fig. 7 The baseline distribution of the ALOS-2 images 

acquired in Chongqing area. 

A total of 72 SAR interferogram pairs can be formed by 

using 9 scenes SAR images, some of which are of low 

quality, and 30 of which have high quality are retained 

after selection. To a certain extent L-band SAR can keep 

good coherence within ground changes in 2 to 3 years. 

During the process we found that although the accuracy of 

the orbit data is ok, due to the large time interval of the 

provided orbit data, it is easy to be unstable in the process 

of interpolation, which is easy to cause errors of the orbit, 

which has a certain impact on the unwrap. As the terrain 

in this area is not flat, it is not convenient to carry out the 
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analysis of orbital characteristics, which may be 

considered in the later work.  

 

 

Fig. 8 The SBAS deformation results around Chongqing 

City, where the area is relatively stable without large area 

subsidence. 

The whole area of the image coverage is about 60 km 

south-north and 60 km east to west. On the whole, the 

situation of the whole region is relatively stable. There are 

5 obvious surface movement areas, and the movement 

rate is basically within 3 centimeters per year. 

 

 

Fig. 9 The enlarge image of the middle region in the 

central area of image. 

Figure 9 is an enlarged image of two deformation regions 

in the central region. The deformation region on the right 

is located in JiangYin village. This sliding region is 

mainly located on a relatively large terrace with an area of 

about 0.5 square kilometers. The left deformation area is 

XianYing village, we found that the topography in this 

area is flat and with an altitude difference of about 100 

meters, it may not cause rapid movement and disaster. 

 

 

 

Fig. 10 (a) The DInSAR interferogram of PALSAR-1 

data which acquired in 2007-Dec-15 and 2008-Jan-30 

near XiangtangShan area.  

 

 

Fig. 10 (b) The DInSAR interferogram of PALSAR-1 

data which acquired in 2009-Dec-20 and 2010-Feb-04 

near XiangtangShan area.  

In Fengfeng mine area, mining activities is relatively 

concentrated, we chose the northern area which located 

surrounding XiangtangShan in the town of Cishan, the 

extent of the area is about 30 kilometers east-west, and 30 

kilometers north-south. On the whole, for PALSAR data, 

the accuracy of the orbital data is acceptable, which can 

remove the flat ground interference phase and topographic 

phase, and there is no obvious residual phase information 

on the whole, which provides a favorable condition for 

the interpretation of the mining settlement. Nevertheless, 

we can see that the topographic phase in figure 10 (b) is 

relatively obvious and has a relatively small orbital 

influence. Meanwhile, we can see that for figure 10 a-c 

with a relatively short time baseline, the coherence is 

significantly higher than that of figure 10 (d) with a time 

baseline of 5 months. 
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Fig. 10 (c) The DInSAR interferogram of PALSAR-2 

data which acquired in 2018-Nov-04 and 2018-Dec-16 

near XiangtangShan area.  

 

 

Fig. 10 (d) The DInSAR interferogram of PALSAR-2 

data which acquired in 2018-Dec-16 and 2019-May-19 

near XiangtangShan area.  

In XiangtangShan area, the extraction activities of the 

overall trend are being small. From Fig.10 (a) and Fig.10 

(b) about 20 active mine area or so can be clearly 

identified, and they are almost the same in year 2008 and 

2010, the exploitation of the most rapid mining area is 

located in Xialiuquancun area, then the mining area in 

Chengerzhuancun, from Fig.10(a) and Fig.10(b) we can 

see that the ground subsidence of these two mine area 

caused by mining beyond 10 cm per month. And in 2018, 

from Fig.10 (c) and Fig.10 (d) we can see that the 

extraction activities were reduced to 10 or so, and from 

Fig.10 (d) we could see clear deformation pattern due to 

extraction, the up left area show about half a meter’s 

deformation due to extraction. And the low right area the 

mine deformation of two work-plane is contacting after 

five months.  

 

Fig. 11 (a) The DInSAR interferogram of PALSAR-2 

data which acquired in 2015-Oct and 2016-Jul of 

Dongying.  

 

Fig. 11 (b) The DInSAR interferogram of PALSAR-2 

data which acquired in 2017-Mar and 2018-Nov of 

Dongying.  

Around bohai sea, Dongying area is focused. The main 

factors affecting the land subsidence in Dongying city are 

the long-term exploitation of oil, natural resources such as 

salt and gas, and deep groundwater, which makes the 

strata stress increase and produce compression. 

Neotectonic movement, global sea level rise, natural 

subsidence of under consolidated soil and ground load are 

the secondary influencing factors of land subsidence. 
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There are 4 scenes ALOS2 images were acquired, in 

201510-201607 and 201703-201811 separately. Both the 

spatial baseline is about 100 m, while due to the temporal 

baseline is 266 days and 588 days each, we could see that 

not only the correlation has large different, but also the 

subsidence pattern. There are three obvious subsidence 

center large than 40cm/yr in Fig 11 (a), and due to 

temporal decorrelation the Fig 11 (b) show pattern not 

very clear, but the range of the interferogram is still 

visible. This shows that for large deformation the 

temporal baseline should be carefully select so as to make 

the interferogram pattern to be clear to extract information. 

 

Fig. 12 (a) The SBAS deformation results at the east part 

of Beijing with PALSAR-2 spotlight dataset which 

acquired in 2014 and 2018.  

 

 

Fig. 12 (b) The enlarge image of the east-north region in 

the area of the image.  

Geohazards occur not only in remote areas but also in 

highly populated cities. In the framework of the Dragon-4 

32365 Project, this paper presents the main results and the 

major conclusions derived from an extensive exploitation 

of Sentinel-1, ALOS-2 ( Advanced Land Observing 

Satellite 2) , GF-3 ( GaoFen Satellite 3) , and latest 

launched SAR ( Synthetic Aperture Radar) , together with 

methods that allow the evaluation of their importance for 

various geohazards[21]. Here we will show some new 

results especially with ALOS-2 dataset. 

There are 10 scenes ALOS2 spotlight images were 

acquired, in 201410-201808. All the spatial baseline is 

within 500 m, this combination of baselines can be 

relatively coherent. From the results, firstly, we find that 

more stable points can be obtained by using the high-

resolution data of ALOS2, compared with GaoFen-3 and 

Sentinel-1 results, which is directly related to the high 

resolution of the data. Meanwhile, as can be seen from the 

results of Figure 12 (a), the area with large deformation is 

obviously divided into different parts, which may be 

related to the local microgeological structure. It is well 

known that groundwater mining in the east of Beijing has 

caused a certain extent of surface subsidence. Although 

this subsidence occurs in a large area, the deformation of 

different small blocks is different. And this differential 

deformation between the different blocks in turn reflects 

the boundaries between the blocks.  

 

 

Fig. 13 The SBAS deformation results of Shuping 

landslide in Three Gorges Reservoir area.  

As the largest water conservation project in China, the 

Three Gorges Reservoir has attracted a lot of attention. 

Shuping landslide, is located on the southern bank along 

the Yangtze River. The landslide belongs to Zigui County 

in the HuBei Province. The Shuping landslide is a large 

accumulation landslide with obvious deformation every 

flood season, posing a major threat to the Three Gorges 

Project and the life and property safety of local residents. 

To ensure safety, a landslide treatment project for the 

Shuping landslide began in August 2014. We have 

obtained TerraSAR-X data in the spring of 2012 in this 

area, and through time series InSAR analysis, we found 

that the Shuping landslide area movement speed is quite 

large, with the maximum movement area speed reaching 

37mm/month [6]. In this report, we obtained the data of 

ALOS2 after treatment. From 201507 to 202105, through 
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time series analysis, we found that the sliding speed of the 

landslide area has basically decreased to less than 

50mm/year. The results show that the landslide control 

work has obtained a relatively obvious effect. We also use 

the sentinel-1 data for comparison, but due to the problem 

of de-correlation, no good results are obtained. 

 

 

6. CONCLUSIONS 
 
In this study, we used time series interferometry method 

to monitor land subsidence of reclamation area and some 

other area, in the Zhongshan region, the maximum 

subsidence speed of this region is more than 50mm/year, 

and the highly coherent target points are mainly 

concentrated on the cofferdam in the reclamation area. 

For Chongqing city, where the terrain is complicated and 

the elevation error is large, we found that the land 

subsidence in this area is not obvious, however there 

exists a few areas with slow subsidence, the deformation 

area needs further observing in the later works. In 

Fengfeng mine area, the land subsidence mainly comes 

from the coal mining, and as a result, there has been less 

activity after 2017 due to the regulation of mining. And 

around Bohai area, the Dongying city has subsidence due 

to salt mining extraction and has a large deformation 

velocity to 40 cm/yr, however the PALSAR-2 could catch 

the deformation pattern clearly. In general, L-band radar 

data can be used to obtain better results not only in 

mountainous areas, but also in non-urban areas. More 

details of the deformation can be seen from the enlarged 

image. In the middle of Figure 9(b) is Wenyu River. The 

deformation of the east side and the west side of the river 

are different. 
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1. INTRODUCTION 
 
SAR (Synthetic Aperture Radar) is an active sensor with 
all-day, all-weather, high resolution and wide coverage, 
which has been widely used in marine resource 
monitoring, ship detection and other fields. As an end-to-
end model, the deep network can automatically perform 
feature extraction and carry out detection work with far 
better performance than traditional detection methods, 
showing great application potential. Therefore, the 
research on SAR image ship detection based on deep 
learning is developing rapidly. 
In recent years, researchers have done a lot of work to 
demonstrate the superiority of deep networks that search 
for potential regions containing targets by using the 
intersection ratio of a predefined anchor frame to a sample 
ship bounding box and fitting the target bounding box by 
the network self-learning parameter offsets. To improve 
the detection accuracy, the existing methods mainly 
include changing the feature extraction (backbone) 
structure [1,2], adding attention mechanism [3,4], and 
optimizing the loss function [5]. 
However, the current deep network-based detection 
methods are usually trained and tested on fixed data sets, 
with fewer experiments for open scenes, and the process 
of ship detection for the whole SAR image is not clear 
enough. Therefore, this report designs a set of detection 
process for the whole SAR image, and conducts 
preliminary experiments of cross-band simulation of open 
scenes using L-band ALOS data, which is useful for 
subsequent research The report provides a reference for 
the direction of subsequent research. 
 

2. METHOD 
 
Deep detection network is mainly divided into one-stage 
network and two-stage network, the two-stage network 
mainly performs candidate region generation first and 
then classifies by CNN, which has higher accuracy but 
higher computational cost and long inference time. The 
single-stage network extracts features directly in the 
network to predict object categories and locations, which 
gains a huge speed boost compared to two-stage detection 
and is only slightly less accurate. YOLO, as one of the 
representatives, is known for its light weight, flexibility, 
and fast detection speed. And YOLOv5 is the newer 
versions, has improved the detection accuracy compared 
to its predecessor, and at the same time, it is much faster 

and more flexible, and there are several versions available 
for different data sizes to facilitate deployment and 
improvement. 
In summary, YOLOv5 was selected as the detection 
network. The specific network structure is shown in 
Figure 1. It consists of four main parts: Input, Backbone, 
Neck, and Head parts (also known as the prediction part). 
The input side uses random Mosaic, data enhancement 
techniques and adaptive anchor frame calculation and 
adaptive image scaling to expand the amount of sample 
features and improve the network robustness, and 
adaptive anchor frame calculation is used to automatically 
match different training sets. The Neck part adopts 
FPN+PAN structure, FPN is the feature pyramid network, 
which is used to extract and merge features at different 
levels, and PAN structure is mainly to copy the features at 
the bottom of FPN and perform secondary downsampling, 
and then fuse the extracted features. The main part is to 
calculate the classification and regression loss to complete 
the prediction. 
In order to complete the ship detection for a whole SAR 
image, the corresponding detection system is designed, 
and the specific detection process is described as follows: 
(1) The whole image is divided into blocks, and regional 
sea clutter modeling is performed for each block, with 
five alternative types of sea clutter: G0 distribution, K 
distribution, Gaussian distribution, Rayleigh distribution, 
and Weibull distribution. 
(2) CFAR threshold segmentation is performed for 
different blocks to initially filter out the suspected targets 
with high intensity values. 
(3) Slicing is performed with the suspected target as the 
center, and it is linearly stretched and output as JPG 
format image. 
(4) The chips are fed into the trained YOLOv5 network 
for detection. 
(5) The corresponding detection results are generated after 
intersection-and-comparison calculation and removal of 
overlapping detection frames. 
 

3. EXPERIMENT AND ANALYSIS 
 
The GF3 satellite 1-10m resolution images in C-band are 
used to make ship target chips, which are fed into the 
constructed YOLOv5 for training and retaining the best 
weight parameters. The test images are the provided L-
band ALOS PALSAR 2 images, and a total of 2 scenes 
are selected, which have pure sea surface areas, and these 
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Fig. 1 Flowchart of YOLOv5. 
 
images containing confusingly small islands, as shown in 
Fig. 2. The resolution of image(a) is 5m, and the 
resolution of image(b) is 12m. The number and location 
of ships in each view image are determined by visual 
interpretation.There are 34 ships in image(a),86 ships in 
image(b). 
 

     
(a)                                              (b) 

Fig. 2 SAR images used in test. (a) the image 
containing pure sea surface (b)the image containing 
small islands 
 
In order to recognize the detection effectiveness of the 
constructed system for each image as a whole, metrics 
such as recall(R) and precision(P) are introduced. They 
are defined as follows: 

                          (1) 
where TP is the number of the correctly detected target, 
FP is the number of false alarm, and NP is the number of 
ground truths. These are two of the more important 
indicators in the detection experiments, but this report is 
more focused on selecting more typical regions and 
targets for analysis, to provide reference for subsequent 
research on cross-band open scenes.  
The test accuracy indexes of the two images are shown in 
Table 1, and the detection accuracy can be above 90%, 
but the recall rate is low, indicating that there are more 
missed detections. Through observation and analysis, the 
ship characteristics of L-band and C-band have certain 
 

 
differences, which may be due to the different 
wavelengths of electromagnetic waves in the two bands, 
and there is a certain gap in the characterization ability of 
the target.How to migrate the network to different bands 
of data for detection will be one of the important aspects 
of cross-band detection research in the future. 
 

TABLE Ⅰ 
Overview of each image indicator 

 P R 
Image(a) 1 0.8235 
Image(b) 0.9114 0.8372 

 
Meanwhile, some typical targets and regions in the image 
are analyzed for their detection. Fig. 3 shows the slices of 
Image (b) in Fig. 1. after preliminary extraction by CFAR, 
while the detected ships are assigned detection labels. For 
the detection of the island in (a), a false alarm target 
appears, and a small part of the island is misclassified as a 
ship, which is due to the presence of small and poorly 
resolved ships in the training dataset, where the texture 
information is not obvious enough, but the target shape 
features are more similar, resulting in false detection.The 
small island in (b) was recognized as a suspected target 
during CFAR detection, but was not misdetected when 
fed into the network for detection, and both ships in (c) 
were detected, indicating that the network has some 
generalization capability, but further in-depth research is 
needed to address the problem of misditection. 
 

   
(a)                        (b)                         (c) 

Fig. 3 Partial detection of slices in images. (a) the chip 
containing island (b)the chip containing small island (c) 
the chip containing ships 
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4. CONCLUSION 
 
This report designs a detection process for the whole SAR 
image based on YOLOv5. By training the depth network 
on the C-band dataset and using the L-band ALOS image 
as the detection image, the ship detection experiments in 
cross-band open scenes are conducted. The improvement 
in detection efficiency of deep networks is considerable 
and the accuracy improvement is large compared to 
traditional methods, but the performance of networks 
trained and tested in the same distribution of data sets is 
poor for open scenarios.According to the analysis of the 
detection accuracy index and the detection effect of 
typical regions, it can be learned that just simply using the 
depth network for ship detection in cross-band open 
scenes has a low recall rate, more missed detections, and a 
large risk of false detection, mainly because the ship 
characteristics are different in different bands, and the 
knowledge learned by the network cannot be directly 
applied to open scenes, so how to combine the scattering 
mechanism of SAR and migrate the network Therefore, 
how to combine the scattering mechanism of SAR and 
migrate the network to the data of different bands for 
detection will be one of the important aspects of cross-
band open scene detection research in the future. 
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1. INTRODUCTION 

 

Sea surface wind is an important variable in studying air-

sea interactions and oceanic phenomena in the marine-

atmospheric boundary layer (MABL). Winds affect 

climate change and the marine environment, and as interest 

in climate change increases, frequent and accurate 

observations to increase the reliability of wind turbines 

have been emphasized. Satellite synthetic aperture radar 

(SAR) sensors have provided high-resolution observations, 

allowing the investigation of wind fields in coastal areas 

that cannot be observed by satellite scatterometers. In 

particular, the Korean Peninsula exhibits varied marine 

environmental conditions; thus, this region is suitable for 

evaluating the performance of SAR-measured sea surface 

winds and investigating various atmospheric-oceanic 

interactions. Therefore, many studies have used SAR to 

calculate sea surface wind, understand the characteristics 

of the wind field, and analyze ocean phenomena in the 

coastal areas of the Korean Peninsula [1-3]. 

Because the relative wind direction is necessary to 

examine winds using SAR, these data must obtained from 

an external source, such as in-situ measurements, 

scatterometer data, and numerical model data. Although 

wind direction data are frequently available, they have 

inherent potential aliasing errors due to their much coarser 

spatial resolutions than those of the SARs. Moreover, the 

much larger time difference between the model data and 

SAR data are insufficient for resolving small-scale marine 

phenomena in the wind field. However, if wind-induced 

streaks are apparent in the SAR image, the wind direction 

can be directly estimated using a 2-D Fourier transform 

spectrum, wavelet analysis, and the local gradient. 

However, these methods are only valid for cases in which 

no ambient oceanic or atmospheric features (e.g., internal 

waves, atmospheric gravity waves, and ship wakes) are 

present, and a 180° ambiguity remains. Furthermore, 

under-determination associated with the sensitivity of 

single normalized radar cross section (NRCS) 

measurements to both the wind speed and direction should 

be considered in wind interpretation. 

In this study, we calculated wind fields using ALOS-2 

PALSAR images and compared their accuracy with that of 

the Korean Meteorological Administration (KMA) ocean 

meteorological buoy data near the Korean Peninsula. Land 

masking was performed using the Shuttle Radar 

Topography Mission digital elevation model data. To 

eliminate the influence of double scattering due to ships on 

the wind field, a ship removal process was performed using 

the adaptive threshold method. To remove speckle noise in 

the SAR data, we preprocessed the data utilizing a moving 

window and applied an ensemble average. To understand 

the impacts of the coastal wind field on ecosystems, we 

collected sea surface temperature (SST) data from the 

National Oceanic and Atmospheric Administration, which 

used an advanced very-high-resolution radiometer (NOAA 
AVHRR); chlorophyll-a (chl-a) data from the 

Communication, Ocean, and Meteorological Satellite, 

which used a Geostationary Ocean Color Imager 

(COMS/GOCI); and sea surface height (SSH) data from 

the Archiving, Validation and Interpretation of Satellite 

Oceanographic data (AVISO). We subsequently analyzed 

the changes in SST and chl-a concentration caused by wind. 

In addition, atmospheric-oceanic interaction  mechanisms 

were analyzed using atmospheric stability, which varies 

with SST and wind field.   

 

2. STUDY AREA AND DATA 

 

2.1. STUDY AREA 

The study area was the coastal regions near the Korean 

Peninsula, as shown in Fig. 1, which includes portions of 

the Yellow Sea, East Sea/Japan Sea (EJS), and East China 

Sea. The study area is dominated by well-developed, 

seasonal current systems (warm and cold), shallow 

bathymetry, and strong tidal currents in the Yellow Sea. It 

is characterized by relatively deep waters but with a depth 

of less than 3000 m and contains diverse oceanic 

phenomena, such as coastal upwelling, fronts, and 

suspended sediment. 
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Fig. 1. (a) Bathymery (m) of the marginal seas of the 

Northwest Pacific around Korean peninsula: the East/Japan 

Sea, the Yellow Sea, the East China Sea. (b) The spatial 

distribution of sea surface temperature [°C] in the study 

region from 1-km NOAA/AVHRR data. 

 

2.2. ALOS-2 PALSAR 

ALOS-2 PALSAR-2 satellite, which was launched on 

May 24, 2014, is equipped with an L-band SAR instrument 

operated by the Japanese Aerospace Exploration Agency 

(JAXA) and has been continuously observing Earth’s 

surface (Arikawa et al. 2014). PALSAR-2 data have been 

widely used in land, agricultural, natural resources, and 

oceanic applications. Oceanic observations have been 

utilized for detecting and monitoring sea ice, ships, oceanic 

currents, and sea surface winds. The factors affecting the 

sea surface wind errors of ALOS-2 PALSAR-2 have not 

been previously discussed in detail, particularly for the 

stripmap mode. In total, we collected 45 Stripmap mode 

images to assess sea surface winds; however, for eddy 

investigation, we used ScanSAR mode images with a wide 

swath, which is more suitable for comprehensive analysis 

than the stripmap mode because of its wide spatial 

coverage. 

 

2.3. COMS/GOCI AND NOAA AVHRR 

COMS/GOCI is the world's first geostationary satellite 

centered on the Korean peninsula and has a spatial 

resolution of 500 m × 500 m. It has observed the marine 

environment in a 2500 km × 2500 km area around the 

Korean Peninsula eight times daily for 7.7 years [4].  

The near-polar orbiting NOAA AVHRR provides sea 

surface temperature data twice daily at a 1 km spatial 

resolution. The sensor has five spectral channels, including 

visible, near-infrared, and thermal infrared wavelengths; 

the center wavelengths are 0.6, 0.9, 3.7, 11, and 12 μm. 

 

2.4. AVISO DATA 

To investigate marine environments, we used the SSH 

data from AVISO (https://www.aviso.altimetry.fr/). We 

used Level 4 data, which contains multiple sensor-merged 

products, such as maps and time series reproduced by the 

data unification and altimeter combination system. The 

maps are constructed by optimal interpolation of multi-

mission altimeter observations and are provided daily with 

a 0.25° × 0.25° resolution for the global products and a 

0.125° × 0.125° resolution for regional products, such as 

those for the Mediterranean and Black Seas, through the 

Copernicus Marine Environment Monitoring Service [5]. 

 

2.5. KMA BUOYS 

A total of 17 KMA oceanic meteorological buoys are 

located near the coast of the Korean Peninsula: six in the 

Yellow Sea, five in the EJS, and six in the East China Sea. 

The measurement interval of the buoys is 30 minutes or 1 

hour, and the height of the measurements varies, from -1.2 

m to -0.1 m for water temperature and from 3.6 m to 4.0 m 

for wind speed. 

 

3. METHOD 

 

3.1. RADIOMETRIC CALIBRATION 

The ALOS-2 PALSAR-2 data utilize different NRCS 

calculations based on the data processing levels and 

number of conditions (Table 1). The data used in this study 

were L1.5 data, which is a product of the stripmap fine 

mode. The NRCS was calculated using the digital number 

for each pixel and various calibration constants for each 

processing level and observation mode [6]. The calibration 

factors vary with the software version, acquisition mode, 

spatial resolution, and incidence angles for the ALOS 

PALSAR data [7]. Table 1 summarizes the calibration 

factors for stripmap fine-mode data [8]. The digital number 

of the ALOS-2 PALSAR-2 image was converted to NRCS 

using these calibration factors, based on the characteristics 

of the data. 

 

Table 1. Calibration factors for the ALOS-2 PALSAR data 

with respect to the observation mode, data processing 

version, and product ID. 

Observation 

mode 
ID 

Processing version 

000.001-

002.022 
002.023- 

Stpotlight all -81.1 

-83.0 
Stripmap 

U2-6 -81.6 

U2-7 -81.2 

U2-8 -81.6 

U2-9 -81.7 

FP6-3 -81.0 

F6-4 -81.7 

F6-5 -82.8 

F6-6 -82.5 

F6-7 -80.8 

F2-5 -82.4 

F2-6 -82.4 

F2-7 -81.9 

ScanSAR W2 -79.0 

Other mode all -83.0 

 

3.2. SHIP DETECTION AND REMOVAL 

Single scattering on the ocean surface, as well as Bragg 

scattering and its backscattering coefficient (e.g., 

normalized radar cross section (NRCS)) all show low 

values. However, ships over the ocean impose various 

scattering characteristics, including single scattering, 

double scattering, and volume scattering, associated with 

the interactions between the ship and its internal structure. 

In general, due to the predominantly double scattering and 

volume scattering by ships, the measured NRCS becomes 

much larger than that of the surrounding ocean pixels. 

These scattering characteristics affect not only the pixels 

where the ship is, but also those of the surrounding ocean, 

causing errors when calculating the sea surface wind from 

SAR data. To obtain an accurate sea surface wind field, this 

study applied a method of detecting and removing ships for 

ALOS-2 PALSAR. Previous studies have used the global 
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threshold, adaptive threshold, and artificial neural network 

methods to detect ships in SAR data; we applied the 

adaptive threshold method to calculate the threshold that 

influenced the characteristics of surrounding pixels. 

 

3.3. RETRIEVAL OF L-BAND SAR WIND SPEED 

Using the ECMWF reanalysis wind field data and radar 

azimuth look angles, the relative wind direction was 

calculated and subsequently used as input data for the L-

band geophysical model function (GMF) [9]. Then, the 

preprocessed NRCS, incidence angle, and relative wind 

direction were utilized in the L-band GMF to retrieve high-

resolution sea-surface wind fields. 

The L-band GMF is an empirical model that was developed 

based on HH polarized data from ALOS-1 PALSAR. It is 

expressed as a function of NRCS, incidence angle, relative 

wind direction, and wind speed. The L-band GMF 2009 is 

calculated as follows: 

 

𝜎0 = 𝐴0(𝑐, 𝑢10, 𝜃)[1 + 𝐴1(𝑐, 𝑢10, 𝜃) cos𝜑 +
𝐴2(𝑐, 𝑢10, 𝜃) cos 2𝜑] (1) 

 

where 𝜎0  is the NRCS in linear units, 𝑢10  is the neutral 

wind speed at 10 m height, θ is the incidence angle, φ is the 

relative wind direction, and c is the constant coefficient. 𝐴0, 

𝐴1, and 𝐴2 are the coefficients related to  and θ. The L-

band GMF 2009 is capable of accurate wind retrieval for 

wind speeds of less than 20 m s−1 and incidence angles 

from 17° to 43°. 

To understand the properties of the L-band GMF 2009 

for each input data point, we ran the model with a 

maximum incidence angle of 43° (Fig. 2), at which, the 

upwind value was higher than the downwind value. The 

anisotropy of the upwind and crosswind values became 

more apparent at increasing incidence angles; however, the 

anisotropy of the downwind and crosswind values became 

more evident at decreasing incidence angles. In addition, 

as the wind speed increased, the variation in wind speed 

increased, with respect to the fluctuations in the NRCS. 

This effect was more pronounced at lower incidence angles. 

These observations imply that accurate NRCS values are 

more important for retrieving precise wind speeds at 

smaller incidence angles and higher wind speed ranges. 

 

 
Fig. 2. Distributions of estimated wind speeds (m s−1) of 

the L-band GMF 2009 as a function of relative wind 

direction (o) and NRCS (dB) at given incidence angles of 

(a) 18° and (b) 43°. 

4. RESULTS 

 

4.1. ACCURACY OF ALOS-2 PALSAR WIND 

The estimated wind speeds derived from the ALOS-2 

PALSAR-2 Stripmap Fine mode data by using the L-band 

GMF 2009 were compared to the 10-m neutral wind speeds 

converted from the in-situ measurements (Fig. 3). The 

accuracy of the sea surface winds using the L-band GMF 

2009 showed the root-mean-square error (RMSE) of about 

2.11 m s−1, bias error of −1.16 m s−1, and standard deviation 

of 1.78 m s−1 [10]. According to the previous study on the 

accuracy of ALOS-2 PALSAR-2 ScanSAR mode, the L-

and ALOS-2 PALSAR-2 wind speeds showed the RMSE 

of 2.33 m s−1 and the bias error of 0.23 m s−1 [11]. Since 

the RMSE was derived from the ScanSAR mode with a 

much wider spatial coverage than the Stripmap Fine mode, 

it is not possible to compare the RMS errors directly. 

However, this difference implies a possibility that the 

Stripmap Fine mode data can be applicable to derive the 

wind speed with accuracy similar to that of the ScanSAR 

mode data. 

 
Fig. 3. Comparison of buoy wind speed with the wind 

speed derived from the ALOS-2 PALSAR-2 using L-band 

GMF 2009, where the texts indicate the accuracy of SAR-

derived wind speed. 

 

4.2. REGIONAL ACCURACY 

The three seas around the Korean Peninsula have 

different water depths, islands, tidal currents, coastlines, 

and other marine characteristics. To assess the accuracy of 

the sea surface wind derived from the ALOS-2 PALSAR 

data for each sea, we classified the Yellow Sea, East China 

Sea, and EJS according to the criteria of the KMA, and 

assessed the accuracy of the sea surface winds in each area, 

estimated using the L-band GMF 2009 (Fig. 4). We found 

that ALOS-2 PALSAR underestimated sea surface winds 

throughout the region, which became more apparent as the 

wind speed increased. This tendency to underestimate was 

strongest in the EJS and weakest in the Yellow Sea. In 

general, this is because the average water depth decreases 
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and tidal currents become strongest in the Yellow Sea, and 

are deeper and weaker, respectively, in the EJS [3]. Thus, 

because of the water depth and tidal currents, the 

underestimation of sea surface wind from ALOS-2 

PALSAR was alleviated in the Yellow Sea. However, the 

standard deviation of the wind speed error was highest 

there; therefore, the influence of tidal current and water 

depth led to uncertainty in the retrieval of the ALOS-2 

PALSAR-derived sea surface wind over the Yellow Sea. 

 
Fig. 4. Comparison of residuals (ALOS-2 PALSAR wind 

speed – buoy wind speed) using L-band GMF 2009 in (a) 

the EJS, (b) the southern region, and (c) the Yellow Sea, 

where the black dashed line represents a least-squared fit 

to a linear function. 

 

4.3. MARINE ENVIRONMENTS OVER EDDY 

Fig. 5 shows the backscattering coefficient of ALOS-2 

PALSAR observed on April 22, 2017, at 03:24 UTC. These 

data were obtained from a ScanSAR mode image of an area 

with a low sea-surface wind in the EJS. In general, sea 

surface wind is affected by stability, which is derived from 

the temperature difference between SST and air 

temperature [1]. This difference is induced by marine 

phenomena, such as fronts and eddies. 

To consider the spatial distributions of marine 

environments, we investigated the SST and chl-a data 

derived from the NOAA AVHRR and COMS/GOCI, 

respectively (Fig. 6). Fig. 6a shows the spatial distribution 

of SST observed on April 22, 2017, at 05:59 UTC; Fig. 6b 

shows the spatial distribution of chl-a observed on April 22, 

2017, at 03:00 UTC. The eddy was enclosed by a high SST 

current; its boundary showed a high chl-a (above 5 mg m-

3) concentration compared with the surrounding 

environment, which accompanied an algal bloom. 

 

  
Fig. 5. Distribution of backscattering coefficient (dB) of 

ALOS-2 PALSAR observed on April 22, 2017, at 03:24 

UTC in the EJS. 

 

  
Fig. 6. Distributions of (a) SST (°C), from NOAA AVHRR, 

observed on April 22, 2017, at 05:59 UTC and (b) chl-a 

(mg m-3), from COMS/GOCI, observed on April 22, 2017, 

at 03:00 UTC. The white box represents the ALOS-2 

PALSAR ScanSAR image. 

 
Fig. 7. Distribution of sea surface height anomaly (m) from 

the AVISO Level 4 data on April 22, 2017, near the Korean 

Peninsula. 

 

Fig. 7 shows the spatial distribution of the sea surface 

height anomaly (SSHA) from the AVISO Level 4 data. As 

shown by the SSHA, the eddy over the EJS was an 

anticyclonic warm eddy; the rotation direction of the eddy 

can be seen in the time series of the SST and chl-a 
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distributions. This warm-core eddy showed a positive 

SSHA compared to the surrounding environments. In 

general, warm-core eddies show low dissolved nutrient 

concentrations, deep mixed layer depth, and low chl-a 

concentrations [12]; however, this eddy showed high chl-a 

concentrations (Fig. 6b). 

 

4.4. WIND FIELDS OVER EDDY 

To investigate the wind field over the warm core eddy, 

we estimated the sea surface wind from an ALOS-2 

PALSAR ScanSAR image using the L-band GMF 2009 

(Fig. 8). The ECMWF reanalysis model data were used as 

wind direction information to retrieve the sea surface winds. 

The winds moved westward, and their speed decreased 

over the eddy. 

 

 
Fig. 8. Spatial distribution of sea surface winds (m s-1) 

from an ALOS-2 PALSAR ScanSAR mode image 

observed on April 22, 2017, at 03:24 UTC near the Korean 

Peninsula. The white arrows represent the wind direction, 

derived from ECMWF reanalysis model data. 

 

Fig. 9 shows the relationship between the estimated wind 

speed and stability in the MABL. To calculate the stability, 

the 2-m air temperature data from the ECMWF reanalysis 

and the SST from NOAA AVHRR were used. When the 

air temperature was higher than the SST, the MABL was 

stable. However, when the SST was higher than the air 

temperature, the MABL was unstable. The wind speed was 

lower over the stable MABL than the unstable MABL. In 

other words, as the MABL becomes more destabilized, 

higher momentum can be transferred, wind stress increases, 

and surface winds are amplified; the reverse is also true 

[1,13,14]. 

The stability of the MABL affected not only the wind speed, 

but also the wind direction. As shown in Fig. 8, the wind 

passing over the warm-core eddy changed direction. 

Previous studies demonstrated that as the MABL became 

more destabilized, air–sea momentum was more 

effectively transmitted, which increased the wind stress 

and decreased the veering angle of the surface winds; the 

reverse was also true [2,14]. Moreover, the effect of 

stability in the MABL on the wind field instantly occurred 

within a small spatial scale of less than 25 km [15]. 

 

  
Fig. 9. Wind speed variations with respect to air-sea 

temperature differences (SST minus air temperature) (°C), 

where the red error bars represent the standard deviation of 

wind speeds for each bin. 

 

5. CONCLUSION 

 

In this study, we applied the adaptive threshold method 

to detect and remove ships from ALOS-2 PALSAR data. 

To retrieve the sea surface wind, the L-band GMF 2009 

algorithm was applied to preprocessed ALOS-2 PALSAR 

data. To assess the estimated sea surface winds, we used 45 

stripmap fine mode images. The accuracy of the sea surface 

winds had an RMSE of approximately 2.11 m s−1, bias of 

−1.16 m s−1, and standard deviation of 1.78 m s−1. As the 

wind speed increased, the L-band GMF 2009 tended to 

underestimate. In terms of the sea area, the underestimation 

was strongest in the EJS, and weakest in the Yellow Sea; 

however, the Yellow Sea showed the highest standard 

deviation compared with the other areas. Because the 

Yellow Sea has a shallow water depth and strong tidal 

currents, the wind speed is generally overestimated; 

however, in the ALOS-2 PALSAR data, the overestimation 

due to these characteristics alleviated the underestimation 

in the L-band GMF 2009. Thus, the characteristics of the 

Yellow Sea caused a large standard deviation and 

uncertainty for the sea surface wind derived from ALOS-2 

PALSAR. 

To investigate air-sea interactions in the MABL, we 

used SST data from the NOAA AVHRR, chl-a data from 

COMS/GOCI, SSHA from AVISO, air temperature from 

the ECMWF reanalysis model data, and sea surface wind 

derived from ALOS-2 PALSAR ScanSAR mode images. 

Based on the spatial distribution of SST and SSHA, we 

found that a warm-core eddy was located over the EJS on 

April 22, 2017. The influence of the stability of the MABL 

on the wind field was revealed by the differences between 

the SST and air temperature. In the warm-core eddy, an 

algal bloom occurred with a high chl-a concentration above 

5 mg m-3. As the MABL became more destabilized, it 

amplified the magnitude of surface winds, and vice versa. 

The change in wind speed also affected the wind direction. 
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This study examined the estimation of wind using the 

ALOS-2 PALSAR by assessing its accuracy. Furthermore, 

this study addressed the importance of ALOS-2 PALSAR 

data to understand the wind field and its role in air-sea 

interactions, which are related to physical forcing and low-

level ecosystem responses. We expect that ALOS-2 

PALSAR data will continue to contribute to coastal marine 

studies using high-resolution wind data. 
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1. INTRODUCTION 
 
Multifrequency synthetic aperture radar (SAR) images 
from ALOS/PALSAR, ENVISAT/ASAR and Cosmo‐
SkyMed sensors were studied for forest classification in a 
test area in Central Italy (San Rossore), where detailed in
‐ situ measurements were available. A preliminary 
discrimination of the main land cover classes and forest 
types was carried out by exploiting the synergy among L
‐, C‐ and X‐bands and different polarizations. SAR 
data were preliminarily inspected to assess the capabilities 
of discriminating forest from non‐forest and separating 
broadleaf from coniferous forests. The temporal average 
backscattering coefficient (σ°) was computed for each 
sensor‐polarization pair and labeled on a pixel basis 
according to the reference map. Several classification 
methods based on the machine learning framework were 
applied and validated considering different features, in 
order to highlight the contribution of bands and 
polarizations, as well as to assess the classifiers’ 
performance. The experimental results indicate that the 
different surface types are best identified by using all 
bands, followed by joint L‐  and X‐  bands. In the 
former case, the best overall average accuracy (83.1%) is 
achieved by random forest classification. Finally, the 
classification maps on class edges are discussed to 
highlight the misclassification errors.  

2. TEST AREA AND INPUT DATA 
The investigation was carried out in a forest area in 
Central Italy, where ground measurements,meteorological 
information and other ancillary data were available. The 
natural park of San Rossore (43.72°N, 10.30°E) is a 
protected flat area of about 4800 ha located along the 
coast of Tuscany Region. The area is covered by forests 
and pastures; forests are dominated mainly by 
Mediterranean pines (Pinus pinaster Ait. and Pinus pinea 
L.) and deciduous broadleaf (i.e., Quercus robur L., 
Fraxinus subsp. oxycarpa M. Bieb. ex Wild, Ulmus laevis 
Miller, Alnus glutinosa (L.) Gaertner, etc.). The ground 
truth is represented by the forest type map produced by 
‘Dimensione Ricerca Ecologia Ambiente’, DREAM 
(2003) [1]. The original classification map was provided 
at the 1:15000 scale and was derived from field 
observations collected in the whole Park. According to the 
definition used by the Tuscany Regional authority, forests 

correspond to areas having a minimum extension of 2000 
m 2, a length greater than 20 m, and tree cover must be 
greater than 20%. Unfortunately, evergreen broadleaf 
forests (dominated by Holm oak, Quercus ilex L.) cover 
only a marginal area (0.2%) of the whole Park, thus, it 
was not possible to separate them to coniferous and 
deciduous broadleaf forests. Logging activities had an 
interested part of the forest area since 2009; therefore, a 
preliminary check was done to exclude these areas from 
the training and the test 
phases. Felled areas were identified using a Landsat TM 
of 2009 and Google Earth images of 2010. Additional 
conventional measurements were carried out on 72 forest 
stands covered by three forest species groups: 
Mediterranean pines, holm oak and deciduous trees, 
whose area ranged from 1 to 170 ha [2] 
A series of SAR images, listed in Table 1, was collected 
at L-(ALOS/PALSAR), C-(ENVISAT/ASAR) and X-
(COSMO‐SkyMed) bands in 2009 and 2010 across 
different seasons and by using different modality of 
observation. The original (range, azimuth) resolution of 
the PALSAR, ASAR and COSMO‐ SkyMed images 
were (9.3 m, 6.1 m), (7.8 m, 4.0 m) and (1.1 m, 1.9 m), in 
that order. Furthermore, the images are characterized by 
different incidence angle, polarization, acquisition mode 
and daily time acquisition, as reported in Table 1 
 

Table 1 SAR images available in the test area of San 
Rossore. 

Group Sensor Date Time 
(UTC) 

Inc. 
Ang. 

Pol. 

1 PALSAR 28/02/2009 21:43:00 38 HH 
ASAR 26/02/2009 09:38:29 23 VV 
CSK2 06/03/2009 05:13:15 33 HH 

2 PALSAR 07/06/2009 21:03:08 22 Full- 
pol 

ASAR 26/05/2009 20:59:38 23 VV 
CSK2 25/05/2009 05:12:24 33 HH 

3 PALSAR 29/06/2009 21:41:48 38 HH/HV 
ASAR 27/06/2009 09:35:57 23 VV 
CSK2 25/05/2009 05:12:24 33 HH 

4 PALSAR 16/07/2009 21:44:03 38 HH/HV 
ASAR 16/07/2009 09:38:31 23 VV 
CSK2 13/08/2009 05:11:29 33 HH 

5 PALSAR 29/09/2009 21:42:14 38 HH/HV 
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ASAR 24/09/2009 09:38:26 23 VV IMS 
CSK2 29/08/2009 05:11:29 33 HH Himage 

6 PALSAR 16/10/2009 21:44:25 38 HH/HV FBD 
ASAR 13/10/2009 20:59:34 23 VV IMS 
CSK *N/A * *  * 

7 PALSAR 30/12/2009 21:42:15 38 HH FBS 
ASAR 22/12/2009 20:59:34 23 VV IMS 
CSK3 20/12/2009 05:10:04 34 HH Himage 

8 PALSAR 16/01/2010 21:44:22 38 HH FBS 
ASAR 10/01/2010 21:02:24 23 VV IMS 
CSK2 20/01/2010 05:09:38 33 HH Himage 

9 PALSAR 14/02/2010 21:42:06 38 HH FBS 
ASAR 11/02/2010 21:02:24 23 VV IMS 
CSK2 21/02/2010 05:09:15 33 HH Himage 

10 PALSAR 01/04/2010 21:41:07 38 HH FBS 
ASAR 03/04/2010 09:35:32 23 VV IMS 
CSK3 25/03/2010 05:08:25 33 HH Himage 

11 PALSAR 18/04/2010 21:23:47 38 HH FBS 
ASAR 22/04/2010 09:38:20 23 VV IMS 
CSK *N/A * *  * 

12 PALSAR 19/07/2010 21:42:52 38 HH/HV FBD 
ASAR 20/07/2010 20:59:36 23 VV IMS 
CSK3 01/08/2010 05:07:28 34 HH Himage 

 
 

3. METHODS 
 
This investigation aims at evaluating the use of the 
available SAR data for discriminating forest from non‐
forest land covers and separating broadleaved from 
coniferous forest types. 
The classification of the test site was carried out by using 
the following supervised classification methods belonging 
to the machine learning framework: 
- Random forest (RF); 
- AdaBoost with decision trees (AB); 
- K‐nearest neighbors (kNN); 
- Feed forward artificial neural networks (FF‐ANNs); 
- Support vector machines (SVM); 
  Quadratic discriminant (QD). 
Random forest (RF) is a classification method belonging 
to the ensemble learning methods [3]. Ensemble 
classifiers perform decisions by aggregating the 
classification results coming from several weak classifiers. 
In RF, the weak classifiers are decision trees [4] and 
predictions are performed by the majority, i.e., the 
predicted class is the most voted by all the weak 
classifiers. Decision trees are trained by randomly 
drawing with replacement a subset of training data 
(bagging). The RF algorithm has been demonstrated to 
reduce both the bias and the overfitting with respect to 
decision trees, as well as making unnecessary the pruning 
phase [5]. Two main parameters must be set in RF: the 
number of features in the random subset at each node and 
the number of decision trees [6]. All these aspects, as well 
as a contained computation burden (compared, for 
instance, to SVM) and outperforming classification results, 
have contributed to make RF very popular in the study of 

land cover, too (see, for instance, [5–9]). Boosting 
algorithms generally refer to the method that combines 
weak classifiers to get a strong classifier [10]. AdaBoost 
with decision trees (AB) [11] is a boosting ensemble 
classification method whose prediction relies on a 
weighted mean of the outputs of several weaker decision 
trees (the higher the weight, the more reliable the decision 
tree). The iterative training algorithm selects a decision 
tree at each step, in order to minimize a cost function, and 
update the weights. This process has been shown to 
improve the overall performance under some optimality 
measure [12]. AdaBoost has been already considered in 
the remote sensing literature, e.g., for tree detection [13], 
land cover classification in tropical regions [14] and land 
cover classification carried out on hyperspectral images 
[15]. Nevertheless, the main drawbacks of AB are its 
sensitivity to outliers and the number of hyperparameters 
to be optimized in order to improve the classification 
performance. The K‐nearest neighbors (KNN) algorithm 
is another popular classification method [16]. In KNN, the 
training dataset corresponds to a set of labeled points in 
the space of features. The prediction is performed by only 
considering the classes of the k training samples that are 
closest to test sample, according to a given metric. There 
are many strategies to perform this decision, e.g., majority 
vote, weighted distance [17] or by using Dempster–
Schafer theory [18]. An integration of KNN and SVM has 
been also proposed [19]. The basic KNN algorithm 
usually attains suboptimal classification performance 
compared to other more recent methods and can be 
memory intensive for a high number of features. 
Nevertheless, due its plain logic and configuration (the 
main parameter is the number of neighbor k), it has been 
thoroughly used as benchmark in the remote sensing 
community [9,20,21]. An algorithm based on feed 
forward artificial neural networks (FF‐ANNs) has been 
also considered for the comparison. FF ‐ ANN is 
conceived for establishing non ‐ linear relationships 
between inputs and outputs [22] and therefore cannot be 
regarded as a classification algorithm strictly speaking. 
However, they can be applied to almost any kind of 
input–output relationships and their ability in solving non
‐ linear problems has been largely proven [23]. FF‐
ANN is composed of a given number of interconnected 
neurons, distributed in one or more hidden layers, that 
receive data, perform simple operations (usually additions 
and products) and propagate the results. The FF‐ANN  
training is based on the back propagation (BP) learning 
rule, which is a gradient descendent algorithm aimed at 
minimizing iteratively the mean square error (MSE) 
between the network output and the target value. As a 
main disadvantage, FF‐ANN is sensitive to outliers: a 
training representative of the testing conditions is 
therefore mandatory for obtaining satisfactory results 
[24].In this study, FF‐ANN was adapted to act as 
classifiers by simply rounding the obtained outputs to the 
closest integer. Another popular algorithm for 
classification is represented by support vector machine 
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(SVM). In SVM, the space of features is divided in 
subspaces by means of hyperplanes, named decision 
planes, and the prediction is performed according to the 
subspace that the test point belongs to (see, for instance, 
[25]). The decision planes are computed during the 
training phase searching for the maximum margin, 
according to some distance function. SVM have been also 
extended to deal with nonlinear separation hypersurfaces 
[25,26], allowing us to map the features in a higher‐
dimensional feature space through some nonlinear 
mapping and formulating a linear classification problem 
in that feature space by means of kernel functions. SVM
‐based methods are very common due to their good 
classification performance (see, for instance, 
[37,6,9,19,20]). As a drawback, SVM may require a fine 
tuning of many hyperparameters to obtain the optimal 
result. Furthermore, the training of SVM classifiers is 
performed by means of quadratic programming 
optimization routines [24]; thus, the training time is 
usually higher than, for instance, RF. The quadratic 
discriminant classifier (QD) pertains to the discriminant 
analysis framework [27]. In QD, data samples are 
assumed to be generated according to a Gaussian mixture 
distribution. The mean and the covariance matrix of each 
component are estimated by using the training data set 
belonging to the corresponding class. The prediction is 
performed by computing the posterior probability that the 
test sample belongs to each class and selecting the class 
for which the maximum is attained. Despite of the 
simplistic statistical hypothesis, QD can often deal with 
complex data models, exhibiting a competitive 
classification performance [28,29]. Furthermore, the 
training and decision phases are usually extremely fast  
 

4. RESULTS 
Classifiers were compared by means of a 10‐folds cross
‐validation, where at each round the 10% of the dataset 
was used as training set and the remaining 90% for 
validation. In the training phase, five ‐ fold cross ‐
validation was adopted to optimize the hyperparameters 
of the classifiers. To investigate the contribution of 
different bands and polarizations, seven scenarios were 
tested. For each scenario, only a subset of classification 
stack’s components was considered for training and 
validation. The indexes of the scenarios and the related 
components follows: 
1. PALSAR HH + PALSAR HV; 
2. CSK2 HH; 
3. ASAR VV; 
4. PALSAR HH + PALSAR HV + CSK2 HH; 
5. PALSAR HH + PALSAR HV + ASAR VV; 
6. CSK2 HH + ASAR VV; 
7. PALSAR HH + PALSAR HV + CSK2 HH + ASAR 
VV. 
Each scenario was trained and validated. The confusion 
matrices were subsequently computed over the overall 10 
validation sets, in order to assess and compare the 
prediction capabilities among classifiers. The predicted 

and the ground truth classes are reported in rows and 
columns, respectively. The scores are normalized to 100% 
on each column (up to rounding error), such that the main 
diagonal and off‐diagonal entries report the sensitivity 
and the misclassification rate, respectively. In Table 4, the 
confusion matrix obtained in the scenario 1 is shown. 
Almost all classifiers exhibited the highest sensitivity for 
the non‐forest class, whereas the worst misclassification 
was between broadleaf and coniferous. This result 
confirms that L ‐ band data were more useful to 
discriminate forest and non‐forest rather than different 
forest types. As to scenario 2, whose results are reported 
in Table 5, the sensitivity was remarkably unbalanced 
toward the discrimination of forest types for all classifier, 
whereas they show very poor performance for the non‐
forest type. Similar conclusions could be drawn by 
observing Table 6, where the results for scenario 3 are 
reported. A noticeable sensitivity balancing was obtained 
in scenario 4, as reported in Table 7. As to the forest type, 
four classifiers out of six exhibited sensitivity greater than 
80% for both classes, whereas it ranged between 70% and 
80% for the non ‐ forest class. This trend was also 
observed in the scenario 5 (see Table 8), even though the 
sensitivity values were slightly lower (about less 1%–2%). 
The joint use of band C‐ and X‐ (scenario 6, Table 9), 
on the contrary, did not provide enough information to 
discriminate the non‐forest class and the sensitivity of 
classifiers drops of about 50%– 70% with respect to the 
previous scenario. In Table 10, the results of scenario 7 
are reported. By comparison with scenario 4 (Table 7), no 
remarkable trend emerged in terms of sensitivity or 
misclassification rate. In order to summarize the 
comparison, the average accuracies computed on the 10 
folds, as well as the standard deviations, are reported in 
Table 9. RF classification achieved the best overall result 
(83.1 ± 0.1) and led in six out of seven scenarios. AB 
performed very closely to RF and both classification 
methods exhibited very low variance in all scenarios. 
KNN joins RF as to the best overall result, but the former 
suffered of poorer results in Scenario 2, 3 and 6. 
Moreover, some of the classifiers trained in the Scenario 2 
resulted strongly biased towards forest classes, which was 
reflected in the higher standard deviations of the accuracy. 
A similar irregular pattern was exhibited by the SVM 
classifiers. FF‐ANN and QD sub‐optimally scored 
with respect to the best ones, even though no remarkable 
variability emerged across different realizations. All 
classification methods consistently attained their best in 
the scenario 7, that is, when all available data were used; 
the second‐best result was observed for the joint use of 
L‐ and X‐bands. Furthermore, the accuracies of all 
classifiers were remarkably above the 36.4% lower bound 
threshold, which corresponded to the accuracy of the 
trivial random assignment based on pixels’ prior 
distribution. The average computational times of the 
tested classification methods are reported in Table 10. The 
computer simulations were carried out in MATLAB 

630



R2019b, on an Intel(R) Core(TM) i7‐8700 CPU @ 
3.20GHz, 32 GB RAM, operating system Xubuntu 19.04 
and exploiting six parallel processing. The time spent for 
the hyperparameters optimization was included and it 
varied according to several parameters, such as the i) 
dimensionality of predictors, ii) separability of classes, iii) 
number of parameters and the iv) stopping criterion of the 
optimization routines. It must be pointed out that, despite 
of a relatively fast training phase, KNN classifiers are 
more memory and processor intensive during the 
prediction phase, significantly being the slowest with 
respect to the other classification methods. For a visual 
evaluation, the classification maps obtained with RF are 
presented in Figure 1, considering three different 
scenarios. In scenario 1 (Figure 1a), identification 
between coniferous and broad leaf was scarce, whereas 
the non‐forest areas were almost correctly identified as 
blue areas. Conversely, the classification map of scenario 
2 (Figure 1b) shows a better discrimination between 
coniferous (red areas) and broadleaf (green) forests. In 
scenario 4 (Figure 1c), the improvement in the 
classification result combining L‐ and X‐ band was 
clear. 

Table 2 Confusion matrices in the scenario 1 
(PALSAR HH + PALSAR HV) for the classes 
coniferous, broadleaf and non‐forest areas 

 
Table 3 Confusion matrices in the scenario 2 (CSK2 
HH) for the classes coniferous, broadleaf and non‐
forest area. 

 
 

Table 4 Confusion matrices in the scenario 3 (ASAR 
VV) for the classes coniferous, broadleaf and non‐
forest area. 

 
 

Table 5 Confusion matrices in the scenario 4 
(PALSAR HH + PALSAR HV + CSK2 HH) for the 
classes coniferous, broadleaf and non‐forest area. 

 
 

Table 6 Confusion matrices in the scenario 5 
(PALSAR HH + PALSAR HV + ASAR VV) for the 
classes coniferous, broadleaf and non‐forest area. 

 
 

Table 7 Confusion matrices in the scenario 6 (CSK2 + 
ASAR VV) for the classes coniferous, broadleaf and 
non‐forest area. 

 
Table 8 Confusion matrices in the scenario 7 (the 
PALSAR HH + PALSAR HV + CSK2 + ASAR VV) 
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for the classes coniferous, broadleaf and non‐forest 
area. 

 
 

Table 9 Average and standard deviation of the 
accuracy of the classifiers for each tested scenario 
(abbreviations are used for sake of clarity). The best 
values for scenario are highlighted in bold. 

 
 

Table 10 Average computational times (s) of the 
training phase for different classification 
methods,including the hyperparameters optimization, 
as a function of the Scenario. Six parallel processing 
was used. 

 
 
 
 

 
Figure 1 Classification maps of San Rossore test site 
obtained with random forest by using (a)PALSAR HH 
+ PALSAR HV; (b) CSK HH and (c) PALSAR HH + 
PALSAR HV + CSK HH. (d) Reference forest 
classification map produced by DREAM [27]. Legend: 
Red: coniferous (correctlyclassified), Green: broadleaf 
(correctly classified), Blue: non ‐ forest (correctly 
classified), Black:misclassified. 

5. CONCLUSIONS 
The application of multi‐frequency SAR images to the 
study of heterogeneous Mediterranean forests, which have 
not been so far extensively investigated by using 
microwave remote sensing methods, have been adopted. 
The role of L‐, C‐ and X‐bands in land classification 
has been analyzed by applying several machine learning 
classification methods to data coming from different 
combinations of sensors and polarization. The joint use of 
multi‐frequency and multi‐polarization SAR data was 
shown to improve the classification of heterogeneous 
Mediterranean forests, allowing the separation of forest 
areas from non‐forest ones, as well as the identification 
of broadleaf and coniferous classes inside the forest class. 
The overall accuracy exceeded 80% when integrating 
both L‐  and X‐ band contributions for almost all 
considered classifiers; instead, it was significantly lower 
when considering separately L ‐  and X ‐ band. 
Furthermore, more homogeneous sensitivity across bands 
was achieved in the former case. By comparison, the 
contribution of C‐band had emerged to be of secondary 
importance. Random forest classification and support 
vector machines are two popular classification methods 
that were tested among others. In our results, the former 
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had shown the best accuracy for all almost the considered 
scenarios and it was confirmed a powerful tool for 
classification purposes. The latter, on the contrary, was 
shown to suffer of unbalanced sensitivity among classes 
in some scenarios; this behavior could be also motived by 
the consistent number of hyperparameters that must be 
tuned to achieve optimality, which is an intrinsic limit of 
this algorithm with respect to random forest. This research 
could be also interesting in view of the OptiSAR 
Constellation mission, devoted to the Earth surface 
observation by means of spaceborne optical, L‐ and X‐
band SAR sensors, with the aim of developing consistent 
applications in environmental, hazard and safety 
monitoring. This research was published in [30] 
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1. INTRODUCTION 

 

As was described in the project proposal, monitoring 

mining deformation is necessary to legislative 

requirements, predict subsidence, maximize of coal 

extraction and risk and environmental monitoring [1]. 

Mining monitoring conducted by traditional monitoring 

techniques as field survey using levels, total stations or 

GPS are labour-intensive and time-consuming when the 

study regions become large. Hence, the monitoring is 

usually constrained to very localized areas. Mining 

measurements on the levelling lines are generally 

performed one per year or sometimes even rarely 

Moreover, these techniques are point-by-point basis, thus, 

the spatial extent is not enough to assist in understanding 

the mechanism involved in ground subsidence [2]. 

Thus, Satellite Synthetic Aperture Radar Interferometry 

(InSAR), like any other remote sensing technique, 

captured considerable attention in subsidence monitoring 

by providing measurements of ground deformation. Many 

application of Sentinel-1 data have been demonstrated for 

subsidence or deformation monitoring [3]. However, for 

deformation with high deformation gradient, as well as in 

the vegetated areas, this data are not appropriate [4]. 

Therefore, the idea of the this project was synergetic 

integration of ALOS-2 and Sentinel-1 data in order to 

measure the whole deformation range from mm/yr up 

to m/yr in the areas of active coal exploitation. 

Through, traditional DInSAR exploits single 

interferometric SAR pairs, the accuracy of this technique 

is limited by factors related to spatial and temporal 

decorrelation, signal delay as a result of atmospheric 

artefacts as well as orbital or topographic errors. In order 

to overcome abovementioned limitations, different 

techniques which exploit time series interferometric SAR 

analysis (TS-InSAR) have been proposed such as 

Persistent scattered interferometry (PSInSAR) or Small 

Baseline Subset [5-7].  However, due to the limited 

number of ALOS-2 SAR images (5) in the GPortal, 

application of the PSInSAR approach was not 

possible. Therefore, only one possible option was 

integration of ALOS-2 and Sentinel-1 by on the level of 

DInSAR processing.  

From another point of view, by considering the high 

availability of ALOS-1 data, additional integration 

was made in term of time. More specifically long lime 

series monitoring of the mining areas by using various 

SAR sensors. It was carried out in the area of the 

Mieroszewskich palace where some crack exists which 

was deduced to be an effect of the mining activity in the 

past.  

Taking into account such a valuable culture heritage, it is 

very important to answer the question what is causing the 

palace damages and in the authors opinion, satellite radar 

interferometry will be very helpful tool.  

To investigate this issue we applied various  SAR dataset 

to check the history of the deformation is this areas.  

-Firstly, we will utilized ALOS-1 data from 2007-2011 to 

check if during this time, significant deformation occur in 

the area of interest, PSInSAR approach will be used for 

such purpose. 

-Secondly we will apply available archive data from 

TerraSAR-X satellite from 2011-07-05 to 2013-01-27 to 

estimate deformation by using PSInSAR approach -

Thirdly,  we will utilized Sentinel-1 ascending and 

descending data for the period of 2014-2020 to estimate 

deformation by using PSInSAR approach. 

-Finally, we will utilize TerraSAR-X images for the year 

of 1-04-2019 up 4-04.2021.This results was utilized as a  

 

2. STUDY AREAS 

 

First study area is Rydułtowy mine in the Upper Silesian 

Coal Basin, which is used as case study in appendixes A-

B. Second study case is area of the Mieroszewskich 

Palace which is presented in the appendix C.  

CASE STUDY 2 

The Rydułtowy mine is the oldest active mine in the 

Upper Silesian Coal Basin (USCB) in Poland. The USCB 

is one of the largest hard coal mining areas in Europe. The 

Rydułtowy mine is located in the southwest part of the 

USCB (Figure 1-Appendix A,B) and covers 

approximately 46 km2. The average daily production of 

the mine ranges between 9,000 and 9,500 t/day and the 

extraction depth reaches 800 - 1200 m. This area was 

investigated during the EPOS-PL project, which allowed 

the purchase of five passive corner reflectors (CRs) and 

placed them in the area of interest. EPOS-PL is the Polish 

implementation of the European Plate Observing System 

(EPOS) initiative, which aims at the integration of existing 

and newly created research infrastructures to facilitate the 

use of multidisciplinary data and products in the field of 

Earth sciences in Europe. 
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CASE STUDY 2 

Mieroszewskich Palace building is a baroque-classicist 

building erected in 1702 as a symbol of the position and 

rank of the Mieroszewskich family in the Duchy of 

Siewier, it is a typical 18th-century noble residence 

modeled on French palaces. It is a late baroque, one-story 

palace, with a mansard roof, two-bay, with an enfilade 

arrangement of rooms. After renovation in 1958, the 

building was turned into a Children and Youth Culture 

Center. He performed this role until the 1970s. From the 

mid-1960s, the management of the Museum in Będzin, 

together with the Provincial Conservator of Monuments, 

made efforts to change its function and start 

comprehensive conservation of the entire palace and park 

complex. In March 1982, after years of efforts and work 

carried out by the Monuments Conservation Studios in 

Krakow, the USCB Museum in Będzin presented stylish 

18th and 19th-century interiors to the visitors to the palace 

opening. The interior design of the eighteenth-century 

interiors is complemented by fireplaces, stylish furniture, 

artistic craftsmanship and a collection of portrait and 

landscape paintings from the eighteenth - nineteenth 

centuries. The palace interiors also exhibit works by 

artists from USCB and archaeological and ethnographic 

collections.  

 

3.METHODOLOGY  

 

As was mentioned in the introduction section, ALOS data 

have been used in two aspect. First aspect utilized ALOS-

2 data altogether with Sentinel-1 by the integrated 

DInSAR approach to appropriate estimate deformation 

form the active mining exploitation. Methodology 

flowchart is attached in the appendix A and B.  

Second aspect was made by the integration of the ALOS-1 

data altogether with other SAR mission for the long term 

monitoring post mining area in the Mieroszewskich 

Palace. For that aspect we utilized PSInSAR approach to 

facilitate mm-level accuracy. Also it was possible due to 

the availability of the bigger amount of SAR Scenes (at 

least 20 is needed for the PSInSAR calculations). All 

utilized data are presented in the Appendix C.  

 

4. RESULTS 

 

Integration of the DInSAR results from ALOS-2 and 

Sentinel-1 by using various strategies which are deeply 

described in the appendix A-B,  are presented in the 

following table. As can be observed , the best results are 

received for the integration option 2D+1D, for the 

Sentinel-1 and ALOS-2 data. 

 

 Integration and decomposition 

Sentinel-1  only Sentinel and 

ALOS-2  

Deformation 3D 2D+1D 3D 2D+1D 

component 

Vertical [m] 0.065 0.038 0.052 0.032 

Easting [m] 0.046 0.031 0.038 0.018 

Northing 

[m] 

0.572 0.034 0.288 0.024 

 

 

The results of the second aspect are presented in the figure 

1 in the appendix C. As can be observed, in each cases 

there were no characteristic basins which can suggest that 

cracks detected in the Mieroszewickich palace are the 

source of the post mining activity. Integration of ALOS-1, 

TerraSAR-X and Senitnel-1 data allow for the long time 

investigation of the mining and post mining areas. 

 

 

5. DISCUSSION 

 

Achieved results of ALOS-2 and Sentinel-1 data indicated 

the positive value of the additional to freely available 

Sentinel-1 data for the proper estimation of the vertical 

and horizontal deformation component. Unfortunately, in 

the areas of the study only 5 ALOS-2 data were available. 

Thanks to the long wavelength of the ALOS-2 mission, 

coherence was still enough to carry out the satellite 

interferometry by using conventional DInSAR approach. 

Unfortunately this amount of data is not enough for 

PSInSAR approach, therefore this method could not be 

applied. Nevertheless, it is foreseen that in another case 

studies where more ALOS-2 data is available, the results 

of the Sentinel- and ALOS-2 data integration will be much 

more accurate. Especially, when at least 20 ALOS-2 

images are available, PSInSAR approach can be utilized 

which is known for its better performance.  

Additionally, results of the Appendix c- integration of 

various sensors in the case of the long time monitoring by 

taking advantage of various time of the imaging of various 

satellites allows to answer many question about the 

surrounding environment. Thanks to the various mission it 

was possible to cover approximately time span of 10 

years, which is very beneficial and unavailable with 

another geodetic measurement techniques. 

 

6.CONCLUSIONS 

 

In each of the investigated aspect ALOS missions proved 

to be beneficial for monitoring of mining and post mining 

areas. Benefits comes from longer wavelength of the 

ALOS SAR sensor applied in that mission. Additionally, 

ALOS-1 mission is beneficial in application in long term 

monitoring of infrastructures in the mining areas.  

Unfortunately, in the mining area of USCB, ALOS-2 data 

availability is very limited. This makes impossibility to 

apply more sophisticated time series interferometric 

techniques as well as limits the revisiting time of the SAR 

measurements. 
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APPENDIX 
 
 
Appendix A: conference paper from ISPRS congress in 

Nice which presents the integration of 5 scenes of ALOS-

2 data with the data of the Senitnel-1 for the year of 2019. 

 

Appendix B: poster form the Joint PI Meeting of JAXA 

Earth Observation Missions FY2020 

 

Appendix C: document/paper draft in which integration 

of the ALOS data was made in terms of time. More 

specifically, various SAR data have bed utilized in order 

to evaluate the if the mining deformation existed in the 

investigated study case.  
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1. INTRODUCTION 
 
合成開口レーダー干渉法（InSAR）は面的かつ高

精度（cm オーダー）・高空間分解能（数 m から数

十 m）に地表面変位を観測できる宇宙測地技術の一

つであり、これまでに地球科学および工学分野にお

いて数多くの研究成果を挙げてきた（例えば[1-3]）。

しかしながら、観測にマイクロ波を用いる InSAR は

GNSS 同様に地球大気による大気伝搬遅延効果を受

けるため、観測量には地表面変位の寄与の他に大気

による見かけの変位が重畳し、地表面変位検出精度

を数 cm 程度のレベルに制限している [4]。この大気

遅延に対する補正手法の開発研究はこれまでに数多

くなされており、現在代表的な補正手法には、電離

層遅延に対しては Range Split-Spectrum Method (SSM; 
[5])、中性大気遅延に対しては数値気象モデルの出

力データを用いた補正手法（e.g.[6]）がある。電離

層補正については SSM により高精度に補正できる

ことが複数の研究で報告されているものの（e.g. 
[7]）、中性大気遅延補正についてはいまだ十分な補

正効果を実現しているとは言い難く、さらなる研究

が求められている。 
 本研究では、主に中性大気遅延補正を対象に、従

来にない新たな補正手法を提案し、その補正効果を

検証した。具体的には、 GNSS の天頂遅延量

（ZTD）データと水平遅延勾配データを用いた補正

手法を開発し、ALOS-2 の ScanSAR データを用いて

補正効果の検証を行なった。加えて関連研究として、

InSAR で推定した可降水量および天頂遅延量観測の

精度評価を GNSS と比較することで行なった。電離

層補正については SSM の補正精度を定量的に評価

したので、その結果についても報告する。 
 
2. GNSS 天頂遅延量と遅延勾配を用いた INSAR 大気

遅延補正モデルの開発 
 
本研究では、Arief and Heki [8] にて提案された天

頂湿潤遅延量（ZWD）の格子面復元手法を応用して、

ZTD の面的分布を復元することにより InSAR 補正モ

デルの構築を行なった。本手法の基本的な理論・構

成は [8] と同様であるが、以下の点について本研究

独自の変更を行なった。 

• InSAR 中性大気遅延は乾燥・湿潤遅延の両方

が含まれるため、使用・推定する物理量を

ZWD から ZTD に変更した。 
• 使用する観測点を海岸線付近のみではなく、

使用可能な全ての観測点を使用した。 
• InSAR 遅延遅延で顕著よく知られている成層

遅延効果（Stratified delay component）を精度

良く推定するため、ZTD の標高依存効果につ

いて 1 次関数を組み込むことでモデル化した。 
• ZTD 復元の際の観測方程式には ZTD のスケ

ールハイトが必要であるため、本研究ではラ

ジオゾンデデータを用いて推定した。 
これらの変更により、InSAR 大気遅延効果をより高

精度に推定することを図った。補正モデルの入力デ

ータにはネバダ大学測地研究室（NGL）が公開して

いる 5 分間隔 PPP 解析の結果を使用した [9]。国土

地理院が公開している 3 時間間隔の天頂遅延量デー

タと比較してより InSAR 観測時刻に近い時刻の観測

データを使用でき、天頂遅延分布の高い再現性が期

待できる。 
開発した補正モデルの検証用データには、L バン

ド SAR 衛星の ALOS-2/PALSAR-2 ScanSAR（WD1）
データを使用した。観測領域は関東平野周辺で、パ

スおよびフレームは 17-2900 である（Fig. 1）。干渉

処理には RINC ver.0.41（[10]）を使用し、高精度軌

道情報と SRTM 1 arc-second DEM を用いて軌道縞お

よび地形縞をシミュレートした。ALOS-2/PALSAR-2
は長波長の L-band であり電離層の影響が大きいこと

が知られている。本研究では SSM により電離層起

源の位相擾乱（正確には分散性の遅延効果）を補正

した。SSM による補正効果の検証結果は 3 章に記載

している。なお解析期間中（2016 年 1 月から 2020
年 4 月）に茨城県北部にて 2016 年 12 月 23 日に

M6.3 の地震が発生している（Fig. 1 内の黄色の星

印）。この地震による地表面変位の影響を避けるた

め、この日を含む干渉ペアは使用していない。 
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Fig. 1 Geographic condition in this study. The contour 
color map shows the topography. Black and red 
rectangles represent the area of the gridded ZTD 
model and the ALOS-2 SAR coverage, respectively. 
Triangles colored in light blue represent locations of 
GNSS stations. The yellow star symbol represents the 
earthquake epicenter with the Japan Meteorological 
Agency’s magnitude of 6.3 occurred on 28 December 
2016. 

まずはラジオゾンデによるスケールハイトの推定

結果について述べる。ラジオゾンデデータには日本

国内で定期観測が実施されている 16 観測点全ての

利用可能な観測データを使用した。使用したデータ

の観測期間は 2011 年から 2020 年の 10 年間である。

観測データから各高度での ZTD を計算し、地表面で

の ZTD が 1/e 倍になる高度を、指数関数 fitting によ

り求め、全期間の平均値を求めた。結果的に ZTD ス

ケールハイトの推定値は 6930.8±389.2 m となった。

以後、本研究では 7000 m を ZTD スケールハイトと

して使用した。 
次に ZTD の面的分布推定の結果について述べる。

推定した ZTD の面的分布が元の ZTD ポイントデー

タをどの程度再現できているか、それぞれの差分を

取ることで検証した。なお ZTD の面的分布復元につ

いての概要図は Fig. 2 に示している。比較検証の結

果、復元した ZTD とオリジナルの ZTD データとの

残差の平均および標準偏差は 0.14±2.89 mm となり、

2000 から 3000 mm のオーダーを持つ ZTD の復元制

度としては十分高い結果であった。 
 

 
Fig. 2 A brief example of the processing flow in the 
gridded ZTD retrieval.  

 
Table. 2 Statistics of the gridded ZTD retrieval 

result.  

 
 
InSAR データへ適用・補正した結果、従来の中世

大気遅延補正手法と比較して本研究で開発した補正

手法は高い補正効果を示した。一例として Fig. 3 に

補正適用前後の InSAR 画像を示す。Fig. 3 で用いた

InSAR 画像は 2016 年 3 月 19 日と 2016 年 4 月 30 日

に撮像された SAR 画像を用いており、観測間隔が短

い（42 日間）ため、高い干渉性（コヒーレンス）を

示しておりかつ地表面変位の影響も含まれていない

可能性が高い。元々のオリジナル InSAR 画像（Fig. 
3a）では主に東西方向に長周期の位相変化が 2 サイ

クルほど見えており顕著であるものの、SSM による

電離層補正を適用することで概ね補正できている

（Fig. 3b）。しかし電離層補正のみでは北西-南東方

向にかけての長周期の位相変化が残っており、電離

層補正のみでは補正が十分ではないことも視認でき

る。この電離層補正済み InSAR 画像に本研究で開発

した GNSS ベースの補正モデルを適用した結果を

Fig. 3c に示す。GNSS ベースの補正により、Fig. 3b
では残っていた北西-南東方向の位相変化は概ね補
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正・除去されており、補正後 InSAR 画像には数 km
スケールの大気遅延ノイズが散見されるというレベ

ルにまで補正できている。Fig. 3 では比較のために、

気象庁メソスケールモデル（MSM）による補正およ

び近年公開された GACOS モデル（[6]）による補正

を適用した InSAR 画像を Fig. 3d および Fig. 3e にそ

れぞれ示している。目視でも確認できるように、

MSM および GACOS による補正では GNSS ベースの

補正に比べ大きな位相変化が残っており、GNSS ベ

ースの補正がこれら従来の補正手法より効果的に補

正を実現していることが分かる。 
 

 
Fig. 3 (a) An original wrapped interferogram of 19 
March 2016 and 30 April 2016 over Kanto region. No 
corrections were applied in this image. (b) An 
interferogram that the ionospheric correction was 
applied to the interferogram (a). (c-e) Phase residuals 
corrected for the GNSS-based, MSM, and GACOS 
delay model, respectively. The model phase was 
subtracted from (b).  

上述の補正手法を、38 の InSAR 画像に適用した

結果を Fig. 4 に示す。Fig. 4 は InSAR 画像における

位相の標準偏差について、補正前後の値をそれぞれ

縦軸・横軸として図示した散布図である。Fig. 4 に

は GNSS ベースの補正結果（Fig. 4 の青丸）に加え、

MSM による補正（Fig. 4 の赤四角）、GACOS によ

る補正（Fig. 4 の緑三角）も図示している。Fig. 4 か

ら、ほぼ全ての InSAR 画像に対して GNSS による補

正の効果が最も高いことが見て取れる。38 ペアのう

ち 2 ペアのみ、GNSS による補正適用で位相の標準

偏差が増加した（適切に補正できなかった）ペアが

あるものの、統計的には十分な補正効果を示した。

位相の標準偏差は 38 ペアの平均で 35.02 mm から

23.16 mm へと約 34%低減できている。MSM および

GACOS による補正では補正適用により平均で 26.04 
mm（約 26%）および 29.31 mm（約 16%）の低減と

なり、統計的にも GNSS による補正が優れているこ

とが分かった。遅延補正効果の距離依存性について

も、Fig. 5 に示すセミバリオグラムから、主に距離

50 km 以上の範囲で大気遅延補正がよく機能してい

る様子が見て取れる。セミバリオグラム（Fig. 5b）
においても、GNSS による補正が他の補正手法と比

べてより高い補正効果を示していることが見て取れ

る。 
 

 
Fig. 4 Phase standard deviation differences from 
ionosphere-corrected interferograms (shown in Figure 
6) against interferograms corrected by the SSM and 
neutral atmospheric delay models. Each dot represents 
the single interferogram. Blue circles, red rectangles, 
and green triangles represent interferogram phase 
standard deviations corrected by the GNSS-based 
delay model, the MSM, and the GACOS, respectively. 

これらの結果から、本研究で開発した GNSS 観測

（ZTD と遅延勾配データ）に基づく InSAR 中性大気

遅延補正モデルは、従来の補正手法を上回る補正効

果を示しており、大気遅延補正に対して有効な補正

手法の一つとなることが期待できる。ただし本研究

で開発した補正手法の短所として、GNSS 観測デー

タを利用できない地域においてはそもそも補正の適

用ができないことが挙げられる。これは稠密 GNSS
観測網（GEONET）が展開されている日本国内にお

いては問題とならないものの、アフリカや東南アジ

アなど一部地域においては大きな問題となる。この

点を克服するためには、GNSS 地上観測点を増加さ

せることの他に、例えば GACOS のように全球数値

気象モデルの出力データを融合利用するなどモデル

そのものの改良が有効であると考える。 
本章で報告した研究の成果は、執筆時点（2022 年

3 月 31 日）において国際学術誌に論文原稿を投稿済

みであり、現在改訂稿の査読中である。 

641



 
Fig. 5 (a) A figure representing phase standard 
deviations as a function of distance. Circles with a 
solid bold black line is derived from interferograms 
without any corrections, diamonds with dashed black 
line is from ionosphere- corrected interferograms, plus 
symbols, triangles, rectangles with dashed lines are 
from interferograms with the GNSS-based correction, 
the MSM correction, and the GACOS correction, 
respectively. (b) Enlarged view of (a) to focus the 
difference between three neutral atmospheric delay 
correction models. The original interferogram is 
omitted in (b). 

 
3. SSM による L-BAND INSAR 電離層補正効果の 

検証 
 

本章では 2 章の研究において使用した ALOS-
2/PALSAR-2 ScanSAR 干渉画像に対し、SSM による

電離層補正をした結果を報告する。 
 Fig. 4 と同様に、位相の標準偏差を電離層補正前

と後で計算し、それぞれ縦軸・横軸に標準偏差を設

定して図示した散布図が Fig. 6 である。Fig. 6 より、

SSM による電離層補正は ScanSAR データに対して

非常に有効であることが分かる。使用した全 InSAR
データについての位相の標準偏差の平均は、補正前

の 102.87 mm から補正適用により 35.02 mm に低減

し、これは約 66%の位相擾乱を補正できたことを示

している。先行研究において本研究のように SSM
による電離層補正の統計的・定量的な評価をした研

究は見かけていないため、本研究で示した統計的評

価結果は世界初のものと考えられる。 
 

 
Fig. 6 Phase standard deviation differences from 
original interferograms against ionosphere-corrected 
interferograms. Each dot represents the single 
interferogram. 
 

4. L-BAND INSAR による大気観測の精度評価 
 
本研究では InSAR 大気遅延と同じ物理量を観測で

きる GNSS ZTD データを利用して、InSAR 大気観測

に対する精度評価を行なった。この研究は、2 章で

開発した GNSS を用いた遅延補正手法の開発におい

て、GNSS 大気遅延観測データの有効性を検証する

ことに寄与している。本研究はすでにオープンジャ

ーナル”Remote Sensing”に原著論文（[11]）として掲

載されており、本報告書にも参考資料として添付し

ているため、詳細は割愛する。 
本研究では ALOS-2/PALSAR-2 の SM1 モードで得

られた InSAR 画像から天頂遅延量（ZTD）および可

降水量（PWV）を推定し、GNSS から得られる同観

測量と比較をすることで InSAR ZTD, PWV の GNSS
に対する相対的観測精度を求めた。また先行研究に

よる GNSS ZTD, PWV の絶対誤差の数値と誤差伝播

理論を用いて、InSAR ZTD, PWV の絶対誤差（観測

精度）も推定した。対象地域には日本国内の 4 地域

（北関東、関東西部、大阪、九州南部）を選定し、

ZTD から PWV 計算の際の変換係数は AMeDAS 地上

気象観測データから推定している。GNSS のデータ

には 2 章同様にネバダ大学測地研究室が公開してい

る PPP 解析データを利用した。また全ての InSAR画

像は事前に SSM により電離層補正を適用している。 
まず GNSS との比較の結果を示す。4 つの地域そ

れぞれでの InSAR と GNSS での ZTD の残渣を Fig. 7
にヒストグラムで示す。この図から ZTD 残渣の分布

は正規分布に近い形を示しており、電離層の取り残
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しなどによる bias や skew は小さいことが分かる。

利用可能な InSAR 画像および GNSS 観測点数の違い

から、地域によって正規分布モデルの fitting 精度に

違いが見られるものの、概ねよい一致を示した。Fig. 
8 には 4 地域すべての ZTD 残差をまとめた結果を示

している。こちらの図からも、ZTD 残差の分布は正

規分布に従っていることが見て取れる。統計的な数

値の結果は、InSAR ZTD の GNSS からみた相対誤差

は標準偏差で 7.36 mm となった。InSAR ZTD を推定

する時点で、推定値全体の offset を GNSS により補

正しているため、平均（bias）はゼロである。この

結果から誤差伝播理論を用いて絶対誤差（精度）を

評価したところ、InSAR ZTD の絶対誤差は 18.03 
mm、InSAR PWV の絶対誤差は 2.96 mm となった。

この結果は他の PWV 観測手段と比較してもそれほ

ど悪くはない観測精度と言える（Fig. 9）。 
 

 
Fig. 9 Absolute errors of PWV observations. 
 

5. まとめ 
 
本研究では InSAR 大気遅延効果を対象に、1) 

GNSS 観測データに基づく InSAR 中性大気遅延補正

モデルの開発と検証、2) SSM による電離層補正の補

正効果の統計的検証、そして 3) GNSS と InSAR の

ZTD および PWV 観測の比較を通じた観測精度の評

価を実施した。いずれの研究においても良好な結果

を得ており、4 章の研究についてはすでに国際学術

誌”Remote Sensing”へ原著論文として掲載済み、2 章

の研究についても国際学術誌に改訂稿査読中である。 
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1. INTRODUCTION 
 
The original objective of this proposal was to continue our 
research on understanding of seismic moment and stress 
accumulation rate along the San Andreas Fault System 
using InSAR observations from ALOS-2, Sentinel-1 and 
GNSS measurements. It was written in November 2018 as 
a backup plan to the research objective, since we did not 
know whether the prior RA6 proposal (PI NO.: 3071) will 
be extended. After we received the announcement that the 
prior RA6 proposal will be extended, we decided that the 
data quota from this proposal will be mainly used for 
advancing the development of processing approaches in 
GMTSAR related to ALOS-1 and ALOS-2 data. The 
results will further ensure the goals described in RA6 
3071, the original form of this proposal and any future 
proposals under JAXA RA programs.  
 

2. DEVELOPMENTS AND RESULTS 
 
Phase gradient estimator for ALOS-1 / ALOS-2 
We developed the phase gradient estimator original for 
detection of small changes associated with earthquake 
ruptures. The phase gradient approach is able to reveal 
small motions that are localized to nearby cracks or faults 
next to the main rupture [1]. Fig.1 shows the basic theory 
why taking a phase gradient will help the detection of 
small changes. The top plot shows the simulated 
deformation from an earthquake rupture in unwrapped 
and wrapped forms at C-band. Without further help, the 
small crack at -5km away from the fault will not be 
identified. The middle plot shows after taking the gradient, 
the motion from this crack shows up nicely. Despite the 
effectiveness in detecting small changes, taking the phase 
gradient will magnify noise, making this technique 
inapplicable in cases of loss of coherence. Usually, this 
can be addressed with stacking multiple acquisitions 
together thus the noise level is reduced. The bottom plot 

of Fig.1 gives an example how stacking could help reduce 
the noise in the phase gradient measurement.  

 

 

 
Fig. 1 Phase gradient approach  

 
With this approach, we were able to reveal hundreds of 
small fractures next to the rupture region of the 2019 
Ridgecrest earthquakes (Fig.2 top) [2-3]. We used 
kinematic slip model derived from ALOS-2 and Sentinel-
1 InSAR measurements, ALOS-2 Multi-Aperture 
Interferometry, GNSS and optical offset estimates, to 
calculate the stress and strain release from this earthquake 
and found that the nearby faults with backward motion are 
consistent with compliant fault deformation, while the 
faults with forward motion are likely frictional slip [2]. 
These findings indicate the release of shallow strain may 
be much more distributed than scientists have believed. 
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Note the very straight lines are burst discontinuities 
caused by azimuthal motion from the earthquake rupture.  
 

Sentinel-1 Phase Gradient (Azimuth) 
 

 
 

 
Fig. 2 Phase gradient results from Sentinel-1 for 

Ridgecrest earthquake (top) and Haiti Earthquake 
(bottom) 

We experimented similar analysis over the recent 2021 
Haiti earthquake, but the decorrelation from the heavy 
vegetation is too strong over the tropical region and even 
with stacking, the resulting phase gradient map is filled 
with noise. We then built an estimator of phase gradient 
for the ALOS-2 Stripmap data over the rupture region, 
considering that the L-band data is less subject to 
decorrelation noise from vegetation. Despite the strong 
noise, the deformation associated with some nearby faults 
showed up nicely with just a single pair of interferogram. 
The post-seismic creep toward the east is also detected by 
this technique. We also tried on the ScanSAR data but the 
quality of phase gradient maps is not as great, which 
could be due to the narrower range bandwidth of the data. 
This result could have been much better if there are more 
ALOS-2 Stripmap data acquired over the area. A paper 
that discusses these results is lead by a student at UCSD 
and is under preparation. 
 
Ionosphere estimator for ALOS-1 / ALOS-2  
We developed the ionospheric phase estimator in 
GMTSAR following several prior publications [4-7]. The 
overall idea is to bandpass the radar measurements in the 

ranging direction thus the dispersion of the 
electromagnetic beam through electron content could be 
used as a diagnostic of the volume of electron content 
itself [4]. ALOS satellites are acquiring data at L-band, 
which is subject to much stronger (wavelength squared) 
ionospheric delay than radar at smaller wavelengths. Over 
the duration of this proposal, we first implemented the 
ionospheric correction for ALOS-1 raw and SLC data and 
validated the effectiveness of our approach with prior 
publications (Fig.3). Following that, we further 
implemented and automated the ionospheric phase 
estimation in GMTSAR for ALOS-2 Stripmap and 
ScanSAR data (Fig.4) [8]. For both figures, the left 
column is the original data, the middle column is the 
estimated ionospheric phase and the right plot is the 
corrected phase. These implementations will help reduce 
the artifacts of radar phase from propagation delay 
through the ionosphere and help the deformation analysis. 
Eventually we would like to build a time-series similar to 
prior studies [9-10] and build a robust strain rate map 
combining measurements from Sentinel-1, ALOS-2, 
GNSS and the future NISAR data. 
 

 
Fig. 3 Ionospheric phase estimation for ALOS-1 data 

 

 

 
Fig. 4 Ionospheric phase estimation for ALOS-2 data 
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Multi-Aperture Interferometry Processor 
We implemented and automated the multi-aperture 
interferometry processor for ALOS-1 and ALOS-2 data 
into GMTSAR. The processor band-passes the Single-
Look Complex images in the azimuth direction and forms 
double difference interferograms for measurement of 
deformation along the track direction. This processor was 
used to map the azimuthal motion associated with the 
2019 Ridgecrest earthquakes [2]. Adding this information 
helped reveal the smaller amplitude of rupture over the 
fault junction of the conjugate ruptures. It is noted that 
this measurement is subject to very short wavelength 
ionospheric perturbations, where the ionosphere gradient 
approach [7] may not fully capture the variabilities within 
such small scales. It is yet to be explored how such 
artifacts could be mitigated.  

  
Fig. 5 MAI interferograms for the Ridgecrest 

earthquakes 
 
 

3. CONCLUSIONS AND FUTURE TASKS 
 
We have made a number of ALOS-1/ALOS-2 processing 
modules available to the general public through 
GMTSAR. These advancements will help in mapping 
deformation, detecting changes and mitigating the 
artifacts from ionospheric delays. We hope to further 
cooperate with JAXA scientists to benchmark some of 
these modules and make ALOS-2 and potentially the 
furture ALOS-4 data usage more accessible to the radar 
interferometry community.   
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1. INTRODUCTION 

 

Measurement of surface velocity field due to tectonic 

deformation provides an important constraint in 

geodynamic models, and a method to improve the 

evaluation of earthquake potential. The increase in spatial 

and temporal coverage of geodetic images such as those 

provided by Interferometric Synthetic Aperture Radar 

(InSAR) motivates us to better quantify the evolution of 

tectonic deformation and strain accumulation associated 

with crustal faulting. 

 

The Chuandian block is located in southwestern corner of 

the Tibetan Plateau, and is one of the most seismically 

active areas in China. The Lijiang–Xiaojinhe Fault is a 

major transverse fault that divides the Chuandian block 

into southeastern and northwestern parts. Formation of the 

Lijiang-Xiaojinhe Fault may be due to other tectonic 

processes which have nothing to do with the slip 

transferring between the Xianshuihe and the Xiaojiang 

faults. The internal faults in the Chuandian block often 

control formation of Quaternary sedimentary basins and 

lakes. Large to medium size earthquakes frequently occur 

on those internal faults, and especially the Lijiang–

Xiaojinhe Fault is the largest one among them. The fault 

itself consists of two discrete segments: the northeast 

trending Lijiang Fault and the north–south trending 

Xiaojinhe Fault. Trenches on the Lijiang Fault indicate 

three paleo-earthquakes in the Holocene at 7940-7210 a 

BP, 4740-4050 a BP and 1830-1540 a BP, respectively. 

Large earthquakes appear to fit the quasi-periodic model 

with the recurrence interval of ~3000yr and the estimated 

magnitude 7.5 [1]. On the western part of Lijiang Fault, 

the geological studies indicate that its quaternary left slip 

rate is 2.4-4.5mm/yr with small shortening rate of 

0.6mm/a. Unfortunately, they did not report left-slip 

feature along the Xiaojinhe Fault [2-3]. The modern left-

slip rate derived from GPS is no more than 3 mm/yr, and 

there also exist shortening [4-5]. These above studies 

reveal that the Lijiang-Xiaojinhe fault play an important 

role in the crustal deformation of the Sichuan-Yunnan 

region and it has the potential for generating big 

earthquake. 

 

In this study, we want to know: how is the slip distributed 

locally along each segment of the Lijiang–Xiaojinhe Fault 

currently? What is its current strain accumulation rate, and 

how does individual segments interact with each other? 

Sparse GPS and geological data are not detailed enough to 

fully answer these questions. InSAR provides spatially 

dense maps of surface deformation at the kilometre scale 

over length scales of 100s of km, which benefit the 

achievement of our goal. With the launching of ALOS-2 

satellite, L-band PALSAR-2 onboard provide us a good 

opportunity to carry out tectonic deformation observation 

with fine resolution in those heavily vegetated area like 

the Lijiang–Xiaojinhe Fault, the geographical focus of my 

proposal. 

 

We seek to use PALSAR and PALSAR-2 data acquired 

between 2006 and 2021 to map an overall picture of the 

deformation velocity and strain fields across the whole 

Lijiang–Xiaojinhe Fault zone, which provide detailed 

constraints both on the slip rate of each segment and on 

the temporal and spatial evolution of the strain 

accumulation over the period the data spanned, examining 

the behavior of the fault movement, and looking for 

changes in the rates of movement on them. Our results 

will make significant contributions to the general 

understanding of how the active Lijiang–Xiaojinhe Fault 

accommodate the tectonic strain, and the interaction 

between its sub-parts, as well as providing critical first-

order data for the assessment and mitigation of seismic 

hazard within this tectonically active area. 

 

2. TECTONIC SETTING 

The Lijiang-Xiaojinhe fault zone is an NE trending active 

tectonic belt within the Sichuan-Yunnan rhombic block, 

with a total length of 360km. The Sichuan-Yunnan 

rhombic block is obliquely cut into two secondary 

blocks ： the Northwest Sichuan and central Yunnan 

subblocks. It is a reverse sinistral strike slip active fault 

with a high angle dipping to NW [6]. Many earthquakes 

with magnitude  ≥  6 occurred in this area in history, and 

the largest earthquake was the M7.5 Lijiang earthquake in 

1996. The largest earthquake occurred on the Xiaojinhe 

fault was the M6 Yanyuan-Ninglang earthquake in 1976 

[7] (Figure 1). 

 

Many studies presented evidences that this fault system is 

still active. Shen et al. [4] gave a left-lateral strike slipping 

rate of 3mm/yr for the Lijiang-Xiaojinhe fault by 

analyzing the GPS data. Taking the GPS velocity field as 

the constraint, Wang Yanzhao et al. [8] inverted for the 
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present-day segmented slip rate of the fault by using the 

least square method. The northeastern segment is a left-

lateral strike-slip fault, with a small strike slip rate of 0.8 ± 

1.5 mm/yr and a tensional rate of 2.4 ± 1.7 mm/yr; The 

middle segment is mainly left-lateral strike-slip, with a 

rate of 5.4 ± 1.2 mm/yr; The southwestern segment is 

dominated by compressing and thrust faulting, with a rate 

of 2.3 ± 1.8 mm/yr. In addition, the vertical components 

of leveling and GPS observation show that there are 

obvious differences in the vertical movement of the crust 

on both sides of the Lijiang-Xiaojinhe fault zone [9-10]. 

There exists a 50km seismic gap between the 1976 M6 

and M6.7 Yanyuan-Ninglang earthquake rupture zone 

(Figure 1). In terms of  the tectonic scale, fault activity 

and seismic activity, it is considered that the tectonic 

setting of the Lijiang-xiaojinhe fault zone is complex with 

strong tectonic activity. 

 

 

Fig. 1 Tectonic map of main active faults in Sichuan-

Yunnan region. Fault traces are superimposed on 

SRTM DEM, blue dots indicate the seismicity (M>4) 

in history from USGS. The Global Centroid Moment 

Tensor (GCMT) focal mechanisms of the 1978 Mw 6.5 

and 1996 Mw 7.0 Lijiang earthquakes are shown in 

red. T40D refers to the descending ALOS/PALSAR 

track is marked by cyan rectangle box, red lines 

indicate the Lijiang-xiaojinhe fault, active faults are 

shown in grey lines. JSRF: Jinshajiang Fault. 

 

3. INSAR VELOCITY FROM ALOS-2 DATA 

 

3.1 SAR data 

The descending ALOS-2/PALSAR-2 ScanSAR data 

(350km×350km, track number: 40) from Japan Aerospace 

Exploration Agency (JAXA) was used to extract the 

deformation signal with time span from September 2014 

to September 2019. The footprint is about 350km×350km, 

covering an area from 98E to 102E (as shown in Figure 1). 

A total number of 30 SAR acquisitions were used to form 

interferometric pairs (as shown in Figure 2). 

 

In order to save data processing time and reducing 

unwrapping error, we choose to process only the three 

sub-strips on the right of the ScanSAR data that 

completely cover the fault deformation zone. To construct 

a redundant small-baseline network, a vertical orbit 

baseline threshold of 300m and a time baseline threshold 

of 2 years were used to generate 221 interferometric pairs. 

The interferometrc baseline network connects all SAR 

images to ensure the redundancy of the network. Due to 

the complex terrain, heavy vegetation coverage and more 

rainfall in Sichuan-Yunnan region, it is hard to maintain 

the coherence of interferograms in mountainous areas. 

Therefore, to avoid the impact of low coherence on the 

subsequent time series analysis, 41 long-time baseline (> 

3.5 years) interference pairs with high coherence were 

chosen to form the final network, which connect as many 

images as possible (Figure 2). The first and the second 

acquisitions are excluded because of low coherence of the 

interferograms including them. The interferometric 

processing of SAR images were implemented by using the  

Gamma software [11], with 2 and 10 looks for multi-

looking in range and azimuth respectively to improve the 

calculation efficiency and reduce the noise.  

 

 

Fig. 2  Perpendicular and temporal baseline network 

plot on descending track T40D. The dates listed on the 

left are SAR acquisitions corresponding to the labeled 

blue circles, the red circles mark the master images, 

coherence color bar listed on the right. The lines 

present the interferometric pairs coloured according 

to the coherence. The solid lines are selected 

interferograms with best coherence, and dashed lines 

are dropped interferograms. 

 

3.2 Error correction 

A numerical weather model GACOS (A Generic 

Atmospheric Correction Online Service for InSAR) was 

used to correct atmospheric errors in interferograms in this 

study. It is proved that GACOS is useful in correcting the 

topography-dependent atmospheric effect. Before 

atmospheric correction, we need to remove the orbital 

error. Considering strong coupling between the long 

wavelength tectonic signal and orbital ramp, we need to 

define a "far field" to estimate the orbit phase [12], in 

which the phase gradient caused by tectonic activity is 
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small. A quadratic polynomial is used to fit the orbital 

ramp using only phase measurements 30 km or further 

from the fault on both side to avoid the effect of the near-

fault gradient in ground deformation. It is worth noting 

that the long wavelength component ionospheric phase 

delay is also removed in orbital correction. Then the 

distribution map of vertical stratified atmospheric delay 

error in the study area is reconstructed by using the 

GACOS data to correct the topography-dependent 

atmospheric error in interferograms. From figure 3, we 

can see that the topography-dependent atmospheric signal 

in interferograms is estimated effectively, and the 

interferogram after atmospheric correction is significantly 

improved. In acmospheric correction, we found that  

atmospheric phase in this area shows seasonal fluctuations. 

Interferograms whose master and slave image was 

acquired in the different season show much more serious 

stratified effect than those with the master and slave image 

from the same season. Therefore, we prefer to choose 

interferometric pairs in the same season when selecting 

interferograms for time-series analysis.  

 

 

Fig. 3 Two examples of InSAR phase error correction 

for interferograms (20150407-20160405, 20150630-

20190625). (a,f) Original unwrapped interferograms; 

(b,g) Estimates of quadratic orbital ramp errors; (c,h) 

Interferograms following orbital error correction; (d,i) 

Topography-dependent atmospheric delay derived 

from GACOS; (e,j) Atmospheric-corrected 

Interferograms. The black boxes in (a,f) are defined as 

“far-field” and are used to construct quadratic model 

in orbital correction. 

 

3.3 InSAR ratemap and time-series deformation maps 

 

Based on the interferometric network constructed above, 

the baseline construction problem discussed above, a least 

square method is used to solve for time series estimates of 

global and nonlinear deformation. Due only one 

interferometric network dataset used sets under baseline 

control, there is no matrix rank deficiency. We use Giant 

software to invert for the average deformation rate and 

cumulative changes in time of the Lijiang-xiaojinhe fault 

zone in the observation period. Through the least square 

method, the LOS observation value and its corresponding 

start and end dates in each interferogram are used to 

retrieve the incremental displacement relative to the 

reference time (the first image). The obtained velocity 

field of Lijiang-xiaojinhe fault zone is shown in Figure 4 

(a), and the time series is shown in Figure 5. 

 

 

Fig.4 Mean LOS ratemap for track 40, produced from 

GAOCS corrected interferograms. Cold color 

(negative range change) is toward satellite, warm color 

(positive range change) corresponds to movement 

away from satellite. Profile AA’, BB’ and CC’ 

correspond to figure b, c, d respectively. 

 

4. INVERSION OF THE SLIP RATE AND 

LOCKING DEPTH 
 
Based on the interseismic deformation field of Lijiang-

Xiaojinhe fault zone we extracted above, the current fault 

activity for each segment of the fault could be evaluated 

by analyzing InSAR results. As shown in Figure 4 (a), we 

extracted the cross-fault profile in the northeastern section, 

middle section and southwestern section of Lijiang-

Xiaojinhe fault, and inverted for the slip rate and locking 

depth for each section by using arctan screw dislocation 

model [13]. The results are shown in Table 1. As the "far 

field" away from the fault is contaminated by the 

atmospheric signal, the cross-fault profile we extracted are 

within the "near field". We can see that the ratemap and 

cross-fault profiles (Figure 4) show an obvious tectonic 

signal near the Xiaojinhe fault zone. Compared with the 

northeastern section with a small locking depth (3.7km), a 

big locking depth (12.4 and 15.8km was derived from 

cross-fault profile inversion for the middle and 

southwestern section respectively, which is consistency 

with GPS results [6]. We suggested there is a strong 

locking area in the central and southern section of the 

Xiaojinhe fault, which indicates that these two fault 

segments has an earthquake potential with the strain 

accumulating. In the northeastern section, the locking 
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degree is shallower with a higher slip rate, which means it 

might be the existence of shallow creep. 

 

 

Fig.5 InSAR time series of the Lijiang-Xiaojinhe fault 

based on SBAS method. Line of sight (LOS) 

cumulative displacements are referenced to the first 

acquisition, 7 April 2015. Negative range change is 

toward satellite. Black line in the last snapshot 

indicates the location of profile shown in Figure 6. 

 

Table 1 the slip rate and locking depth of three 

sections of the Lijiang-Xiaojinhe Fault 

Profile 

ID 

Fault 

segment 

Slip rate 

（mm/a） 

Locking depth 

（km） 

AA’ 
Northeastern 

section 
4.24 3.7 

BB’ 
Middle 

section 
3.41 12.4 

CC’ 
Southwestern 

section 
3.06 15.8 

 

Figure 5 shows the time evolution of the LOS cumulative 

displacement maps on 28 acquisition dates. In the time 

series, we can see that the deformation evolution basically 

presents a linear accumulation, and the near-field 

displacement in the middle section of the Xiaojinhe fault 

reaches ~ 20mm (Figure 6). 

 

 

 

Fig.6 The cross-fault profiles of line of sight 

cumulative displacement across the middle of 

Xiaojinhe fault. 

 

5. CONCLUSION 
 
InSAR is an effective means to measure high-precision 

deformation of earth’s surface. The InSAR timeseries 

technology has been applied widely in monitoring trivial 

surface deformation and predicting geological disasters. 

30 ALOS-2 ScanSAR images were processed to extract 

InSAR interseismic deformation field of the Lijiang-

Xiaojinhe fault. GACOS was used to correct atmospheric 

error in interferograms. The profiles across the fault show 

a left-lateral strike slip movement on the fault which is 

coincidence with geological observation. The results from 

inverting the cross-fault profiles show the locking depth is 

deeper in middle and south segment, while it is shallower 

in north part with a high slip rate, which means it might be 

the existence of shallow creep. 
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1. INTRODUCTION 
 

In this report, we firstly measured the coseismic 
surface displacements caused by the 2018 Palu earthquake 
using the InSAR data from both the ALOS-2 ascending 
and descending tracks. We then jointly used the sub-pixel 
correlation results of SAR and Sentinel-2 optical images 
to invert the 3D coseismic surface deformation field. 
Subsequently, we constrained the fault geometry and 
estimated the fault-slip distribution jointly using the SAR 
offsets in the near field and the InSAR LOS 
displacements in the far field.  

Then we use the InSAR, multiple aperture InSAR 
(MAI) and pixel offset-tracking (POT) measurements 
from Sentinel-1 and ALOS-2 SAR data to obtain the 
coseismic displacement fields caused by the two largest 
earthquakes during the 2019 Ridgecrest sequence. We 
build a joint-event model constrained by four SAR image 
offsets and four InSAR LOS displacements that 
temporally covers both earthquakes. We use the joint-
event model to simultaneously estimate the cumulative 
coseismic slip distribution of both events. 

We also map the surface deformation of the southern 
Junggar Basin, China, using TS-InSAR method. To 
conduct comprehensive monitoring of regional-scale 
ground subsidence in JSOAA, we collected a total of 
1116 SAR images covering the whole region of JSOAA 
from 2007 to 2020, including ALOS-1/PALSAR data of 
13 ascending tracks and 29 frames (2007 - 2010) and 
Sentinel-1 data of 4 ascending tracks and 2 descending 
tracks (2015 - 2020). Among them, the ascending ALOS-
1/PALSAR and ascending Sentinel-1 data achieved full 
coverage of JSOAA. Due to the short time coverage, the 
descending Sentinel-1 data in the western part of JSOAA 
is not processed. The coverage of all InSAR data used in 
this study is shown in Fig. 1. 

 
 
 
 
 
 
 
 

 
Fig. 1. Study area and InSAR data cover. The yellow 
line delineates the boundary of JSOAA. The green, 
blue, and red boxes show the coverage of the ALOS-
1/PALSAR, ascending Sentinel-1, and descending 
Sentinel-1 data, respectively. The light blue lines mark 
the main surface runoff distribution around JSOAA.  

 
 
2. ALOS/ALOS2 PALSAR DATA AND 

PROCESSING 
 
2.1 Coseismic deformation measurement 

The ALOS PALSAR platform provides data that are 
playing an important role in earthquake deformation and 
surface subsidence caused by agricultural irrigation. The 
SAR data are used in this project to create interferograms 
of coseismic deformation following the various 
earthquakes we researched. In addition to the data from 
this project, we also use lots of data from our S1A/B from 
ESA. The ALOS/PALSAR SAR data are processed from 
raw products with the conventional two-pass differential 
interferometry approach using the GAMMA software 
package. During the SAR data processing, all the FBD 
(Fine Beam Double Polarization) PALSAR data are 
oversampled to the resolution of the FBS (Fine Beam 
Single Polarization) mode. The 30m SRTM (DEM) is 
used to remove the phase component contributed by the 
topography. We apply a multi-look operation before 
phase unwrapping. We use the minimum cost flow 
algorithm (MCF) to unwrap each of the interferograms. In 
order to illustrate the finer structure of the displacement 
field and for ease of comparison, we rewrap the LOS 
displacement from both the PALSAR and S1A/B 
displacement products with the same fringe cycle of 11.8 
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cm. In order to obtain accurate coseismic deformation 
associated with the earthquake, the potential spurious 
phase contributions, e.g. topographic error phase, the 
ionosphere disturbance and atmosphere delays, and orbital 
errors need to be considered and mitigated. In some great 
earthquakes, coseismic deformation distortions related to 
ionosphere disturbance also need be considered. From the 
error analysis above, we conclude that the discontinuities 
are mainly due to orbital ramps although incidence angle 
variation can be potentially another reason. 
 
2.2 TS-InSAR measurement for agricultural 
irrigation in the Junggar Basin 

In this study, the L-band ALOS1/PALSAR data 
would be used to obtain the deformation information of 
the Junggar Basin from 2006 to 2011, and the data are 
processed by differential interference with GAMMA 
software. The image needs to be registered before the 
interference processing, and the registration accuracy 
between the two scene images is better than 0.1 pixels. 
The terrain phase in the interferogram is removed using 
the 1-arcsecond (~30m) Shuttle Radar Topography 
Mission (SRTM) data provided by United States 
Geological Survey (USGS). Since the ALOS1/PALSAR 
and orbital information of the L-band are not accurate 
enough, there is still obvious orbital residual phase in the 
differential interferogram after removing the flat phase 
and the terrain phase. In this project, a modified Goldstein 
filter would be used to reduce noise phases. In order to 
avoid or weaken the effect of low coherence regions (sea 
and isolated islands, etc.) on phase unwrapping, a mask 
with a coherence of less than 0.4 is masked. Finally, we 
used Phase unwrapping with Minimum Cost Flow (MCF) 
algorithm to unwrap pixel. In order to obtain more 
accurate deformation information, it is necessary to 
remove noise signals such as orbital errors, atmospheric 
delays, and the like. For orbital errors, the unwrapped 
phase can be removed by polynomial fitting. 

The phase of each pixel in the interferogram can be 
expressed as: 

      

         (1) 

where  is the phase of the interferogram,  is 
the cumulative deformation along line of sight (LOS) 
between the two moments of the same pixel point，  is 

the residue DEM error，  is the atmospheric delay 

phase，  is the phase noise. In order to find the low-
frequency deformation component and the elevation 

residual, the equation (1) is transformed into a matrix 
form: 

                               

=                     (2) 

where v is the deformation rate. By solving the equation 
(2) by the least squares method, the average deformation 
rate and the elevation residual of each pixel point can be 
obtained, and the shape obtained at this time is a low-
frequency deformation component. The obtained low-
frequency deformation phase and elevation residual phase 
are removed from the original interferogram, then the 
high-frequency deformation phase, atmospheric phase and 
noise remain in the original interferogram, and then the 
singular value decomposition method is used in the 
interferogram. The residual phase is assigned to each 
scene image. 

The SAR image in study area is seriously disturbed 
by the atmosphere, so atmospheric effects must be 
removed. The atmospheric phase is a low frequency 
signal in space and a high frequency signal in time. The 
noise is a high frequency signal in both time and space. 
Therefore, according to the temporal and spatial 
characteristics of the atmospheric phase and noise, the 
image of each scene is spatially low-pass filtered and 
high-pass filtered in time to remove atmospheric errors 
and noise. Then, the high-frequency deformation 
sequence is solved for the interferogram containing only 
the high-frequency deformation phase, and the final time 
deformation sequence can be obtained by adding the low 
frequency deformation back to the interferogram.  
 

3. RESULTS 
 
2018 Mw 7.5 Palu earthquake: For the 2018 Palu 
earthquake, we used the ascending Stripmap mode and the 
descending ScanSAR mode ALOS-2 images to map the 
coseismic deformation fields of this earthquake. These 
SAR images provide sufficient coverage of the entire 
rupture zone. There are also some C-band Sentinel-1 data 
in this area, but the L-band ALOS-2 data have obvious 
advantage in this case. We processed the ALOS-2 data 
using the GAMMA software (Werner et al., 2001). To 
increase the signal-to-noise ratio (SNR), both the 
ascending and descending interferograms were multi-
looked to a ground resolution of about 80 m. The 90 m 
SRTM DEM was used to correct the topographic phase 
component. The interferograms were filtered by an 
improved Goldstein filter (Li et al., 2008). The 
polynomial fitting model was applied to mitigate the long 
wavelength orbital errors and the atmospheric delay 
associated with the ground topography. Finally, the 
interferograms were geocoded to the geographic WGS-84 

654



coordinate system. The ascending and descending 
coseismic interferograms of the 2018 Palu earthquake are 
shown in Fig. 2. 
 

 
Fig. 2. Coseismic deformation fields of the 2018 Mw7.5 
Palu earthquake derived from the ALOS-2 phase data. 

         For the 2018 Palu earthquake, the InSAR coseismic 
deformations near fault ruptures were not well observed 
due to the decorrelation caused by the great deformation 
gradient and the rugged terrain. We thus calculated the 
range and azimuth offsets for ascending and descending 
image pairs using the SAR pixel offset-tracking technique 
(Strozzi et al., 2002) (Fig. 3). Although the image offsets 
are much noisier than conventional InSAR observations, 
they can provide unambiguous range and azimuth 
displacements parallel and perpendicular to the LOS 
displacements, and can improve the near-field 
displacement measurement. We estimated the offset fields 
using almost square search patches of 50 × 100 pixels 
(range × azimuth) for the ALOS-2 Stripmap images 
(about 300 m × 300 m window size) and of 30 × 140 
pixels for the ALOS-2 ScanSAR images (about 400 × 400 
m window size). To maintain a pixel spacing of around 50 
m for the two datasets, the offsets were estimated for 
every 5 pixels in range and 10 pixels in azimuth for the 
ALOS-2 Stripmap images, and for every 6 pixels in range 
and 28 pixels in azimuth for the ALOS-2 ScanSAR 
images. 
 

 

Fig. 3. ALOS-2 ascending (a) azimuth and (b) range 
offsets, ALOS-2 descending (c) azimuth and (d) range 
offsets, Sentinel-2 (e) north-south and (f) east-west 
components of the surface displacement of the 2018 
Palu earthquake. 

 
For the 2018 Palu earthquake, we obtained the multi-

sight coseismic surface deformation fields of the 2018 
Mw 7.5 Palu earthquake using InSAR, SAR and optical 
sub-pixel correlation technologies. These datasets provide 
valuable constraints for the fault geometry and fault slip 
on the Palu-Koro fault. we utilized the rectangular 
dislocation (Okada, 1992) in a homogeneous elastic half-
space domain to simulate the coseismic displacements of 
the mainshock. The fast non-negative constrained least 
squares algorithm (Bro and Jong, 1997) was employed to 
solve for the strike-slip and dip-slip components on each 
fault segment (Fig. 4). The second-order Laplace 
smoothing constraint was used to minimize the abrupt 
variation of slip among the adjacent sub-fault patches (Jó
nsson et al., 2002). We utilized a three-segment fault 
model with variable strike angles and found that a newly 
discovered fault lies in the north of Palu city, and extends 
northward ~ 60 km. The best-fitting fault model fits the 
InSAR LOS displacements and SAR offsets well. 

 

 
Fig. 4. (a) Total slip, (b) strike- and (c) dip-slip 
distributions of the 2018 Palu earthquake estimated 
from the joint inversion of InSAR and SAR datasets. 

 
2019 Ridgecrest earthquake sequences: For the 2019 
Ridgecrest earthquake sequence, we coregistrated two 
single look complex images with the assistance of DEM. 
A multi-looking operation of 30×8 and 6×32 (range × 
azimuth) was applied for Sentinel-1 and ALOS-2 
interferograms, respectively. After minimizing the 
decorrelation noise with an improved Goldstein filter, the 
minimum cost flow method (Chen & Zebker, 2002) was 
used to unwrap interferometric phase by masking the 
areas with coherence value smaller than 0.4. The 
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ascending and descending coseismic interferograms of the 
2019 Ridgecrest earthquake sequence are shown in Fig. 5. 

For the 2019 Ridgecrest earthquake sequence, the 
POT and MAI methods have lower accuracy than the 
DInSAR method, but they can extract the deformation 
along the AT direction, which is crucial for interpreting 
geophysical phenomenon with large surface displacement 
such as earthquakes, glaciers, or volcanic movements. To 
measure the ground deformation by the POT method, the 
matching window size of 300×60 pixels and 40×185 
pixels (range×azimuth) was utilized for Sentinel-1 and 
ALOS-2 data, respectively. The MAI procedure was 
applied to both the ALOS-2 and Sentinel-1 data, but only 
the azimuth result of the former was selected, because the 
latter has lower coherence. The sub-aperture 
interferograms were generated on the framework of the 
DInSAR process (Liang & Fielding, 2017). These two 
sub-aperture interferograms were then differenced to 
generate the azimuth deformation related phase maps, 
which would be further filtered to generate the final AT 
deformation. A directional filter was applied to the 
ascending ALOS-2 MAI interferogram to mitigate the 
influence of ionospheric disturbs. The POT and MAI 
measurements have similar spatial resolution with the 
DInSAR ones (Fig. 5). 

 
Fig. 5. Coseismic displacement fields of the 2019 
Ridgecrest earthquake sequence obtained from the 
space-based geodetic data. (a) and (b) are the 
ascending and descending coseismic interferograms 
from Sentinel-1 images, respectively. (c) and (d) are 
the cumulative ascending and descending coseismic 
interferograms from ALOS-2 images, respectively. (e) 
and (f) show the cumulative ascending and descending 
coseismic POT range offsets from Sentinel-1 images, 
respectively. (g) and (h) are the cumulative ascending 
and descending coseismic MAI azimuth offsets from 
ALOS-2 images, respectively. (i-l) E-W, N-S and 
vertical components of the 3-D cumulative surface 
displacement as well as the horizontal offset vectors, 
respectively.  

For the 2019 Ridgecrest earthquake sequence, we 
used the geodetic data, including four InSAR 
interferograms and four SAR image offsets, to estimate 
the coseismic slip distribution on the fault segments F1-
F3 (Fig. 6). The geodetic moment on segment F2 
determined by the joint-event inversion is 8.86×1018 
Nm (Mw 6.60), almost 39% larger than that determined 
by the single inversion of the mainshock (5.40×1018 
Nm; Mw 6.46), because a part of slip component 
between zones A and B of segment F1 is mapped into 
zone E during the joint-event inversion, leading to a slip 
amplitude of ~4 m in zone E in the joint-event slip model, 
almost twice that (~2 m) in the single slip model of the 
mainshock. 

 
Fig. 6. Top view of the coseismic slip distributions of 
the 2019 Ridgecrest earthquake sequence. (a) and (b) 
show the single-event coseismic fault slip distributions 
induced by the mainshock and the foreshock, 
respectively. (c) and (e) show the joint-event and the 
combined-data coseismic fault slip distributions 
induced by the two events, respectively. (d) and (f) 
represent the slip component on segment F3 in (c) and 
(e), respectively. The two single-event slip models 
shown in (a) and (b) are inverted from the Planet-Lab 
optical and GPS datasets. The joint-event slip model 
shown in (c) is inverted from four SAR offsets and 
four InSAR LOS displacements. The combined-data 
slip model shown in (e) is inverted from all the used 
data.  

Surface subsidence of the southern Junggar basin: 
Using all the ALOS-1/PALSAR and Sentinel-1 data 
covering JSOAA, we obtained the regional-scale ground 
displacements along the LOS direction in JSOAA during 
2007 - 2010 (Fig. 7(a)) and 2015 - 2020 (7(b-c)). As the 
results show, there are multiple settlement funnels in 
JSOAA. Compared with the corresponding optical images, 
the subsidence funnels (Fig.7 in closed dotted line) are 
consistent with the agricultural planting area in spatial 
scope and is positively correlated with the planting area 
and planting intensity, while negatively correlated with 
the distribution density of surface runoff. That is, the 
settlement funnels are more significant in areas with high 
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planting intensity and insufficient surface water supply. 
The comparison between the ground subsidence from 
2007 to 2010 and that from 2015 to 2020 shows that the 
spatial distribution range and magnitude of settlement 
funnels are expended and intensified. Many settlement 
funnels in the eastern part of JSOAA, where there was no 
settlement previously.  

There were two independent settlement funnels 
distributed in this profile during 2007 - 2010. During 
2015 - 2020, these two settlement funnels gradually 
expanded and approached, and merged into a large 
settlement funnel. The maximum accumulative settlement 
reached about 400 mm from 2007 to 2010, and about 500 
mm from 2015 to 2020. The subsidence rate of the main 
subsidence area of the section remains unchanged.  

Due to the low temporal resolution (≥46 days) of 
ALOS-1/PALSAR data, the periodicity of ground 
deformation is not well represented during 2007 - 2010. 
However, Sentinel-1 data with higher temporal resolution 
(≥12 days) can capture the periodic signals of ground 
deformation well. The subsidence occurred between 
March and September each year, and the deceleration of 
subsidence and uplift occurred from October to February. 
This is consistent with the exploitation and recharge of 
groundwater caused by seasonal agricultural irrigation in 
JSOAA. The results confirm the advantages and potential 
of Sentinel-1 data in monitoring regional-scale periodic 
ground deformation caused by groundwater extraction. 

 

 

Fig.7 The mean displacement velocity along the LOS 
direction derived from (a) the ALOS-1/PALSAR 
ascending data, (b) Sentinel-1 ascending data, and (c) 
Sentinel-1 descending data. The closed black dotted 
lines delineate the main deformation zones. The black 
rectangle identifies the range of the regions selected 
for accurate verification of the results. The yellow line 

shows the scope of JSOAA. The light blue lines 
indicate the spatial distribution of surface runoff.  
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1. INTRODUCTION

Purpose of our project is further development and 

application of methods for studying and monitoring of 

active geodynamic processes in the Kuril-Kamchatka 

subduction zone (KKSZ). This area is very difficult for 

application of SAR technologies, but investigation and 

monitoring of geodynamic processes leading to major 

earthquakes, eruptions and tsunamis is an important issue 

for Society. Catastrophic earthquakes and tsunamis in 

KKZS can lead to loss of human lives and economic 

infrastructure in all countries of the pacific coast. Large 

volcanic eruptions disrupt domestic and international air-

traffic for long time-periods. 

Reason for addressing the problem is that in 2018 a new 

joint laboratory in Schmidt Institute of physics of the 

Earth Russian academy of sciences was created in 

cooperation with the Kamchatka Institute of Volcanology 

and Seismology and some other Institutions. The scientific 

leader of the project is Nikolay Shapiro, head of 

laboratory is PI of this project prof. Valentin Mikhailov.  

The laboratory is aimed at extension of surface seismic 

and geodetic networks, collection and processing of big 

volume of information for studying volcanic and seismic 

processes, development of new technologies for joint 

analysis and interpretation of terrestrial and satellite 

geophysical data and their application for studying the 

geodynamics of subduction zones of the Russian Far East. 

Because of limited budget of the laboratory, we planned to 

restrict our study mostly by Sentinel 1A,B images, 

whenever ALOS images are often more efficient for 

DInSAR and PSInSAR studies of natural terrains in 

specific conditions of KKZS. Our research proposal 

supported by JAXA helped us considerably extending our 

study using both Sentinel and ALOS images, performing 

comparative application of different technologies of SAR 

data processing and interpretation. 

The main research areas of the project are closely linked 

to activity of the created laboratory. Content of Research 

includes:  

(1) Development of innovative methods for processing of

SAR data efficient in specific conditions of KKZS.

(2) Application of SAR interferometry for studying and

monitoring of volcanic and seismic events. For it, new

surface data will be used as ground control for validation

of SAR results and for joint inversion of surface and

satellite data.

(3) Scientific and educational activities, including training

of graduate students and organization of scientific field

schools for students of Russian universities.

Innovative part of the project is in joint analysis and 

interpretation of SAR with big volume of data which now 

is collecting for the KKZS by new laboratory. 

Let us consider the main results obtained in the 

frameworks of the EO-RA2 ER2A2N075    project. 

2. A JOINT STUDY OF SEISMICITY AND SAR

INTERFEROMETRY OBSERVATIONS FOR

ASSESSING THE POSSIBILITY OF AN ERUPTION 

OF THE DORMANT BOLSHAYA UDINA 

VOLCANO 

Seismicity began to be recorded in October 2017 around 

the dormant Bolshaya Udina Volcano (B. Udina in what 

follows) situated 10 km southeast of Plosky Tolbachik 

Volcano. Seismic tomography showed the existence of a 

long-lived magma chamber south of B. Udina in the area 

of the Tolud River. The chamber has its top at a depth of 

about 15 km, and may probably be connected to the 

Plosky Tolbachik plumbing system. Some authors related 

the observed resumption of seismic activity to a 

hypothetical emplacement of magma beneath the B. Udina 

volcanoes, pointing out a high likelihood of the 

resumption of volcanic activity.  

In our study we examined data from permanent seismic 

stations showing a systematic displacement of the center 
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of seismic energy southward from B. Udina from October 

2017 through August 2019. The center characterizes the 

location of the volume that generates the bulk of 

seismicity. We used images of the Sentinel-1A satellite 

(wavelength 5.6 cm) taken from a descending orbit of 

track 60 during the period from June 7, 2017 through 

September 23, 2017 (10 images) and during the period 

from May 21, 2018 to September 30, 2018 (12 images) to 

determine time series and average velocities of 

displacement on the slopes of B. Udina. Persistent 

scatterers were only identified at the foot of B. Udina 

(Fig.1). An analysis of displacement time series for the 

surface of the volcano showed that the character of 

displacements in 2017 and 2018 on the southwestern and 

eastern slopes remained nearly the same, while the 

average rate of displacement on the northwestern slope 

decreased in 2018 [1]. We used three images of the 

ALOS-2 PALSAR-2 satellite (wavelength 23.5 cm) taken 

on October 4, 2016, June 13, 2016, and October 2, 2018 

from an ascending orbit to construct interferograms, which 

characterize displacements for the time period between 

images. The displacements on both interferograms did not 

exceed a few centimeters, except for narrow zones 

confined to local relief forms (Fig.2). The deformations 

thus detected were most likely due to surface processes.  

The deformed volumes related to pressure changes in the 

magma chamber at a depth of 5 km must have linear 

dimensions of 10–15 km, while the displacement areas 

detected in the satellite images are considerably smaller. 

These results suggested an alternative model that 

postulates the resumption of seismic activity to 

accompany the retreat and sinking of magma melt from B. 

Udina into the chamber in the Tolud River area as 

identified by tomographic techniques. 

Hence we can conclude that, beginning mid-2016, no 

evidence for emplacement of magma material from the 

Tolud chamber lying in the middle and lower crust 

northward toward B. Udina was detected. The important 

fact to remember is that ground deformation did occur 

based on SAR data before eruptions of Kizimen, 

Kamchatka, Pl. Tolbachik (TFE-50), and Bezymianny. 

The presence of a hydraulic connection between the Tolud 

River area and the area of fissure eruptions on Plosky 

Tolbachik is also corroborated by the fact both in 1975 

and in 2012, a few days after massive lava flows began to 

be discharged, large earthquakes were occurring in the 

Tolud River area. The hydraulic connection described 

above makes B. Udina an unlikely location for the next 

eruption, because in that case magma would have to find a 

way upward through cooled, consolidated, and higher-

lying (relative to Tolbachik Dol) rocks in the edifice of 

this dormant volcano. The results derived in the present 

study in combination with the previously observed facts 

suggest the inference that the dormant B. Udina volcano is 

an unlikely site for a new eruption. 

Results were published in the paper submitted to 

“Volcanology and Seimology” Journal of Russian 

Academy of Sciences (indexed in Web-of-Science and 

Scopus) entitled “Joint study of seismicity and SAR 

interferometry data for evaluating a possible eruption of a 

non-active volcano Big Udina” authors S. Senyukov, V. 

Mikhailov et al. [1]. 

 
 

 
Fig. 1. The positions of persistent scatterers on the B. 

Udina slopes: survey period from June 7, 2017 to 

September 23, 2017 (a); survey period from May 21, 

2018 to September 30, 2018 (b). The topographic 

background was based on an image at Google Earth. 

The color scale in the upper left corner represents 

average displacement rates between +70 and –70 

mm/yr. The blue persistent scatterers were displaced 

away from the satellite. The flight direction and the 

line of sight are shown by arrows in the upper right 

corner.  
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Fig. 2. Displacements in map view (meters) derived 

from paired interferograms based on ALOS-2 

PALSAR-2 images for the periods from October 4, 

2016 to June 13, 2017 (a) and from June 13, 2017 to 

October 2, 2018 (b). The red contours enclose areas 

with low (<0.35) coherence where displacement could 

not be determined with reliability. Negative values 

denote displacements from satellite, positive ones 

toward satellite. 

 

3. ON THE CONNECTION BETWEEN THE 2008–

2009 ACTIVATION OF THE KORYAKSKII 

VOLCANO AND DEEP MAGMATIC PROCESSES 

 

The Koryakskii stratovolcano is located in the southern 

part of the Kamchatka Peninsula. It is the largest volcano 

in the Avachinskii–Koryakskii group of volcanoes 

(AKGV) located in the immediate vicinity of 

Petropavlovsk-Kamchatskii, the largest city of the 

peninsula. Studying the volcanic and seismic processes 

taking place in the AKGV region, the periods and causes 

of their activation, and eruption forecasting are critically 

important for people living in this most densely populated 

part of the peninsula. 

The last activation of the Koryakskii volcano in 2008–

2009 was accompanied by intense fumarolic and seismic 

activity. Volcanic activity peaked in March–April 2009 

when ash plume rose to a height of 5.5 km and extended 

laterally over more than 600 km. To understand the 

dynamics of the volcanic processes and to forecast the 

further course of the events, it is relevant to establish 

whether the eruption was associated with a rise of magma 

to beneath the volcanic edifice or caused by fracturing of 

the volcano’s basement and penetration of groundwater 

into a high temperature zone.  

Based on the analysis of the images from the Japanese 

satellite ALOS-1 using satellite radar interferometry 

methods, the slope displacements of the Koryakskii 

volcano during its last activation have been estimated for 

the first time [2].  

For the activation period of the Koryakskii volcano, we 

found seven ALOS-1 satellite images in the database of 

the Japan Aerospace Exploration Agency (JAXA). One 

image was rejected because of a long baseline and low 

coherence. The images map the ground surface as of June 

21, 2006; August 16, 2007; May 18, 2008; October 6, 

2009; May24, 2010; August 24, 2010, and October 9, 

2010.  

For the selected AKVG region, we calculated 

interferograms for different image pairs. The best results 

were from the image pair August 16, 2007 and October 6, 

2009 the interval between which covers the entire eruption 

period. An important fact is that on the days of the survey, 

substantial territory of the slopes was free of snow cover. 

The interferograms were calculated using the SARscape 

software with pixel averaging perpendicular to the orbit so 

that the resolution cell was as large as 14.98 × 12.29 m. 

Phase filtering was carried out by the Goldstein method. 

The interferometric coherence of the image pair is high 

for natural terrains (0.6). As the displacements are 

determined from the phase shift of the signals reflected 

from the same scatterer during the repeated imaging, the 

displacements on the interferogram are expressed in 

radians and wrapped modulo 2π. The absolute phase is 

determined by unwrapping, i.e., adding the number of full 

periods (2π multiples) corresponding to the path-length 

difference. To unwrap phase, we used minimum cost flow 

algorithm. After passing from radar coordinates to 

geographic coordinates, we constructed a map of 

displacements in m.  

The displacements are determined in the line-of-sight 

direction. Their values on a selected area range from –33 

(from the satellite) to 22 cm (towards the satellite). 

Assuming that displacements mainly occur in the vertical 

direction, then, with an average incidence angle of the 

satellite beam of 38.69°, the displacements in the 

directions towards the satellite should be multiplied by 

1.28. 

Areas of negative displacements are spotted on the slopes 

of all volcanoes on the image and can be primarily 

associated with erosion. Within the image there is only 

one area of the uplifts on the northwestern slope of the 

Koryakskii volcano around the 2008– 2009 eruption zone. 

The displacements increase from 9–15 cm at the foot to 

20–22 cm towards to summit. Assuming that the 

displacements are purely vertical, we obtain that the 

displacements at the summit are above 28 cm. 
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We stress that the positive displacements on the 

northwestern slope of the Koryakskii volcano can barely 

be associated with the increase in the thickness of snow 

cover and glaciers in the vicinity of the summit or with the 

formation of a layer of ash deposits. According to the field 

data, the ashes, as a rule, had insignificant thickness and 

occurred as separate patches on the snow even at a small 

distance from the eruptive center. The cited work reports 

ash deposits with a thickness of a few cm. This is also 

clearly visible in many photo images presented on the 

Internet and in the articles. Moreover, it reported on 

melting of glaciers and on the formation of deep troughs 

in them due to the reduction of reflectivity of ice. These 

processes should have caused a surface to subside. 

Therefore, volcano surface uplifts with the amplitude up 

to 25 cm cannot be attributed to the formation of the ash 

layer. 

The persistent ash emissions throughout the 2008– 2009 

eruption and the analysis of seismicity indicate that 

magma could approach close to the volcano’s surface. The 

total volume of the uplifts on the northwestern slope of the 

volcano (Fig. 3) is 1.3 × 10
6
 m

3
. In the Okada model of an 

dilating fault, this value is approximately equal to the 

volume of the opened space. This is very close to the 

estimate obtained by Gordeev and Droznin for the volume 

of magma (10
6
 m

3
) required whose cooling can provide 

the observed steam emission and to the value of opening 

of a fissure with a volume of 1.2 × 10
6
 m

3
 in the model. 

This indicates that the uplifts of the volcano slope just as 

the other observed processes are most likely to be 

associated with the intrusion of magma material.  

 

 
Fig. 3 Displacements (color scale in m) obtained 

from paired interferogram based on images of August 

16, 2007 and October 6, 2009. Negative and positive 

values are displacements in the direction away from 

and towards the satellite. Shadow relief is based on 

SRTM DEM. Vertical scale is terrain elevations in m, 

horizontal scale is coordinates in degrees. 

 

To interpret the displacement field we used the solution of 

Okada about surface deformation of an elastic half-space 

due to the displacement along a rectangular fault located 

in it. In the general case, the displacement vector includes 

three components: tensile (TS) reflecting extension, dip-

slip (DS) component describing the up-dip or down-dip 

displacement along the fault plane, and a strike-slip (SS) 

component corresponding to the displacement along the 

strike. Application of this solution in our case is 

challenging because the solution is obtained for the 

displacements along a crack located in an elastic half-

space with a horizontal free surface. Within the 

displacement region shown in Fig. 4, the terrain elevations 

vary from 1300 to 3450 m; therefore, the neglect of the 

real topography can lead to errors. To mitigate the terrain 

effect, we converted the displacement map into the local 

Cartesian coordinates and approximated the relief in the 

region with LOS above 10 cm by a plane. Then, the 

coordinate system was rotated around the Oz axis by an 

angle of 43.03° (the rotation direction is shown by red 

arrow in Fig. 4a) so that to make the Ox axis parallel to 

the projection of the approximating plane gradient vector 

onto the xOy plane (Fig. 4b). Within the displacement 

map, the heights of the approximating plane vary within 

2.15 km and terrain elevations relative to this plane (Fig. 

4b) range from –220 to 220 m. 

 

 
Fig. 4. Displacements in the direction towards satellite 

(color scale, m) on western and northwestern slope of 

Koryakskii volcano: (a) map in geographic 

coordinates, height in m. Red arrow is direction of 

rotation around Oz axis; (b) map in local Cartesian 

coordinates after subtraction of plane approximating 

local relief and rotation around the Oz axis. Isolines 

show height above approximating plane in m. 

 

Next, the coordinate system was rotated by an angle of 

27.3° around the Oy-axis so that the Oz-axis was 

perpendicular to the approximating plane. In the new 

coordinates, the plane approximating the relief coincides 

with the free surface of the elastic half-space and the 

deviations of the residual relief (Fig. 4b) prove to be small 

compared to a fracture depth. Now, as a distance from the 

fracture to the ground surface, in formulas of Okada we 

can either use the very distance to the approximating plane 

or to add to this distance the height of the local 

topography above this plane. Calculations have shown 

that with the heights of the local relief in the study region, 

this does not cause a significant change in the solution. 

After solving the inverse problem, the displacement field 

on the surface of the model is rotated back to the local 

coordinate system (Fig. 4b), and LOS displacement is 
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calculated using the flight path azimuth and the incidence 

angle of radar beam (for ALOS-1 ascending track,–8.16° 

and 38.69°, respectively). 

In the solution of Okada, a fracture is approximated by a 

rectangular element or a set of elements. We only 

considered a single rectangular element which ensures 

numerical stability of the inverse problem. A rectangular 

element is characterized by ten parameters. These are the 

three coordinates of the center of the lower edge of the 

rectangle; its dip and strike dimensions; the dip and strike 

angles; and the three components of the displacement 

vector (TS, DS, and SS). The displacement field on the 

surface is a linear function of the three components of the 

displacement vector; the dependence on the other 

parameters is nonlinear. 

The size of the displacement region and the 

characteristic distance from the maximum to the half-

maximum of the displacement field on the ground depend 

on the fracture depth and size. We selected the parameters 

of the rectangle based on the analysis results of seismic 

event distribution. The lower edge of the rectangular 

element was located at a depth of 0.5 km above sea level 

as suggested by the dimensions of the displacement 

region. The dip and strike dimensions were assumed to be 

2.4 and 1.0 km, respectively. The dip angle was varied 

within 45–80°. The coordinates of the lower edge and the 

strike of the rectangle can be easily selected by shifting 

the maps of the calculated and measured displacement 

field relative to each other. We set the displacements 

along the fissure strike to be zero (SS = 0) and determined 

two components–extension (TS) and dip-slip 

displacement (DS)–by solving a system of linear 

equations. 

The best fit of the LOS displacement field is achieved 

with the fissure dip angles in the interval from 45 and 60° 

(Fig. 5). In all models, the normal dip-slip displacement 

component is a few cm, i.e., zero within the accuracy. The 

extension at the dip angles 45°, 60° and 80° is 82, 71, and 

64 cm, respectively. Thus, the volume of the injected 

material is 2.0 × 10
6
, 1.7 × 10

6
, and 1.5 × 10

6
 m

3
, 

respectively, which is consistent with the above data of 

other authors. The model with one rectangular fracture 

fairly well approximates the real displacement field; 

therefore, in our opinion, it was unreasonable to 

complicate the model. 

 

 
Fig. 5. Model of fissure in volcanic structure of 

Koryakskii volcano. Displacements in the LOS 

direction are shown by color (meters), isolines are the 

calculated LOS displacements in m: (a), (b), (c) models 

with dip angle 45°, 60°, and 80°. Red rectangle is 

projection of fissure on horizontal plane. 

 

Hence we can conclude that: 

1. The surface displacements of the Koryakskii volcano 

estimated by SAR interferometry are larger than 25 cm 

and cannot be explained by the ash layer formed during 

the eruption of 2008–2009. Slope processes and glacier 

melting should have produce displacements of the 

opposite sign. Therefore, as the most likely cause of the 

observed displacements, we should recognize the injection 

of magmatic material into the volcano structure. This is 

also suggested by the analysis of seismic catalogs and the 

results of thermal imaging studies. 

2. A fissure model with a bottom edge at a depth of 0.5 

km above sea level, a width of 1.0 km along the strike and 

2.4 km along the dip, and a dip angle from 45° to 60° 

fairly well fits the displacements identified by SAR 

interferometry. Fissure volume is consistent with the 

estimates of other authors. We note that the depth of the 

fissure can be increased by 1 km with the corresponding 

reduction of its geometrical dimensions. 

3. The obtained results support the hypothesis that the 

activation of the Koryakskii volcano was associated with 

the ascent of volcanic material and its injection, inter alia, 

into the volcanic structure of the volcano itself. Therefore, 

the processes taking place beneath the volcano can be 

threatening to the nearby localities and infrastructure and 

require continuous monitoring. 
 

4. OTHER AREAS UNDER STUDY 

 

1. Monitoring of Mutnovsky volcano situated close to the 

Petropavlovsk-Kamchatsky city and in the neighborhood 

of the largest hydrothermal power plant. Using the 

available ALOS-2 images (06/03/2017, 06/02/2018, 

06/01/2019), paired interferograms and displacement 

maps for different time intervals were calculated. On the 

map of displacements based on images from 06/02/2018-

06/01/2019 various changes are visible on the sides of the 

crater of Mutnovsky volcano, including subsidence on its 

western slope and inside the crater with amplitude from 4 

to 8 cm. Since March-May 2018 a new lake within the 

crater of the volcano was formed. Active fumaroles were 

observed at this time on the sloped of the volcano, so this 

minor subsidence can highly likely be associated with 

snowmelt and/or glacier retreat. 

2. Using ALOS-2 images from 2018- 2021 years, we are 

studying an intense volcanic activity on the Shiveluch 

volcano. This activity is increasing since 2018. Using the 

obtained displacements, we study the properties of the 

pyroclastic flow deposited after the powerful eruption on 

August 29, 2019 using thermo-mechanical model of its 

subsidence. From 2020 to 2021 years, the displacement 

amounted to -25 centimeters. 

3. Using ALOS-2 images from 09 descending 

(2016/05/02, 2017/03/06, 2017/05/01) and 108 ascending 

(2016/07/30, 2017/07/29) tracks we are studying the 
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South Ozernoe earthquake that occurred on March 29, 

2017 in the western part of the Bering Sea, the magnitude 

of the event was Mw = 6.6. In this study, the DInSAR 

technology was used. The ENVI SARscape and SNAP 

software packages with the built-in SNAPHU plugin were 

employed for the calculations. All possible pairs of 

ALOS-2 images covering the studied seismic event were 

analyzed. Additionally we calculated paired 

interferograms for Sentinel-1A images (since May 2016 

till September 2017, 22 images all together) and 

compared the results. The interpretation of the obtained 

results is a non-trivial task. In the area under consideration 

at this time of the year, usually there is a thick snow cover, 

not necessarily dry. With the availability of geodesic data, 

it will be possible to build a model of the fault surface and 

conclude whether registered LOS displacements show 

displacements of the earth's surface or they dealt with 

displacements of the snow/ice cover. 
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1. INTRODUCTION 

 

Long-term multi-dimensional time series deformation 

monitoring is crucial for generating early warnings for 

active landslides and mitigating geohazards. Various 

advanced interferometric synthetic aperture radar (InSAR) 

methods have been widely applied to detect and monitor 

small-gradient landslide deformation. However, the 

InSAR observations were just limited to LOS ascending 

or descending direction, which could hardly reveal correct 

deformation characteristics when the landslide showed 

multi-dimensional deformation. Thus, a refined small 

baseline subsets (SBAS) method and multidimensional 

small baseline subset (MSBAS) InSAR technique were 

applied to characterize the landslide kinematics with 

multi-track synthetic aperture radar (SAR) images. 

Moreover, measuring the steep-gradient landslide 

deformation has posed certain challenges. An improved 

cross-platform SAR offset tracking method was proposed, 

which can not only estimate high-precision landslide 

deformation in two and three dimensions but also 

calculate long-term time series deformation over a decade 

using cross-platform SAR offset tracking measurements. 

 

2. METHODS 

 

2.1 Small Baseline Subsets (SBAS) InSAR 

Due to the limited interferometric datasets from the ALOS 

PALSAR-2 satellite, the small baseline subsets (SBAS) 

InSAR technique [1] was applied to retrieve the landslide 

deformation. To obtain the DEM error and time series 

deformation, a refined SBAS-InSAR method was applied 

in our study, which divides the interferograms into high- 

and low-quality sets and estimates the parameters 

iteratively [2]. In general, a minimum cost flow (MCF) 

method with the aid of coherence is adopted to unwrap the 

interferogram [3]. However, the continuous motion of the 

Three Bears landslide makes it troublesome to produce 

effective long-duration (>70 days) interferograms. 

Therefore, a deformation model constructed from a stack 

of correctly-unwrapped short-duration interferograms was 

introduced and then subtracted from the original 

interferograms. Thus, we could maintain coherence and 

minimize the phase unwrapping error. After the residual 

interferometric phase was filtered and unwrapped, the 

subtracted deformation derived from the deformation 

model was added back into the residual unwrapped 

interferogram. This technique works well because it 

prevents the phase gradient of adjacent pixels exceeding π 

radian (5.9 cm for ALOS PALSAR-2). We carefully 

compared the new unwrapped interferograms with the 

original wrapped interferograms to ensure that no artifacts 

were introduced in this processing. Once the 

interferograms were successfully unwrapped, the time 

series deformation was retrieved by using either the least 

squares (LS) or a singular value decomposition (SVD) 

method. 

2.2 Two-dimensional time series deformation inversion 

with multi-track SAR datasets 

The SAR data from each independent track were 

processed using the above-mentioned SBAS method, so 

the InSAR observations were limited to LOS ascending or 

descending direction. The availability of ascending and 

descending ALOS PALSAR-2 measurements in the Three 

Bears landslide provides us with an opportunity to extend 

the displacement vectors to 2-D or 3-D [4]. Therefore, the 

east-west and vertical deformation components were 

simultaneously inverted by using a multidimensional small 

baseline subset (MSBAS) InSAR technique [5] by using 

multi-track synthetic aperture radar (SAR) images. 

2.3 Multi-dimensional long-term time series inversion 

with improved cross-platform SAR offset tracking 

method 

The proposed procedure focuses on the three 

shortcomings of traditional SAR offset tracking methods 

in the time series deformation mapping of slow-velocity 

landslides, especially in complex areas, such as rugged 

mountain areas, steep terrains, and non-homogenous 

targets. For the first solution, the ortho-rectification of the 

SAR images was added to remove topographic relief 

effects and achieve accurate co-registration of SAR 

images from identical and cross platforms. Second, 

adaptively varying windows were introduced into the 

cross-correlation computation to avoid the bias caused by 

non-homogenous samples in two image patches, thus 

improving the accuracy of the azimuth and slant-range 

offset measurements, particularly for offset pairs with 

longer spatial baselines. Third, high-quality offset pairs 

were optimally selected to design the network of 

deformation inversion based on the measurement 

uncertainties and the theory of optimization and design of 

geodetic networks. Fourth, the mathematical equation of 

two-dimensional (2D) deformation rates and time series 

inversion was established using the designed network, into 

which the M-estimator was introduced to restrain the 

outliers caused by low correlation. Next, the three 

dimensional (3D) deformation inversion based on the 

surface-parallel flow model [6] and the estimated 2D 

deformation were followed. The TLS algorithm was 

applied to estimate the 3D deformation rates and time 
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series, given that random errors exist not only in the 

observations but also in the coefficient matrix (caused by 

inaccurate DEM).  

 

3. DEFORMATION MONITORING OF THREE 

BEARS LANDSLIDE IN NORTHERN CALIFORNIA 

 

The spatiotemporal deformation variations of the Three 

Bears landslide in northern California have not been 

systematically monitored and interpreted. In this study, we 

applied advanced time-series InSAR analysis methods to 

characterize the kinematics of the landslide covering two 

periods (2007-2011 and 2015-2017) with multi-track 

synthetic aperture radar images acquired from L-band 

ALOS PALSAR-1/2 satellites. 

The annual LOS deformation rates derived from each 

independent SAR datasets are shown in Fig.1. It is worth 

noting that the positive values indicate the landslide 

motion toward the satellite sensor while the negative 

values represent the landslide motion away from the 

satellite sensor. As seen on the deformation maps, the 

large displacement mainly occurs in the eastern part of the 

Cedar Grove Ranch Earthflow, which is consistent with 

the active landslide identified by Zhao et al. [7]. 

Furthermore, the average ascending LOS deformation 

rates were almost similar to those of the descending LOS 

velocities during the period of 2015-2017, but the signs 

were the opposite, indicating that the landslide moved 

toward the satellite sensor in the descending tracks, but 

away from the sensor in the ascending tracks (Fig. 1c-f). 

These observations also suggest that the landslide 

displacements must be dominated by the horizontal 

motions. We can also see that the Three Bears landslide 

underwent strong movement with the deformation rate 

exceeding 300 mm/yr from 2007 to 2011, but the motions 

decreased to around 250 mm/yr from 2015 to 2017. 

 

 

Fig. 1 Average LOS deformation rate maps of the 

Three Bears landslide calculated with L-band SAR 

datasets (unit: mm/yr). The figures in the first and 

second row show the results derived from ascending 

datasets: (a) P223 of ALOS PALSAR-1 (data period: 

2007-2011), (b) P224 of ALOS PALSAR-1(data period: 

2007-2011), (c) P68 of ALOS PALSAR-2 (data period: 

2015-2017), and (d) P69 of ALOS PALSAR-2 (data 

period: 2014-2017). The figures in the third row show 

the results derived from descending datasets: (e) P170 

of ALOS PALSAR-2 (data period: 2015-2017) and (f) 

P171 of ALOS PALSAR-2 (data period: 2015-2017). 

Combining the results shown in Fig. 1c-f with the slope 

and aspect information derived from DEM data, it can be 

deduced that the Three Bears landslide primarily moved 

eastward horizontally. Since both ascending and 

descending ALOS PALSAR-2 data had the same time 

span from 2015 to 2017, we derived the east-west and 

vertical deformation components by using eight (six from 

P68 and two from P69) ascending interferograms and 

eighteen (fourteen from P170 and four from P171) 

descending interferograms. The two-dimensional time-

series deformations of the active landslide are presented in 

Fig. 2 and Fig. 3, respectively. It can be seen that there 

was a continuous eastward movement of the landslide and 

obvious uneven deformation patterns were also visible 

during the whole monitoring period. The maximum 

cumulative east-west deformation from March 2015 to 

November 2017 could reach up to 1400 mm in Zone 1, 

but just 500 mm in Zone 2, and less than 300 mm in Zone 

3. However, a different pattern and trend was seen in the 

cumulative vertical deformation. It can be seen from Fig. 

3: (1) that the landslide in Zone 1 experienced continuous 

subsiding deformation during the whole period with a 

maximum cumulative displacement up to -500 mm; (2) 

The landslide in Zone 2 presented a relatively small 

movement before February 2017 with an average 

deformation rate of -20.4 mm/yr, but moved quickly after 

February 2017 with an average deformation rate of -44.1 

mm/yr, where the maximum vertical displacement 

amounted to -200 mm; and (3) The landslide in Zone 3 

showed less vertical movement than the other two zones 

with a maximum vertical displacement just up to -100 mm 

during the period of March 2015 to November 2017. 
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Fig. 2 Cumulative east–west deformation from March 

7 2015 to November 11 2017 inverted by using 

ascending and descending ALOS PALSAR-2 satellite 

datasets. It is worth noting that the positive values 

indicate eastward movement while the negative values 

represent westward movement. 

 

Fig. 3 Cumulative vertical deformation from March 7 

2015 to November 11 2017 inverted by using ascending 

and descending ALOS PALSAR-2 satellite datasets. 

 

4. LANDSLIDE DETECTION IN LINZHI, THE 

QINGHAI-TIBETAN PLATEAU OF CHINA USING 

LONG-WAVELENGTH ALOS PALSAR-2 SAR 

OBSERVATIONS 

 

The Qinghai-Tibetan is a highland with the highest 

elevation and most complex geological setting in the 

world. Linzhi is located in the southeast of the Qinghai-

Tibetan Plateau of China. For the purpose of disaster 

management and prevention, we used ALOS PALSAR-2 

SAR images based on InSAR method to detect and map 

active landslides in the study area. The deformation rate 

map between 2016 and 2019 are shown in Fig. 4, where 

the positive values (blue color) indicate the motion toward 

the satellite, and the negative values (red color) indicate 

the motion away from the satellite. We can see that most 

regions of the study area are quite stable, and two 

concentrated areas of landslides were detected (see the red 

rectangles in Fig. 4), which are located in the northeast 

and southwest of the study area. The deformation rate of 

the two concentrated areas are highlighted in Fig. 5, we 

can see that a host of small-scale landslides were observed, 

which were driven by glacier movements and glacier 

avalanches. The results suggest that long-wavelength SAR 

images have unique advantages for detecting landslides in 

dense vegetation cover areas. However, serious 

decorrelation occurred in large glacier-covered areas duo 

to the large-gradient deformation, thus casing the phase 

measurements of SAR images failure. Therefore, we will 

apply the offset-tracking method based on SAR amplitude 

information to measure large-gradient deformation in 

future work. 

 

Fig. 4 The deformation rate map of Linzhi, China 

between 2016 and 2019 calculated with ALOS 

PALSAR-2 images. 

 

Fig. 5 Enlarged deformation rate maps of regions A (a) 

and B (b) marked in Fig. 4. 

 

5. MULTI-DIMENSIONAL AND LONG-TERM 

TIME SERIES MONITORING OF THE 

LAOJINGBIAN LANDSLIDE, WUDONGDE 

RESERVOIR AREA (CHINA) 

 

Using the cross-platform ALOS PALSAR-1 and ALOS 

PALSAR-2 images, we retrieved the long-term 2D 

deformation rates and time series of the Laojingbian 

landslide from August 2007 to May 2020. Then, we 

estimated the long-term 3D deformation rates and time 

series by using the 2D displacements and external DEM. 
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Fig. 6 shows the 2D annual deformation rates of the 

Laojingbian landslide during different periods. In Fig. 6(a), 

(c), and (e), the blue colors indicate that the pixels are 

moving along the flight direction of the satellites, while 

the blue colors in Fig. 6(b), (d), and (f) indicate that the 

landslide is moving away from the satellites. Furthermore, 

the landslide movements were simultaneously measured in 

both the azimuth and slant-range directions, suggesting 

that the Laojingbian landslide has 3D movement 

characteristics. The maximum deformation rates in the 

azimuth direction from August 2007 to March 2011, from 

September 2014 to May 2020, and from August 2007 to 

May 2020 were -0.9, -1.5 and -1.0 mm/year, respectively, 

and the corresponding deformation rates in the slant-range 

direction were -1.6, -2.6 and -1.7 m/year. The results 

suggest that the landslide movement in the slant-range 

direction is approximately 1.7 times that in the azimuth 

direction. The average slope aspect derived from DEM 

indicates that the Laojingbian landslide is oriented toward 

the east, which is nearly perpendicular to the flight 

directions (approximately −10° from the north) of the 

ALOS PALSAR-1 and ALOS PALSAR-2 sensors. Thus, 

the observed landslide displacement mainly occurred in 

the slant-range direction. Moreover, the 2D deformation 

rates of the landslide increased with time, suggesting that 

the landslide may have been in the accelerated 

displacement stage during the observational period of the 

ALOS PALSAR-2 images. 

 

Fig. 6 2D long-term deformation rates in the azimuth 

and slant-range directions of the Laojingbian landslide 

retrieved with the ALOS PALSAR-1 and ALOS 

PALSAR-2 images. The white dashed lines indicate the 

unstable region. (a) and (b) are the deformation rates 

in the azimuth and slant-range directions, respectively, 

retrieved from the ALOS PALSAR-1 images between 

August 2007 and March 2011; (c) and (d) are the 

deformation rates in the azimuth and slant-range 

directions, respectively, retrieved from the ALOS 

PALSAR-2 images between September 2014 and May 

2020; and (e) and (f) are the deformation rates in the 

azimuth and slant-range directions, respectively, 

retrieved from the cross-platform ALOS PALSAR-1 

and ALOS PALSAR-2 images between August 2007 

and May 2020. 

On the basis of the estimated 2D displacements, the 3D 

long-term deformation rates and time series of the 

Laojingbian landslide were retrieved. Fig. 7 shows the 3D 

deformation rates in the north-south (N-S), east-west (E-

W), and up-down (U-D) directions of the Laojingbian 

landslide from August 2007 to May 2020.  The 3D 

deformation time series for P1-P6 are presented in Fig. 8. 

Negative values (blue) in the N-S deformation maps 

indicate northward landslide movement, negative values 

(blue) in the E-W deformation maps indicate eastward 

landslide movement, and negative values (blue colors) in 

the U-D deformation maps indicate downward landslide 

movement. As shown in Fig. 7 and Fig. 8, the 3D 

displacement fields clearly revealed the fine-scale 

spatiotemporal characteristics of the Laojingbian landslide, 

which can lead to a better understanding of the movement 

and failure mechanism of the slope in depth. The N-S 

deformation rates shown in Fig. 7(a), (d), and (g) highlight 

the landslide with both northern movement and southern 

movement, with the maximum deformation rates of -0.6, -

0.9 and -0.6 m/year from August 2007 to March 2011, 

from September 2014 to May 2020, and from August 

2007 to May 2020, respectively. The E-W deformation 

rates shown in Fig. 7(b), (e), and (h) suggest the eastward 

movement of the landslide, with maximum deformation 

rates of -2.5, -4.3 and -2.8 m/year from August 2007 to 

March 2011, from September 2014 to May 2020, and 

from August 2007 to May 2020, respectively. The U-D 

deformation rates presented in Fig. 7(c), (f), and (i) 

indicate only downward movement of the landslide, with 

deformation rates of -0.7, -1.2 and -0.8 m/year from 

August 2007 to March 2011, from September 2014 to 

May 2020, and from August 2007 to May 2020, 

respectively. The results revealed that the displacement in 

the E-W direction was much larger than those in the N-S 

and U-D directions, suggesting that the landslide 

movement was dominated by the E-W displacement. 

Similar to the 2D displacements, the displacements in the 

three directions increased with time, and the boundary of 

the active part of the landslide was clearly mapped by the 

3D displacements. 
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Fig. 7 Estimated 3D deformation rates in the north-

south (N-S), east-west (E-W) and up-down (U-D) 

directions of the Laojingbian landslide. The white 

dashed lines indicate the unstable region. (a)-(c) are 

the deformation rates in the N-S, E-W and U-D 

directions, respectively, calculated with the ALOS 

PALSAR-1 images from August 2007 to March 2011; 

(d)-(f) are the deformation rates in the N-S, E-W and 

U-D directions, respectively, calculated with the ALOS 

PALSAR-2 images from September 2014 to May 2020; 

and (g)-(i) are the deformation rates in the N-S, E-W 

and U-D directions, respectively, calculated with the 

cross-platform ALOS PALSAR-1 and ALOS 

PALSAR-2 images from August 2007 to May 2020. 

 
Fig. 8 Estimated 3D deformation time series of the 

Laojingbian landslide for P1-P6 from August 2007 to 

May 2020, retrieved with cross-platform ALOS 

PALSAR-1 and ALOS PALSAR-2 images. 
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Abstract: Synthetic aperture radar interferometry (InSAR) is widely applied in ground subsidence monitoring. In 

this report, with ALOS PALSAR-2 data, we presented the first multi-temporal InSAR analysis of high-speed railway 

deformation located in the Beijing-Tianjin-Hebei region. 47 ALOS PALSAR-2 images were processed to extract the time 

series deformation results. The deformation trend along the high-speed railways located in the Beijing-Tianjin-Hebei region 

is analyzed. We also analyzed the subsidence centers along Beijing-Shanghai and Beijing-Tianjin intercity high-speed 

railways, respectively. These results show high potential for high speed railway subsidence monitoring with ALOS-2 data 

and the research provides a reference for further deformation monitoring along high-speed railway in the Beijing-Tianjin-

Hebei region. 

Keywords: ALOS PALSAR-2 data, InSAR, high-speed railway, deformation monitoring    

 

1. INTRODUCTION 

Land subsidence is one of the most serious geological 

hazards in the world. Three major regions affected by most 

serious land subsidence in China include the Yangtze River 

Delta, the North China Plain, and the Fence-Weihe basins 

[1]. The Beijing-Tianjin-Hebei region is located in North 

China Plain. The possible reasons of the serious land 

subsidence over these areas are the geological conditions, 

the soft clay coverage and the increasing underground 

water demand. Two main important high-speed railways 

are located in these areas and they are Beijing-Shanghai 

and Beijing-Tianjin intercity high-speed railways. The 

deformation along high-speed railways cause will bring 

risk on life security and economic loss.  

Traditional monitoring methods include leveling, bedrock 

markers, stratified tables, and GLOBAL Positioning 

System (GPS) measurements [2]. Synthetic aperture radar 

interferometry (InSAR) makes it possible to monitor land 

subsidence accurately over a wide range and with short 

interval. The inherent limitations of InSAR were avoided 

by Multi-temporal InSAR (MT-INSAR) methods 

including permanent scatterers  [3-4]. It can accurately 

extract the surface deformation information through multi-

temporal InSAR data by looking for point-target scatter. 

Berardino et al.[6] proposed a small baseline method and 

it searched for distributed scatters [7]. More recently, 

methods have been proposed by exploring both types of 

the scatterers [8-10]. The detection of partially coherent 

targets has been detected by Quasi-PS (QPS) [11] 

technique. These different techniques can be optional 

methods for multi-temporal InSAR (MT-InSAR) analysis 

when applied to monitor deformation in diverse 

applications according to real conditions and restrictions. 

One of the main drawback of SAR images is the low 

resolution. With the launch of new generation high-

resolution SAR satellites, the level of details visible in 

SAR images increased dramatically [12]. ALOS PALSAR-

2 can provide SAR data with global coverage and high 

resolution, and it has relatively high temporal and spatial 

coherence even in vegetated and forested areas. 

To explore the potential ability for monitoring subsidence 

along high-speed railway, 47 ALOS PALSAR-2 images 

were processed and the results are presented in this report. 

The study area is located in Beijing-Tianjin-Hebei region 

and the datasets are collected from 2015 to 2021.  The 

subsidence information was extracted by MT-InSAR 

method. Combined with the historical information of the 

study area, the subsidence centers along these two high-

speed railways were analyzed. All of these results will 

provide reference for further monitoring planning along 

these two high-speed railways in the Beijing-Tianjin-Hebei 

region. 

2. STUDY AREA AND DATASET 

The study area is located in Beijing-Tianjin-Hebei region. 

Beijing-Shanghai and Beijing-Tianjin intercity high-speed 

railways are across this region. The geographic location of 

the study area is illustrated in Figure 1. Two high-speed 

railway are highlighted with red and green lines, 

respectively.  

The study area includes part of Beijing, Tianjin, and Hebei 

provinces, and they are located in North China Plain. It is 

affected by most serious land subsidence in China. Beijing-

Tianjin Inter-city railway (from 39.865068°N, 

116.376120°E to 39.003333°N, 117.678745°E). The 

whole railway track is about 120 km and more than 130 

pairs of trains are working along this railway. Beijing-

Shanghai high-speed railway (from 39.750048°N, 

116.299992°E to 39.151547°N, 117.075745°E). Beijing-

Shanghai high-speed railway is across Beijing, Tianjin and 

Hebei, and several other provinces. The length of the 

whole track is 1318 km. The operation lasts 7 years and the 

total number of passengers achieved 82,000,000. The 

small deformation will cause large economic loss and 

threaten the safety of lives.  

The available SAR datasets are composed of four frames 

of ALOS-2 L-band images. Four frames are 137-790, 137-

780,137-770a, 137-770b, and 137-760, and they are 

marked with blue frames. The detail lists of each frame are 

listed in Table 1. 
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Fig. 1 Study area and PALSAR-2 data. The location of the study area is highlighted with the blue line 

on the map of China, which is zoomed and illustrated in the right inset, as shown by the red line and green line. 

Table1 The acquisition date of the ALOS PALSAR-2 datasets 

Frame 790 Frame 780 Frame 770A Frame 770B Frame 760 

No. Date Date Date Date Date 

1 20150709 20150205 20150709 20150723 20150709 

2 20150917 20150709 20150917 20151001 20150917 

3 20151126 20150917 20151126 20151029 20151126 

4 20160915 20151126 20160915 20151210 20160915 

5 20161124 20160915 20161124 20160721 20161124 

6 20170202 20161124 20170202 20160929 20170202 

7 20170706 20170202 20170706 20161208 20181025 

8 20171109 20170706 20181025 20181108 20190509 

9 20181025 20181025 20190509 20190718 -- 

10 20190509 20190509 20210506 -- -- 

3. METHODOLOGY

QPS technique was applied to process the ALOS-2 

dataset and it was implemented with the software 

SARPROZ [13]. For processing the ALOS PALSAR-2 

datasets, the processing strategy is designed according to 

the spatial-temporal baseline distribution of the datasets, 

the number of images in the datasets, and the deformation 

situation of the study area. The whole processing can be 

divided into two sections and they are InSAR processing 

and MT-InSAR processing. We need to set the threshold of 

average spatial coherence during multi-baseline 

construction. In our processing, we select the threshold as 

0.3. It means the baselines are constructed with 

triangulation network when the average spatial coherence 

is above 0.3. After calculating the atmosphere, the 

interference information of the image is used to calculate 

the deformation in the subsequent processing. All the QPS 

points are connected with a single reference point. The 

flow chart is illustrated as Fig. 2. 

4. EXPERIMENTAL RESULTS 

4.1 The whole subsidence analysis of the study area  

According to the above processing, the average 

deformation velocity of the Beijing-Tianjin-Hebei region 

is extracted. The average deformation map of the whole 

study area located in Beijing-Tianjin-Hebei region is 

illustrated in Fig. 3(a). The average subsidence velocity 

ranges from -155 to 20 mm/a. As Fig. 3(a) shows, the 

deformation velocity in the northern region is much faster 

than that in the southern region. Several distinct subsiding 

centers formed in the northern region, while the 

deformation velocity was relatively slow in the southern 
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region. 

As shown in Fig. 3(b), there are two subsiding areas around 

Beijing city. They are located in Tongzhou district and 

Langfang city. The maximum subsidence velocity in 

Tongzhou district is more than 135 mm/a. The average 

subsidence velocity in Langfang city is relatively slower 

than that in Tongzhou district and it is about 113 mm/a. 

Fig. 3(c) presents the enlarged average deformation map 

around Tianijn city. Three subsiding centers are located in 

Wuqing, Beichen, and Jinghai districts, respectively. The 

maximum subsidence velocity is 152mm/a, and it is 

located in Wangqingtuo Town of Beichen district. 

Geyucheng town, Yangfengang town, and Tangerli town 

are also located in Beichen district affected by serious 

subsidence. These areas are newly formed and monitored 

settlement centers in suburb of Tianjin. In jinhai district, 

Tuanbo town is one of the areas affected by serious 

subsidence, and the average subsidence velocity reaches 

126mm/a. 

Fig. 2 The flow chart of data processing 

 

Fig. 3 The average deformation velocity map of the study area located in Beijing-Tianjin-Hebei area. (a) 

The whole average deformation map. (b) The enlarged average deformation velocity map around Beijing city. The 

two subsidence centers are located in Tongzhou district and Liangfang city. (c) The enlarged average deformation 

velocity map around Tianjin city.  Three subsidence centers are located in Wuqing, Beichen, and Jinghai districts.  
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Fig. 4 The average deformation velocity map of Beijing-Tianjin intercity and Beijing-shanghai high-speed railway 

located in Beijing-Tianjin-Hebei Region. The locations of these two high-speed railways are highlighted with black 

and blue lines, respectively.  

 

Fig. 5 The partially enlarged average deformation map of Beijing-Tianjin intercity and Beijing-shanghai high-speed 

railways. These two high-speed railways are highlighted with the blue and black lines, respectively. (a) The subsiding 

centers located in Tongzhou District. (b-d) present the subsiding centers located in Langfang city, Wangqingtuo 

and Tuanbo town, respectively.  
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4.2 Subsidence analysis along two high-speed railways 

Beijing-shanghai and Beijing-Tianjin intercity railway are 

two high speed railway across this study area as illustrated 

in Fig. 4. These two high-speed railways are highlighted 

with the blue and black lines, respectively. Fig. 5 presents 

the partially enlarged average deformation velocity map of 

these two high-speed railways. Fig. 5(a) shows Beijing-

Tianjin intercity railway is across the edges of the 

subsiding center with serious subsidence located in 

Tongzhou District. Beijing-Shanghai high-speed railway is 

across the subsiding centers located in Beichen, Jinhai 

district of Tianjin and Langfang city as illustrated in Fig. 

5(b-d). The subsidence rate of these subsiding centers is 

more than -100mm/a.  The safe operation of the two high-

speed railways is possibly affected by these subsiding 

centers. 

As shown in Fig. 5(a), the subsiding velocity in Tongzhou 

District is from -94 to -45 mm/a. Part of Beijing-Tianjin 

intercity railway pass through the edge of this subsidence 

center and it is most possibly affected by the subsidence of 

this area. The subsidence velocity of other sections along 

the railway is not obvious, which is around 20mm/a. Then, 

more attention should be paid on these areas with large 

spatial difference of deformation velocity.  

Beijing-Shanghai high-speed railway is affected by the 

serious subsidence located in Langfang city, Wuqing, 

Beichen and Jinghai Districts in Tianjin. The subsidence 

center of Langfang is only 3 km away from the railway. 

And the defamation velocity ranges from -86 to -37 mm/a. 

The subsidence velocity in Wuqing District of Tianjin is 

around -107 to -70 mm/a. The maximum subsidence 

velocity in Beichen District is -135mm/a and the closest 

subsiding center is only 2km away from the railway. In 

Jinghai District, the subsidence velocity is from -120 to -

75mm/a, nearly by Hai Industrial Park. The possible 

reasons for serious subsidence is due to over-extraction of 

groundwater caused by large population density and the 

developed industrial parks except for geological conditions 

[14-19]. 

5. CONCLUSION 

In this paper, we exploited the potential ability for 

monitoring subsidence along high-speed railway with the 

use of multi-temporal SAR data from ALOS-2. The results 

are presents in Fig. 3, 4 and 5. These results proved that 

ALOS PALSAR-2 data has high potential ability for 

monitoring subsidence along high-speed railway. The 

main subsiding centers along Beijing-Tianjin intercity and 

Beijing Shanghai high-speed railways are detected clearly 

and they are located in Tongzhou district, Langfang city 

and Wuqing district, Beichen and Jinghai district, 

respectively. ALOS-2 data has longest wavelength and 

then it could provide high coherence data even within 

nearly one year. That provides us a chance to monitoring 

the subsidence within one year with the use of DINSAR 

alone. Also, it provides high density coherent targets in 

rural area, which couldnot be achieved by other satellites.  

The drawbacks of MT-INSAR analysis for monitoring 

of subsidence along high-speed railway should be that the 

detected PS targets cannot be easily connected with the 

actual targets one by one. Moreover, there is a common 

case that no PS points can be actually detected on the target 

of your interest. 
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1. INTRODUCTION 

 

Most ice-rich permafrost landscapes have undergone or 

will undergo substantial surface deformation in the 

coming century. Such thaw-induced deformation, or 

thermokarst, poses a hazard to communities, 

infrastructure, and national security in the rapidly 

warming Arctic. It also drives shifts in the geomorphic, 

hydrological, and biogeochemical functioning of 

permafrost landscapes, impacting slope stability, water 

resources and the global climate.  

 

Accurate observations of surface deformation and state 

variables such as soil moisture are critical for improving 

our understanding of the Arctic. Within this project, we 

have developed new and refined existing applications of 

L-band SAR and InSAR. 

 

This report summarizes our principal achievements and 

findings. 

 

2. SURFACE DEFORMATION IN PERMAFROST-

AFFECTED FLUVIAL LANDSCAPES 

 

In regions of continuous permafrost, rivers and their 

floodplains are in a complex balance. Surface water can 

increase ground temperatures substantially. River water 

also promotes permafrost degradation adjacent to the 

channel. Floodplains are also prone to permafrost 

degradation due to enhanced energy transfer into the soils 

during and after a flood, the latter associated with 

disruption to the organic layer, sediment deposition and 

increased wetness. Equally, however, river floods are 

essential to floodplain aggradation following channel 

migration. The deposition of fine-grained sediment 

promotes increased vegetation cover, soil saturation and 

organic matter content. As the active layer thickness 

decreases, segregated and wedge ice accumulate over 

centuries to millennia. The concomitant increase in 

elevation in turn reduces flood frequency and contributes 

to ecological succession. Not only does flood-promoted 

aggradation of permafrost ground ice shape the 

hydrological and ecological functioning of these fluvial 

landscapes, but it also makes them sensitive to 

disturbance. 

 

 

A major challenge for predicting permafrost terrain 

changes is their inherent variability. The variability is not 

restricted to differences between regions or flood events, 

as a single flood may induce contrasting patterns in 

elevation changes, post-flood subsidence and changes in 

vegetation and wetness.  

 

This is due to variability in the drivers and controls of 

permafrost terrain changes. Drivers such as water 

temperature, shear stress, river ice abrasion and sediment 

deposition vary within the flood perimeter. Among the 

controls, we emphasize ground ice properties, vegetation 

cover and organic layer thickness, as they exert a 

fundamental and yet complex influence on the sensitivity 

of different geomorphic units to permafrost degradation. 

For instance, how does post-flood subsidence vary with 

floodplain age? Younger stabilized floodplains host less 

perennial ground ice, but the ground ice is also less 

protected. These complex interactions highlight the 

importance of monitoring permafrost terrain changes on 

the landscape scale, and they indicate that even a single 

event can further process understanding. 

 

We studied permafrost terrain changes after the 2015 

spring flood of the Sagavanirktok River near Deadhorse, 

on the Alaskan North Slope. Following extensive aufeis 

development, the river flooded various geomorphic units 

and 40-year-old infrastructure that had not been flooded 

before. The flood damaged infrastructure, most notably 

the Dalton highway, and breaches of impounded water led 

to localized ice-wedge washout due to thermal erosion. 

Conversely, the landscape-scale terrain changes remain 

unknown.  

 

The subsidence estimated from ALOS-2 stripmap 

observations from 2015 (midsummer) to 2019 (end of 

summer) varied by more than 10 cm across the region 

(Fig. 1a). Half of the observations ranged from 0 to 3 cm 

(interquartile range). Such low values were found over 

most of the study region, irrespective of 2015 flood extent. 

Context is provided by the CALM active layer thickness 

observations, which varied by as little as 5 cm over this 

period. The lowest value was observed in 2018, when the 

thawing degree days (TDD) were 20-30% smaller than in 

the other years of the 2015-2019 period. 

 

The largest multiannual subsidence of around 15 cm was 

observed at the throat of an inactive channel in the north 

of the study region that was flooded in 2015. Isolated 

hotspots with large subsidence of approximately 10 cm 

were observed in the inundated area west of the highway 
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and on the abandoned floodplain in the south. Elevated 

subsidence estimated generally corresponded to large 

standard errors of 2-5 cm (Fig. 1b). 

 

After summer 2016, the satellite observations shown in 

Fig. 1c indicate low levels of long-term subsidence. 

Between the end of summer 2016 and 2019, respectively, 

the estimates are less than 5 cm throughout. 

 

We observed highly variable subsidence, both across and 

within geological units. Across units, age (a proxy for ice 

content) showed the expected positive association with 

subsidence (Fig. 2a). The between-unit differences were 

largely due to the tails of the subsidence distributions, 

with the largest subsidence in ice-rich inactive and 

abandoned floodplains. These results reinforce the notion 

that excess ground ice is a necessary but not a sufficient 

condition for thaw settlement.  

 

Inundation during the 2015 spring flood was associated 

with elevated subsidence in the ice-rich units (Fig. 2). The 

association is not necessarily causal. Within a given unit, 

the inundated areas differed systematically in their age, 

their disturbance history, their drainage conditions, and 

thus likely in the profiles of organic matter and ground ice.  

 

These confounding factors could have predisposed them 

to increased subsidence in a warm period such as 2015-

2019, even in absence of a large flood. One potential 

causal factor is rapid thaw penetration during the flood. 

As stated above, soil temperature observations and 

thermal calculations suggest it was only a minor factor 

where the immediate geomorphic disturbance was limited. 

 

Our work shows the importance of remote sensing for 

monitoring the disparate and highly variable terrain 

changes in permafrost-affected fluvial lanscapes. These 

landscapes are on the cusp of change, raising important 

questions about permafrost stability, water resources and 

habitat in the coming decades. 

 

We expect the manuscript [1] to be published before the 

end of 2022. 

 

3. HILLSLOPE TRANSPORT 

 

Sediment flux and slope instability may be controlled by 

force balances within sloping saturated soils, which are 

widely thought to be predictable from topographic metrics 

(e.g., slope, drainage area). In addition to cohesion 

imparted by soil and vegetation, thawing ground ice as 

active layers deepen may also control spatial trends in 

slope stability. The distribution of ground ice, however, is 

poorly constrained and hard to predict. To address 

whether slope stability and surface displacements follow 

topographic predictions, we document drivers of 

permafrost sediment flux present on a landscape in 

western Alaska that range from creep, solifluction lobes, 

gullying, and catastrophic hillslope failures ranging in 

size from a few meters to tens of meters.  

 

We quantify the timing and rate of surface movements 

using a multi-pronged, multi-scalar dataset including 

UAV surveys, DGPS, InSAR, and climate data. Despite 

clear visual evidence of downslope soil transport of 

solifluction lobes, the interannual movement of these 

features does not outpace displacement of soil in 

topographically smooth areas (horizontal displacement 

means: 7 cm/yr for lobes over two years vs 10 cm/yr in 

other landscape positions over one year).  

 

Annual displacements are weakly related to slope and 

unrelated to drainage area or solar radiation. Timeseries of 

InSAR displacements show accelerated movement in late 

summer associated with intense rainfall. While mapped 

slope failures do cluster at slope-area thresholds, a simple 

slope stability model driven with hydraulic conductivities 

representative of throughflow in mineral and organic soil 

drastically over-predicts the occurrence of slope failures.  

 

This mismatch implies permafrost hillslopes have 

unaccounted-for cohesion and/or throughflow pathways, 

perhaps modulated by vegetation, which stabilize slopes 

against high rainfall. Our results highlight the complexity 

of soil transport processes in arctic landscapes and 

underline the utility of using a range of synergistic data 

collection methods to observe multiple scales of 

landscape change. 

 

We have presented preliminary results on this work at the 

AGU Fall Meeting [2]. We are currently working on two 

separate manuscripts. 

 

4. IMPROVING DISPLACEMENT ESTIMATION 

 

L-band SAR can be strongly affected by ionospheric 

Faraday rotation. In contrast to radiometric observables, 

the errors in repeat-pass InSAR observations and hence in 

deformation analysis are largely unknown.  

 

We conducted a theoretical and data-driven study of 

ionospheric Faraday rotation. Even though we were not 

able to include ALOS-2 data in the final manuscript due 

to space constraints, we report here on the principal 

findings, summarized from the abstract of our published 

paper [3].  

 

We find that the deformation error may reach 2 mm in the 

co-pol channels over a solar cycle. It can exceed 5 mm for 

intense solar maxima. The cross-pol channel is more 

susceptible to severe errors. We identify the leakage of 

polarimetric phase contributions into the interferometric 

phase as a dominant error source.  

 

The polarimetric scattering characteristics induce a 

systematic dependence of the Faraday-induced 

deformation errors on land cover and topography. Also 
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their temporal characteristics, with pronounced seasonal 

and quasi-decadal variability, predispose these systematic 

errors to be misinterpreted as deformation. While the 

relatively small magnitude of 1-2 mm is of limited 

concern in many applications, the persistence on semi- to 

multi-annual time scales compels attention when long-

term deformation is to be estimated with millimetric 

accuracy. Phase errors induced by uncompensated 

Faraday rotation constitute a non-negligible source of bias 

in interferometric deformation measurements. 

 

5. LAND SURFACE VARIABLES AND PROCESSES 
 
We have pioneered the use of L-band SAR for estimating 

shrub biomass and shrub rainfall interception in the Arctic. 

The importance of these advances lies in the expansion of 

shrubs across tundra regions, which induces complex and 

poorly understood changes to the carbon, energy, water, 

and nutrient cycles.  

 

Our analyses demonstrate the unexploited potential of L-

band SAR observations from satellites for quantifying the 

impact of shrub expansion on Arctic ecosystem processes. 

Our most important findings are as follows. 

 

Polarimetric L-band SAR showed strong sensitivity to 

shrub biomass and leaf area index across a gradient in 

shrub density and stature. SAR captured the high spatial 

variability of shrub characteristics on the catchment scale. 

 

Rainfall interception can be modelled by integrating SAR 

with meteorological data. We validated our predictions 

using in-situ measurements. 

 

With continued shrub expansion, L-band SAR is 

projected to become a critical tool for improved 

understanding of Arctic ecosystems. It provides critical 

constraints on the water, the carbon and energy balances. 

Future missions such as ALOS/4 NISAR as well as the 

combination with optical remote sensing offer the 

potential to greatly enhance shrub mapping and 

monitoring in the tundra. 

 
This work has been published in Remote Sensing of 
Environment [4]. 
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Figure 1. a-c) Estimates of post-flood subsidence and its standard error derived from ALOS-2 InSAR; d) late-season 

subsidence in 2016 from Sentinel 1; e--f) pre-flood to post-flood changes in greenness and wetness from Landsat-8, 

with positive signs corresponding to an increase. The 2015 flood extent is shown in yellow.
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Figure 2. a) Kernel-density-based distribution of estimated 2015--2019 subsidence for the four dominant geological 

units in the focus region, stratified according to whether they were or were not inundated during the 2015 flood. The 

vertical line shows the mean.
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複数衛星データの統合解析による広域環境変動と自然災害発生状況の関係分析  
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1. はじめに 

 

本研究では、これまでの RA(RA1)などで行ってきた

日本と東アジアから中央アジアにかけての環境変動

分析、自然災害発生とその被害状況の調査分析、災

害発生要因の検討を、新たに複数の衛星データを適

用して継続的に実施することを目指した。特に、こ

れまで十分に解析ができなかった ALOS-2/PALSAR2

のデータも用いた地盤変動分析、地表被覆分析、環

境変動分析などを行うことを目的とした。 

対象地域は、洪水などの自然災害発生リスクの高い

日本および東アジアと、環境変動の著しい東アジア

から中央アジアにかけての領域であり、それぞれ地

盤変動や地表被覆分類などを対象とした。各研究の

概要、内容、結果を順に示す。 

 

2. 研究の概要 

 

本研究で目指した技術的な主なテーマは、SAR デー

タを用いた干渉 SAR 適用による洪水発生リスクの高

い地域における地盤変動の検出とその高度化、およ

び SAR データ適用による地表被覆分析の高度化であ

る。 

干渉 SAR に関する研究の対象地域は、日本の関東平

野中央部地域とベトナムのホーチミン市周辺地域と

し、地表被覆分析については、乾燥化の懸念が高い

中央アジアのバルハシ湖の南に位置するイリデルタ

地域とした。これらの地域は、これまで複数の基礎

的な研究を実施し、多くの既存情報を有している。 

具体的に推進した研究テーマは以下の通りである。 

1) 関東平野中央部地域の長期的干渉 SAR 解析を適

用した詳細地盤沈下検出の可能性 

2) PSInSAR による関東平野中央部地域の地盤沈下検

出とその要因検討 

3) 複数 SAR データを用いた PSInSAR による細密地

盤変動検出の可能性とその適用 

4) DInSAR 解析によるベトナム・ホーチミン市の地盤沈

下モニタリング 

5) SAR データを含む複数衛星データと DSM データに

よる中央アジアのバルハシ湖イリデルタの微地形

分類 

 

以下に研究の内容と結果について述べる。 

 

 

 

3. 研究内容と結果 

 

3.1 関東平野中央部地域の長期的干渉 SAR 解析を適

用したに詳細地盤沈下検出の可能性[1] 
 

(1)概要 

関東平野中央部地域(特に埼玉県東部から東京都東

部)では、1960 年代以降これまで高度成長期を中心

に日本でも最大規模の地盤沈下が発生してきて、大

規模洪水に伴う被害発生が懸念されている。現在、

地盤沈下は緩やかになっているが、継続して進行は

続いているとされる。しかし、その長期的な地盤沈

下の推移や、最近の継続的な微小化した地盤沈下は

十分に調べられていない。そのため、本研究では、

まず、地上での水準測量成果を用いて過去約 60 年

間の本地域の長期地盤沈下の傾向を把握し、次に、

水準測量では明瞭には把握できない最近の沈下状況

を干渉 SAR 解析で検出可能かどうかについて検討を

行った。 

 

(2)方法 

以下の方法により解析、調査を行った。 

a) 対象地域である関東平野中央部地域の各自治体

(東京都、埼玉県、千葉県、茨城県など)で作成、

保管されている水準測量により作成された地盤変

動図(主に紙媒体)を収集 

b) 収集された地盤変動図をデジタルデータに変換、

編集し、長期的な地盤変動分布画像データを作成 

c) 作成された地盤変動分布データより、対象地域

の地盤沈下域の面積及び体積(沈下量)を算出 

d) 地盤沈下の発生面積と沈下量の経年的な解析よ

り、水準測量等による地盤沈下の推移を分析 

e) 地盤沈下量が微小化し、水準測量で十分な検出

が難しくなった 1990 年代後半以降における干渉

SAR 解析の検討 

f) 2016 年から 2017 年を対象に欧州宇宙機関の

Sentinel-1A/C-SAR データを収集 

g) Sentinel-1A/C-SAR データを使用した干渉 SAR ス

タッキング処理による 2016 年から 2017 年の地盤

変動量の検出の可能性を検討 

 

(3)結果 

本研究で得られた結果は以下の通りである。 

①水準測量データによる 1960 年代から 2018 年まで

の約 60 年間における累積地盤変動分布(Fig.3.1-1)
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より、この間の累積沈下量が 10cm 以上の地域は約

4000km2で、その体積は約 1.33km3と求められた。 

②干渉 SAR スタッキング処理結果の LOS 変位量を鉛

直方向の変動量に変換した結果(Fig.3.1-2)が示さ

れ、これと既存の水準測量成果との比較(Fig.3.1-

3）を行い、両者の間には妥当な関係を示すことが

できた。 

③衛星 SAR(C-SAR)データの干渉 SAR スタキング処理

により、地上水準測量手法と比べてより詳細な微

小地盤変動を検出する可能性が示唆された。 

④さらに微小な変動量をより高精度に検出する干渉

SAR 解析手法の検討が考えらえた。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

************************** 

 

 

 

 

 

 

 

Fig.3.1-1 水準測量データに基づく過去約 60 年間の累

積地盤変動分布 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.1-2 干渉 SAR スタッキング処理による鉛直方向

の変動量に変換された地盤沈下分布 

 

 

 
Fig.3.1-3 水準測量結果と干渉 SAR スタッキング処理

結果による地盤変動量の比較結果 

 

 

3.2 PSInSAR による関東平野中央部地域の地盤変動

検出とその要因検討[2] 
 

(1)概要 

関東平野中央部地域では、水準測量により地盤沈下

が続いていることが確認されており、その傾向は

1990 年代以降、微小に転じたこと、および水準測量

や GNSS などの既存測量では点としての変動で、面

的かつ詳細な地盤変動分布把握が難しい。さらに、

衛星 SAR データによる干渉 SAR スタッキング処理で

は、さらに、より高精度な地盤変動検出のための解

析手法適用の必要性が示された。このため、次のス

テップの研究として、解析期間内で恒久散乱体(PS)

点を抽出し、その点の変動を時系列で追跡する

PSInSAR 手法を新たに適用し、地盤変動(沈下)の検

出を行った。また、検出された地盤変動量への影響

要因にも言及した。 
 

(2)方法 

以下の方法により解析、調査を行った。 

a) 引続き観測頻度が高く、データ入手が容易な

2016 年 12 月から 2019年 1 月までの Sentinel-

1A/C-SAR データを収集 

b) 無償公開のソフトウェアの StaMPS を用いて

PSInSAR 解析を実施し地盤変動の検出 

c) 国土地理院の GNSS 成果(対象地域内の 3地点)の

データと、PSInSAR による変動値の比較分析．比

較では、PSInSAR 処理による LOS 変位量を鉛直方

向の変動量に変換． 

d) 対象地域内のうち北部(栃木県野木原)付近にお

ける地盤変動と地下水位変動の関係を分析 

 

(3)結果 

本研究で得られた結果は以下の通りである。 

①2017 年から 2018 年の約 2 年間で、Sentinel-

1A/C-SAR データを用いた PSInSAR 解析により、対
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象領域内のほぼ全域で 5mm/年以上の地盤沈下分布

(水色～青色)が検出された(Fig.3.2-1)。 

②国土地理院の GEONET（GNSS 連続観測システム）

による年間変動量と、PSInSAR 処理結果の年間変

動量の比較で、両者の絶対誤差は最小値 0.12mm/

年、最大値 6.37mm/年が得られた(Fig.3.2-2)。 

③PSInSAR の変動量と水準測量の変動量を点ベース

で比較した結果、両者のほぼ妥当な関係が認めら

れ、PSInSAR 解析による地盤変動抽出の有効性が

示せた(Fig.3.2-3) 

④対象領域内北部の野木原の地下水位観測所の月平

均地下水位と PSInSAR による地盤変動の間に関係

が認められ、地下水位の季節変動による地盤変動

が確かめられた。 

 

 
 

 
 

Fig.3.2-1 PSInSAR による 2017 年から 2018 年までの

2 年間における年間変動量分布 
 

 
Fig.3.2-2 水準測量による地盤変動と PSInSAR による

地盤変動の比較 

3.3 複数 SAR データを用いた PSInSAR による細密地

盤変動検出の可能性とその適用[3] 
 

(1)概要 

地盤沈下の進行により洪水発生とそれに伴う被害域

拡大の懸念が高まっている地域は国内外にかかわら

ず多く認められている。首都圏に属する関東平野中

央部地域もその代表であり、1990 年代以降、微小ス

ケールになった地盤沈下の推移を面的かつ詳細に把

握することは、防災などの観点から非常に重要であ

る。 

本研究では、PSInSAR の適用が、地盤沈下を詳細か

つ面的に検出する可能性を示してきた。しかし、地

盤沈下は数十年間継続しているため、長期的なモニ

タリングが必要である。一方で、SAR 搭載の各衛星

の打上げ・運用は平均すれば数年間程度である。こ

のため、地盤沈下の長期にわたる継続的なモニタリ

ングのためには、複数の観測緒元の異なる衛星 SAR

データの適用による解析が必要である。 

ここでは、観測期間の異なる複数の SAR データごと

に PSInSAR 解析を実施し、それらの解析結果を用い

て、比較的長期間の地盤沈下把握の可能性について

検討を目指した。また、異なる波長の SAR データに

よる PSInSAR 解析結果の特徴についても比較も行っ

た。 
 

(2)方法 

以下の方法により解析、調査を行った。 

a) 1997 年から 2005 年と、2016 年から 2020 年の期

間の地盤変動を抽出するために、それぞれ ERS-2/ 

SAR データおよび Sentinel-1A/SAR データを入手

し、PSInSAR 解析を実施． 

b) PSInSAR 解析データでは、国土地理院の GEONET 

(GNSS 連続観測システム）の季節変動が少ない観

測点を参照点として適用し、干渉点以外の地域は

B-スプライン補間法を適用して変動分布を内挿． 

c) 2 期間の変動検出結果に基づき対象領域の地盤沈

下傾向を分析． 

d) 2016 年から 2020 年の期間における Sentinel-

1A/SAR(C バンド)データと ALOS-2/PALSAR2(L バン

ド)データによる PSInSAR 解析に基づく地盤変動量

を比較して、波長帯の異なる場合の地盤変動検出

の特徴について分析． 

 

(3)結果 

本研究で得られた結果は以下の通りである。 

①関東平野中央部地域において、ERS-2/SAR データ

の PSInSAR 解析による 1997 年から 2005 年までの

年 間 変 動 量 分 布 内 挿 画 像 (Fig.3.3-1) と 、

Sentinel-1A/C-SAR データの PSInSAR 解析による

2016 年から 2020 年までの年間変動量分布内挿画

像(Fig.3.3-2)の比較によれば、1997 年から 2005
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年の期間では、年間約 3～10 ㎜(部分的に最大年間

約 13 ㎜)、2016 年から 2020 年では、年間約 2～7

㎜(部分的に最大年間約 13 ㎜)の地盤沈下が検出さ

れて、緩やかながら継続した地盤沈下を捉えるこ

とができた。 

②国土地理院の標高 (数値標高モデル )データ

(Fig.3.3-3)を参照した、Fig.3.3-1 画像上の赤色

線(X-X’、Y-Y’)上の年間変動量の比較(Fig.3.3-

4)によれば、関東平野中央部地域内においては、

低地や台地などの地形区分に関係なく明瞭な地盤

沈下分布が確認できた。しかし、この要因分析に

は、ボーリングデータや地下水揚水量などのデー

タを参照した多角的な視点による分析が必要と考

えられた。 

③GEONET 点における PSInSAR と GNSS による(年間)

変動量の比較によれば、両者の絶対誤差は最小値

0.10mm/年、最大値 2.54mm/年であり、ほぼ成果が

妥当な結果であると考えられた。 

④異なる波長、すなわち C バンド SAR と L バンド

SAR データによる PSInSAR 解析結果(Fig.3.3-5 お

よび Fig.3.3-6)の比較(Fig.3.3-7)では、両者間

の関係は相関係数 r=0.65、回帰直線の傾きは 1.07

であった。また、長波長の L バンド SAR データで

は C バンド SAR データよりも PS 点が約 3 倍多く検

出された。このことから、例えば、東南アジアな

どの植生の多い地域の地盤変動へ PSInSAR 解析を

適用する場合、ALOS-2/PALSAR-2 データなどの長

波長の SAR データの有効性が期待された。 
 

 

 

 
Fig.3.3-1 ERS-2/SAR データの PSInSAR 解析による地

盤変動分布内挿画像[1997-2005] 

 

 

 
Fig.3.3-2 Sentinel-1A/C-SAR データの PSInSAR 解

析による地盤変動分布内挿画像[2016-2020] 

 

 
Fig.3.3-3 数値標高モデルによる標高分布 

 

 
(a) X-X’区間 

 
(b) Y-Y’区間 

Fig.3.3-4 PSInSAR 解析による地盤変動分布内挿画

像上の X-X’と Y-Y’における年間地盤変動量の分

布 

X 

Y 

X′ 

Y′ 
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Fig.3.3-5 Sentinel-1A/SAR(C バンド )データの

PSInSAR 解析による地盤変動分布内挿画像[2016-

2020] 

 

 
Fig.3.3-6 ALOS-2/PALSAR2(L バ ン ド ) デ ー タ の

PSInSAR 解析による地盤変動分布内挿画像[2016-

2020] 

  

 

 

r = 0.65 

y = 1.07x + 1.43 

 
Fig.3.3-7 S Sentinel-1A/SAR(C バンド)と ALOS-

2/PALSAR2(L バンド)の PSInSAR 解析による地盤変動

の比較 

 

3.4 DInSAR 解析によるベトナム・ホーチミン市の地盤沈

下モニタリング 
 

(1)概要 

東南アジア諸国などの開発途上国においては、急速

な経済成長に伴う地下水の過剰な汲み上げなどによ

り大都市とその周辺域において地盤沈下が進行し、

その影響として社会インフラや住居などへの直接的

な影響、水害による災害発生拡大のリスクが高くな

っている。そのため、災害リスク管理の観点から、

現在までのやや長期の地盤沈下を把握するとともに、

今後も継続的に地盤変動モニタリングを行うことが

必要とされている。 

ここでは、地盤沈下が生じているとされるベトナム

のホーチミン市とその周辺地域を対象とし、複数の

衛星搭載 SAR データを用い、それぞれの DInSAR 解

析結果により、過去数十年間のやや長期的な地盤変

動の検出を行い、地盤沈下の傾向やその発生要因に

ついての分析を試みた。 

 

(2)方法 

解析対象領域は Fig.3.4-1 の LANDSAT 画像内に赤枠

で示したホーチミン市街地とその近郊地域を含む 27

×36 ㎞の範囲である。モニタリング期間がやや長い

ため、使用したのは、約 12 年間に観測された JERS-

1/SAR 、 ALOS/PALSAR 、 ALOS-2/PALSAR-2 お よ び

Sentinel-1A の 4 種類の衛星 SAR データである。そ

れぞれ DInSAR 解析により、過去約 12 年間の地盤変

動の分析を行い、地盤沈下の経年変化解析や平均沈

下速度の算出、地盤沈下の傾向やその発生要因につ

いての検討を試みた。 

解析・調査の項目は以下のとおりである。 

a) 12 年間における複数種類の SAR データと

LANDSAT データの入手． 

b) 各 SAR データによる時系列 DInSAR 解析． 

c) 地盤変動域、地盤変動量、地盤変動速度などの

分析． 

d) LANDSAT データなどによる時系列土地被覆解析． 

e) 地盤変動の要因と変動傾向の分析． 

 

(3)結果 

DIｎSAR 解析による過去約 12 年間の累積地盤変動

(地盤沈下)分布画像(Fig.3.4-2)によると、ホーチ

ミン市の市街域を取巻くように地盤沈下域が分布し

ていることが明瞭に示された。そのうち最大の沈下

量は 33 ㎝であった。一方で、Fig.3.4-3(12 年間の

地盤隆起分布)のように、この同期間で、ホーチミ

ン市街地の南西域で、約 4 ㎝の地盤の隆起分布も検

出された。これらの地域を LANDSAT 画像や DSM デー

タにより検討すると、地盤沈下地域は標高が相対的

に低く、低湿な地域であること、地盤隆起パターン
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-5.9 -11.8cm0

の分布地域はやや標高の高い地域であることが分か

った。P1－P2 間(Fig.3.4-2 画像内)における過去 12

年間の地盤沈下量の推移を表したグラフ(Fig.3.4-

4)よれば、地盤沈下量は年とともに徐々に緩やかに

なりつつあるが、現在も継続していることが明瞭に

示された。 

 
 

 

 
Fig.3.4-1 LANDSAT 画像に示した解析対象領域(赤枠

内) 

 

 

 
 

 

Fig.3.4-2 ALOS-2/PALSAR2 の DInSAR 解析による過去

約 12 年間の地盤沈下分布 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.4-3 ALOS-2/PALSAR2 の DInSAR 解析による過

去約 12 年間の地盤隆起分布 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.4-4 過去 12 年間の地盤変動 (沈下 )分布

（Fig.3.4-2 の P1-P2 間） 

 

 

3.5 複数衛星データと DSM データによる中央アジアの

バルハシ湖イリデルタの微地形分類[4]  
 

(1)概要 

中央アジアの代表的な閉塞湖のバルハシ湖周辺地域

は、過去 1～2 万年頃に現在に比べ寒冷で湿潤であ

ったことが示唆されている。このバルハシ湖に流入

するイリ川河口の三角州には砂丘や段丘などの微地

形が分布していて、湖岸沿いの微地形と共にその形

成過程を調べることで、本地域の数千年から数万年

スケールの気候変動とそれに伴う湖水位変動の把握

が期待される。そのため、この微地形の既存成果に

比べてより詳細な分類が複数の衛星データ、特に

SAR データを統合して解析することができるかにつ

いて検討が必要であった。 

ここでは、バルハシ湖に流入するイリ川河口付近の

デルタ(三角州)を対象として、衛星光学センサデー
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タや一般に公開された DSM データに加えて、SAR デ

ータを統合させた解析により、砂丘、段丘、旧河道

などの地形情報抽出に基づく、より詳細な地形分布

分類の可能性について検討を行った。 
 

(2)方法 

対象地域は、LANDSAT-8/OLI 集成画像（Fig.3.5-1)

のように、南からバルハシ湖の南西域へ流れ込むイ

リ川の中・下流部に広大なデルタ(三角州)が分布す

る。また、その周囲は砂丘地帯となっている。 

一般公開され利用可能な DSM データとしては、いず

れも 30m メッシュの ALOS 全球数値地表モデル

(AW3D30)、ASTER 全球 3 次元地形モデル(GDEM)、

Shuttle Radar Topography Mission（SRTM-1)があ

るが、対象地域内でこれらの各標高データ値の比較

を行い、現地計測などによるバルハシ湖岸線沿いの

標高値と最も差が少なく、異常値も少なくて、より

微地形を表す AW3D30 を本解析に最適な DSM とした。

この DSM データより、まず、砂丘などの微地形の地

形斜面角、接峰面、接谷面などを算出し、そのデー

タ間の差分処理やフィルタリング処理などに基づき

微地形分布の分類行った。次に、ALOS-2/PALSAR2 強

度画像と NDVI ならびに NDWI データを参照しながら、

より詳細な地形分類を行った。 

解析・調査のステップは以下のとおりである。 

a) LANDSAT-8/OLI データ、ALOS-2/PALSAR2 データ、

既存 DSM データの収集入手． 

b) DSM データの本解析のために最適なデータの評

価・選定． 

c) DSM データに対するフィルタリングおよび差分処

理などによる砂丘分布特性の分類． 

d) LANDSAT-8/OLI データによる正規化植生・水指標

（NDVI・NDWI）の算出に基づく現河床域の区分． 

e) ALOS-2/PALSAR2 ScanSAR モードデータを統合し

たデルタ域の詳細地形分類とその結果の検討． 

 

(3)結果 

本研究で得られた結果は以下の通りである。 

①分類処理に先立ち、現在、広く適用されている

DSM データのうち、AW3D30、GDEM、SRTM-1 と現地

計測データを参照して比較検討を行った結果、

AW3D30(ALOS 全球数値地表モデル)が少なくとも微

地形分類には最適であることを確認した。 

②これまで行われてきた DSM(AW3D30)データに基づ

く砂丘、段丘などの微地形の地形斜面角の画像や

地形の接峰面および接谷面ならびにそれらの差画

像(Fig.3.5-2)に対し、新たに求めた NDVI ならび

に NDWI データ(Fig.3.5-3)と、ALOS-2/PALSAR2 後

方散乱強度データ(Fig.3.5-4)を統合させて分類を

行った結果、これまでに比べより詳細な微地形分

類データ(Fig.3.5-5)が求められた。 

③新たな詳細微地形分布分類画像(Fig.3.5-6)によ

り、イリデルタ内の砂丘の分布状況として、地形

的に上位面から現河床(下位面)まで順に SD、TP、

UB、LB、FP の 5 分類が可能であった。 

④今後、各地形面の年代を調査することで、対象地

域内の気候変化に伴う地形形成過程が明らかにな

ると考えられた。 
 

 

 Fig.3.5-1 対象地域を表す LANDSAT-8/OLIモザイ

ク画像 

 
 

 
Fig.3.5-2 AW3D30 データに基づく接峰面と接谷面の差

画像 
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Fig.3.5-3 LANDSAT-8/OLI モザイク画像データより

求められた NDWI 画像データ 

 

 
Fig.3.5-4 ALOS-2/PALSAR2 ScanSAR 後方散乱強度画

像データ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3.5-5 イリデルタ内の微地形分類画像 
 

4. 研究のまとめ 

 

本研究では、SAR データや光学センサデータなどの

複数衛星データを組み合わせた解析により、洪水な

どの自然災害発生リスクに影響を及ぼす地盤変動

(沈下)の検出と分析、その応用事例、さらには、長

期の環境(機構)変動を反映した乾燥地域の微地形分

布分類などについて検討を行った。その結果、以下

の成果が得られた。 

(1)地盤変動(沈下)の検出と分析については、複数

の干渉 SAR 手法による解析結果の比較により、

PSInSAR の適用で微小な地盤変動(沈下)の検出が

可能であることを明瞭に示すことができ、今後も

この手法による継続的な地盤変動モニタリングの

必要性が考えられた。 

(2)雲や降雨の多い東南アジア(ベトナムの事例)に

おける地盤変動については、DInSAR 手法の適用で

明瞭な変動情報を示すことが確かめられた。 

(3)長期の環境(気候)変動を反映した乾燥地域の微

地形分布調査に関し、DSM データに光学センサデ

ータによる正規化植生あるいは水指標データ、お

よび SAR 後方散乱強度データを統合して解析こと

で、より詳細な微地形分布の分類が可能であり、

その結果の分析により、対象地域の過去からの長

期におよぶ環境(気候)変動を分析することの可能

性を示せた。 

一方、検討項目として、以下のことも指摘された。 

a)本研究では、干渉 SAR の解析に Sentinel の C バ

ンド SAR データを多く用いたが、これは、「衛星

が 2 機体制の運用で多くの観測データが取得され

て、原則無償で入手可能」、「比較的広範囲(観測

幅)を観測可能」、「既存研究で示された微小な変

動の検出における C バンドの優位性」などによる

ものである[5]。 

b)しかし、PSInSAR 解析のおける PS 点数については、

PALSAR-2(L バンド)データの方が、C バンドに比べ

て多く(本研究の場合約 3 倍)検出され、より詳細

な変動分布の把握の可能性が示せた。 

c)微地形分布分類については、異なる偏波の SAR デ

ータの適用の可能性、今後打ち上げられる予定の

より高空間分解能光学センサデータによる高精度

な標高抽出が期待された。 
 

5. 本研究の関連文献 
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1. INTRODUCTION 

An earthquake of Mw 5.4 hit the Mirpur region in 

Pakistan on 24 September 2019 at 16.02 local time [1]. The 

event is a very strong earthquake with a maximum felt 

intensity of VII on a Modified Mercalli scale. The event 

severely damaged numerous buildings, roads, and bridges. 

Damage to the embankments resulted in the flooding of 

some villages alongside the canals. The seismic behavior 

in the Himalaya and its vicinity is a result of the continental 

collision between the Indian and Eurasian tectonic plates. 

The tectonic plates are converging at a rate of 4-5 cm/year 

with the Indian plate moving beneath the Eurasian plate. 

The Himalayan thrust zone mainly comprising of thrust 

fault zones such as the Main Central Thrust (MCT), Main 

Boundary Thrust (MBT), and the Main Frontal Fault 

(MFF) is seismically very active resulting in several 

moderate to high magnitude earthquakes every year. 

As per USGS, the present Mw 5.4 Mirpur 

earthquake is a shallow event occurred at a depth of 11.5 

km at 33.078° N, 73.794° E on a fault striking 352°, 

dipping 12° with a 164° rake angle [1]. The GCMT 

solution is different from the USGS solution, in which the 

earthquake happened at a depth of 14.7 km, on a fault 

striking 246°, dipping 10° with the epicenter at 32.83° N, 

73.85° E. In this study, we use the DInSAR technique to 

map the coseismic surface deformation of the 2019 Mirpur 

earthquake using ALOS-2 stripmap data. We also derive 

source parameters corresponding to the earthquake using 

InSAR data. 

2. DATA 

The Japan Aerospace Exploration Agency’s 

(JAXA) ALOS-2 satellite carries an L-band PALSAR 

instrument. The sensor acquires data in various modes 

(Spotlight, Stripmap and ScanSAR). The L-band ALOS-2 

data are downloadable from the JAXA ALOS/ALOS-2 

User Interface Gateway (AUIG2). In this study, we used 

two ascending pass images acquired on 22-07-2019 and 

25-05-2020 to map coseismic surface displacement of the 

earthquake. The stripmap data are acquired with a swath 

width of 70 km at a spatial resolution of 9.1 × 5.3 m in 

range and azimuth respectively.  

3. METHODOLOGY 

We used the InSAR Scientific Computing 

Environment (ISCE) [2] for displacement map generation. 

The process starts with coregistration of master and slave 

SAR images. We used a 30 m Shuttle Radar Topography 

Mission (SRTM) mission digital elevation model (DEM) 

for topographic phase removal. The differential 

interferogram is then filtered using a Goldstein filter with 

a filter strength of 0.8. The interferogram is multilooked by 

a factor of 2 × 2 in range and azimuth to reduce the speckle 

noise and to improve the signal to noise (SNR) ratio. The 

phase is unwrapped using the Statistical Cost, Network 

Flow Algorithm for Phase Unwrapping (SNAPHU) 

software [3]. The unwrapped phase is geocoded at a 30 m 

pixel spacing and converted into line of sight (LOS) 

displacement.  

The source parameters such as length, width, 

depth, dip, strike, strike-slip, dip-slip, location of the 

epicenter are necessary to understand the fault responsible 

for the earthquake. Here, we invert the InSAR coseismic 

interferogram using an elastic dislocation model for a 

uniform rectangular fault in an elastic half-space to 

determine the causative source parameters. We use the 

Steepest Descent Method (SDM) [4] for determining the 

geometry of the fault that triggered the earthquake. We 

downsample the displacement map to reduce the data 

points and improve the computational efficiency during the 

inversion. 
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Fig 1 (a) ALOS-2 interferogram (b) LOS displacement 

 

Fig 2. InSAR data, model, and residual. The dotted black line is the inferred fault.

 

4. COSEISMIC DEFORMATION 

The coseismic interferograms and displacement 

maps shown in Fig 1 indicate two definite lobes of 

deformation corresponding to movement towards (+) and 

away (-) from the radar. The positive and negative LOS 

displacements corresponding to uplift and subsidence 

ranging from 20 cm to -14 cm respectively. The uplift is 

concentrated in the southwestern side of the MSA 

supporting the thrust nature of the causative fault. The 

deformed area is approximately 20 sq.km. Several 

decorrelated regions and phase discontinuities observed in 

the coseismic interferograms are a result of surface 

displacement due to shallow fault related folding in the 

epicentral region [5], [6]. 

 

5. COSEISMIC INVERSION 

The optimal source parameters indicate a 

rectangular fault of length ~10 km and width ~5 km is 

responsible for the earthquake. The data, model and the 

residual are shown in Fig 2. Other parameters of the fault 

geometry are given in Table 1. The table indicates the 

source parameters of the earthquake with a correlation of 

0.75 between the InSAR data and the model. The USGS 

and the GCMT values of the earthquake are also given for 

quick reference and understanding. The epicenter of the 

earthquake obtained from the model is close to the USGS 

solution. From the inversion result, it is clear that the 

earthquake occurred at a shallow depth of approximately 6 

km. The causative fault is oriented nearly E-W with a strike 
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angle of 279o. The dip and rake of the earthquake are 22.5o 

and 92.05o respectively. The depth of about 6 km is in good 

agreement with the depth of the Main Himalayan Thrust 

(MHT). 

Table 1. Source parameters of the earthquake comparing 

with USGS and GCMT values. 

Parameter USGS GCMT Model 

Longitude (deg) 73.79 73.85 73.76 

Latitude (deg) 33.08 32.83 33.09 

Length (km) -- -- 5.00 

Width (km) -- -- 10.00 

Depth (km) 11.50 14.70 6.10 

Strike (deg) 352.00 246.00 279.40 

Dip (deg) (Mean value) 12.00 10.00 22.50 

Rake (deg) (Mean value) 164.00 -- 92.05 

Slip (m) (Mean value) -- -- 0.22 

Magnitude M 5.4 Mw 5.7 Mw 5.7 

Data - Model correlation -- -- 0.75 

6. CONCLUSIONS 

The present study provides the coseismic 

displacement associated with the 2019 Mw 5.4 Mirpur 

earthquake. The displacement is spread around 20 sq.km. 

which damaged several buildings and infrastructure. The 

presence of minor amounts of strike-slip indicates that the 

earthquake also resulted in the horizontal motion of the 

ground surface. ALOS-2 images cover a larger timespan 

resulting in addition of postseismic deformation into the 

coseismic displacement. The postseismic deformation may 

be of different reasons such as after slip, viscoelastic or 

poroelastic relaxation etc. Therefore, the displacement 

values derived from ALOS-2 images are slightly greater 

compared to C-band results. 
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1. INTRODUCTION 

 

As the largest tropical peatland globally, peatland 

coverage in Indonesia is estimated about 24.67 million ha. 

Within this region, the coverage in Kalimantan and 

Sumatra are estimated about 8.4 million ha and 9.6 

million ha, respectively. Major problems arise at peatland 

area such as deforestation, forest and land fires that 

contribute to peatland degradation. Triggered by ENSO, 

drought caused the peatland fires causing the release of 

oxidized products (CO, CH4, etc.), destructed 

environment and severely impacted the community 

health1,2. 

Therefore, effective method to observe the peatland 

surface change is necessary for peatland management and 

conservation measure to prevent degradation and to 

reduce peatland fire incidents. For the observation in 

tropical region, SAR image data analysis shows its 

effectiveness for wide area monitoring without cloud and 

smoke cover. Hence, interferometry SAR can provide the 

ground surface deformation with good resolution (in cm)3. 

This study applied the interferometry SAR analysis using 

PALSAR-2 data during 2015-2021 period for study area 

in Central Kalimantan and Riau Province, Indonesia. 

Differential of interferometry SAR (DInSAR) analysis 

and comparative study with field data are applied to 

observe ground surface fluctuation of peatland and the 

area before and after peatland fire. This study is done 

under collaborative research with JAXA (PI No. 

ER2A2N201) during FY2019-2021. The analysis results 

for each application are described. 

 

2. DATA AND METHODS 

 

PALSAR-2 L1.1 datasets mostly in dry season (between 

July to October) during 2015-2021 period for study area 

in Central Kalimantan and Riau Province were 

downloaded from JAXA AUIG2 and G-Portal platform 

(Table 1). Pair of PALSAR-2 datasets were processed 

using DInSAR method and time series of deformation 

processing were computed using the SBAS (Small 

BAseline Subset) DInSAR method of GAMMA software.  

Optical data, i.e. ASTER, Sentinel-2, Landsat, KLHK’s 

Land Cover map
4
, LAPAN Fire Hotspot map

5
, and 

BMKG’s rain fall data were also observed to gather 

information on land cover, smoke cover during peatland 

forest fire, hotspot, rain fall, etc. Comparative studies are 

done between the derived DInSAR data and field data of 

the GWL and the GSL data from the SESAME project
6
 in 

Central Kalimantan and bore field data at study area in 

Pulang Pisau, Central Kalimantan and Siak District, Riau 

Province. The bore field data consist of the peat depth and 

peat characteristics.  

   
3. STUDY AREA 

 
Observed study areas are located in peatland area as 

follow (Fig.1),  

• Pulang Pisau District, Kalampangan District 

Matangai District, and Sebangau National Forest 

in southeast of Palangkaraya city, Central 

Kalimantan, where several ground water level 

(GWL) and ground surface level (GSL) stations 

installed (Station Taka-1 and Kalteng-1)
6
. In this 

area, peatland fires widely occurred in 2015-

2016. In the classification of peatland from field 

data, the sites mainly drained peatland with peat 

depth average 3m and represent swamp shrub 

and secondary swamp forest on KLHK’s Land 

Use Map 2019.  

 

• Kampar Peninsula, Riau Province where wide 

coverage of peatland area exists with deep peat 

(>6m) and peat domes (>10m). 

  

 

  

Fig. 1 Location of study area within box (top) and 

observation station in Central Kalimantan (bottom) 

Table.1 List of PALSAR-2 data 

No. Date Mode Direction 

Palangkaraya City 

Sta. Taka-1 

Sta. Kalteng-1 
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Central Kalimantan Province  

1 2015/10/08  

 

 

SM3 

 

 

 

Ascending 

2 2016/10/06 

3 2017/10/05 

4 2018/09/06 

5 2019/09/05 

6 2020/09/03 

7 2021/09/02 

Kampar Peninsula, Riau Province 

1 2015/02/14  

 

 

 

SM3 

 

 

 

 

Ascending 

2 2015/09/26 

3 2016/07/16 

4 2016/09/24 

5 2016/12/03 

6 2017/07/15 

7 2018/08/25 

8 2019/08/24 

9 2020/08/22 

10 2021/08/21 

 

4. RESULTS AND DISCUSSION 
 
4.1. The observation of peatland surface height 

variability 

Peatland surface height variability for study sites in 

Central Kalimantan have been observed using Differential 

SAR Interferometry (DInSAR) analysis of PALSAR-2 

data during 2015-2020 period. The comparative study 

with the GWL and GSL data from observed stations 

shows good correlation with the fluctuation direction of 

the GWL/GSL of field data from the SESAME project6.  

 

 

Fig. 2 Comparison of ground surface variability of 

peatland from DInSAR data and field data (GWL) at 

a) Sta. Taka-1 and 2) Sta. Kalteng-1 

 
Table 2. The result of comparative study 

Mode Date DINSAR vs GSL (cm) 

Asc - SM2  150409 -2.6702 

Asc - SM3  171005 2.1236 

Asc - SM3  180906 0.1189 

Asc - SM3  190905 -5.3484 

Asc - SM3  200903 0.0599 

The variability of peatland surface height affected by 

fluctuation of the ground water were observed by 

DInSAR analysis. The difference of peatland surface 

height variability between DInSAR analysis with the GSL 

data are about ±2.6cm for SM2 mode and ~±5.5cm for 

SM3 mode. The results were correlated with previous 

study that revealed the GWL data follows the GSL data in 

peatland area3. 

 

4.2. Peatland drought analysis in ENSO year 

ENSO is the development of the El Niño Southern 

Oscillation in the Pacific Ocean and atmosphere involved 

extreme warm events for about 2 years and generated 

warm and dry climate in the Southeast Asia. The ENSO 

event in 2015 correlated with wide forest fires incidents at 

peatland areas in Indonesia and affected economy, social 

and resident’s health of Indonesia and its neighbor 

countries from the haze cover1. As shown in Fig. 3, 

DInSAR analysis of PALSAR-2 data over Central 

Kalimantan during 2015-2020 period shown downward 

vertical movement from DInSAR data for observed 

stations in the ENSO year 2015-2016 (-2.8 cm to -4.2 cm) 

and 2018-2019 (-4.3 cm to -7.5 cm) during August - 

October period (dry season). While, the fluctuation of 

presumed stable areas were below -2 cm. Comparative 

study with field data shown that the GWL data at 

observed station marked the lowest level about -1.44 m on 

2019/10/1. Although the lowest downward movement of 

ground surface of peatland area is shown in 2019, the 

forest fire incidents in this year occurred 0.5 times 

compared to 2015, which may indicate the impact of 

implementing new regulations on peatland management 

since 2016. The study results reveal that the fluctuation of 

DInSAR data derived from PALSAR-2 data correlated 

with the cycle of the ENSO year in Indonesia occurs 

every 2 years and peak every 4 years. Thus, the proposed 

analysis methods are useful to monitor the possibility of 

peatland forest fire areas that are shown amplified during 

the ENSO years. 

 
Fig. 3 DInSAR data of peatland area (Sta. Kalteng-1) 

on 2015/04, 2017/10, 2018/09 and 2019/09 (top) and the 

GWL data (bottom) 

4.5. Peatland surface loss due to fires 
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DInSAR processing is applied on PALSAR-2 data pairs 

prior to and post fire incidents for selected fire hotspots 

with 80% level coincidence during 2015-2018 period. The 

DInSAR data analysis shows that the fluctuation of 

maximum height difference of peatland surface for T1-T9 

hotspots on downward direction is about -2.9 cm before 

fire incidents and -23.5 cm after fire incidents suggesting 

the possibility of peat loss after fire. Peat loss is shown 

bigger at location around hotspot in barren land (Site 2). 

Higher rainfall data affected on fluctuation of peatland 

surface due to more water absorption, shown by smaller 

downward of DInSAR data for data pair at swamp shrub 

and secondary swamp forest. DInSAR analysis results on 

ALOS-2 data before/after fire incidents showed that peat 

loss after fire incidents could be derived using peatland 

surface height difference analysis7. 

 
Fig. 4 PALSAR-2 pair data: (a) intensity image of 

master data (15/10/8) and (b) slave data (16/10/6), and 

(c) DInSAR image of study area at Pulang Pisau and 

Mantangai districts before the fire incident and (d) 

after the fire incident 

 

 
 

Fig. 5 Peatland surface height difference retrieved 

from DInSAR data before/after peatland fires  

 

4.6. SBAS DInSAR analysis for peatland fire area 

The SBAS DInSAR processing result of a series of 

PALSAR-2 data (8 scenes) for period 2015-2021 over 

Central Kalimantan is shown on Fig. 6. The retrieved time 

series of DInSAR data are located along deforestated 

areas and historical hotspots during 2015-2021 period 

(dark green represents vegetated area). Whilst, the areas 

that are not marked with hotspot, may have burned before 

2015. Since SBAS method computed differential 

interferometry for the whole data pairs (each pair is 

defined with small baseline, i.e. less than 500m), high 

coherence data will be obtained from areas where surface 

deformation are mainly occurred. Thus, the time series 

SBAS DinSAR method can be used to delineate critical 

area such as from deforestated area and peatland fire area.  

For hotspot with 80% probability (red marker in middle of 

Fig. 6), the preliminary result for the average of peatland 

surface fluctuation using SBAS DInSAR method is about 

-1.89 cm/year. 

 

 
 

Fig. 6 SBAS DInSAR result for PALSAR-2 data (in m) 

overlay hotspot (▲: medium; orange: high 

probability; red: 80% probability, T1-T12) for period 

2015-2021 over study area in Central Kalimantan  

 

 4.7. Peat dome analysis 

The analysis of multi temporal intensity of PALSAR-2 

data during 2015-2018 period over Kampar Peninsula, 

Riau Province shows that peat dome areas have lower 

backscattering about 0.067-0.22dB along vertical cross 

line. Maximum peat depth for these areas is about 14 m, 

while the bore data for non-peat dome area is about 6 m. 

DInSAR analysis results for PALSAR-2 data show large 

vertical fluctuation (~-40.5cm) in peat dome areas larger 

than non-peat dome areas (-27.8 cm) possibly due to 

higher moisture and bearing capacity8.  

 

4.8. Peatland subsidence analysis 

Past study using DInSAR data analysis shows that 

peatland subsidence occurred by impact of agriculture 

activities such as palm plantation in West Kalimantan. 

The subsided areas were low in organic matter from 

laboratory test (Lost on Ignition method). It is considered 

to be affected by the decomposition process9. 

Recent study applied SBAS DInSAR method on 

PALSAR-2 data over study area in Central Kalimantan 

and Kampar Peninsula, Riau Province. The SBAS 

DInSAR data analysis results show the tendency of 

peatland subsidence at the areas with shallow peat 

thickness along coast, river, and canal possibly due to 
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decomposition by water sedimentation transport. From 17 

processed interferogram data for Kampar Peninsula, the 

average of deformation (subsidence) rate at study sites 

along coast is retrieved about 8.5 cm/year (Fig.7, box). 

 

 
Fig. 7 SBAS DInSAR processing result (in m) for 

PALSAR-2 data over study area in Kampar Peninsula, 

Riau Province 

 

5. CONCLUSION 

 

The study results on the application of interferometry 

SAR to observe peatland area show that the proposed 

methods are useful for peatland fire monitoring, deep peat 

assessment and peatland subsidence observation. DInSAR 

analysis results on PALSAR-2 data before/after fire 

incidents showed that peat loss after fire incidents could 

be derived using peatland surface height difference 

analysis. The proposed methods can increase the accuracy 

of existing monitoring methods using optical satellite 

images, without limitation on the observation when 

clouds and smoke cover exist. 
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1. 緒 言 
 
干渉 SAR 解析は周期的に地表変動を面的に把握す

ることができる技術として，地震や火山，地盤沈下，

地すべり等の地表変動の把握に有効性を示している．

また PS 干渉 SAR 解析や Small baseline subsets 解析に

代表される干渉 SAR 時系列解析では，ミリメート

ルから 1 センチメートルの地表変動でも特定するこ

とが可能になりつつあり，変動モニタリング技術と

して，革新的な役割を果たしてきた． 
研究代表者はこれまで，主に ALOS-2/PALSAR-2 や

ALOS/PALSAR データを用いて，干渉 SAR 時系列解

析の手法開発および適用を行ってきた．手法開発で

は，より推定精度を向上させるためのアルゴリズム

開発を行い，適用研究では，地盤沈下や地すべり，

地震や火山噴火に伴う地下水流動等を対象にしてき

た．その結果，ミリメートル程度の地表変動が多く

の地域で発生し，なおかつ種々の現象が複合的に関

係して地表変動を生じていることを明らかとした．

例えば，第 1 回地球観測研究公募を通じた研究では，

2016 年熊本地震後に阿蘇カルデラ北西部で数 km の

範囲で年間 5~6 cm ほどの局所的な地表変動が発生

し，カルデラ内の熱水流動が地震によって促された

可能性を示した[1]．このような複合的な地表変動は，

至るところで発生していると考えられ，このような

現象は，これまでには明らかとなっておらず，複合

的な地球システムの理解に役立つとともに，我が国

の国土強靭化に寄与すると考える． 
また，近年では，Sentinel-1A, 1B に代表されるよう

に，様々な SAR 衛星が打ち上げられ，データ利用

可能となっている．多くの SAR 衛星は，ALOS-2 と

異なる周波数帯，入射角，回帰日数で運用されてい

る．そのため，これらのデータを相補的に用いるこ

とで，より詳細な地表変動の把握に役立つと考えら

れる．これは，ALOS-2/PALSAR-2 の実用性を高め

ることにも繋がると考えている．本研究は，長期に

わ た り 蓄 積 さ れ た ALOS-2/PALSAR-2 お よ び

ALOS/PALSAR データを用いて，長期の地表変動を

明らかにする．また，他国で運用されている異なる

特徴をもつ SAR 衛星データを相補的に用いること

で，地表変動現象をより詳細に理解できるか検討す

る． 
特に本研究課題では，PS 干渉 SAR 解析を用いて， 
2016 年熊本地震の前と地震後の地表変動の時系列地

表変動を推定し，地表変動のパターンにどのような

違いがみられるか調べた．特に時系列のパターンに

よって，季節性の地表変動および長期的な地表変動

成分を特定し，これらのパターンをもつ地域や大き

さがどのように変化したかを明らかにした．対象は

熊本地域とした（Fig. 1）．また，推定した地表変

動と地下水位データを比較することで，地表変動と

地下水位変化との関連性を明らかにした．干渉 SAR
時系列解析で得られた地表変動が地下水システムの

モニタリングに有効であることはこれまでに示され

ているものの，地震による地下水システムの変化を

干渉 SAR 時系列解析でモニタリングした事例はほ

とんどない．そのため，本研究は，地震を含めた地

下水システムのモニタリングへの干渉 SAR 時系列

解析の好例となると考えている．なお，本報告書の

内容の多くは，[2]で論文発表を行っている． 
 

2. 解析データおよび手法 
 
本研究では，2016 年熊本地震前のデータとして，

2007 年 1 月 7 日から 2011 年 3 月 5 日の間に南行軌

道で取得された 19 シーンの ALOS/PALSAR データ

（PATH/FRAME: 73/2960）を用いた．2016 年熊本

地震後のデータとして，(1) 2016 年 4 月 18 日から

2018 年 12 月 10 日の間に南行軌道で所得された 28
シーンの ALOS-2/PALSAR-2 データ（PATH/FRAME: 
23/2950, 23/2960），(2) 2016 年 7 月 1 日から 2018 年

12 月 10 日の間に南行軌道で取得された Sentinel-1 デ

ータ（PATH/FRAME: 163/483）および，(3) 2016 年

11 月 16 日から 2018 年 6 月 15 日の間に北行軌道で

取 得 さ れ た Sentinel-1 デ ー タ （ PATH/FRAME: 
156/105）を用いた．南行軌道で取得された ALOS-
2/PALSAR-2 データおよび Sentinel-1 データは，それ

ぞれのデータから推定された地表変動が一致するか

を確認することで，妥当性の検証を行った．また，

北行軌道および南行軌道で取得された Sentinel-1 デ

ータは，2.5 次元解析により，準上下および準東西

方向の地表変動を推定するために用いた．  
本研究では，PS 干渉 SAR 解析を用いて時系列地表

変動の推定を行った．PS 干渉 SAR 解析は，PS と呼

ばれるマイクロ波の後方散乱強度および位相が安定

しているピクセルのみを用いて地表変動を推定する

手法である[3] [4]．また，PS 干渉 SAR 解析は，大気

中でのマイクロ波伝播遅延の干渉位相への影響や数
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値地形モデルの誤差による干渉位相への影響をとり

除く戦略を有している．本研究では，差分干渉 SAR
画 像 を 作 成 す る た め に ， Radar interferometry 
calculation tool [5]および GAMMA software [6]を用い

た．PS 干渉 SAR 解析には，[7]および[8]でも用いら

れている自作のプログラムを用いた． 
推定した地表変動の妥当性を検証するために，国土

地理院が運用する GNSS 観測網である GEONET の

F3 解を用いた．解析対象には，GEONET 観測点が 2
点 （ Kumamoto, Jonan ） あ り （ Fig. 1b ）， 1 点

（Jonan）を基準点とし，残り 1 点（Kumamoto）の

時系列地表変動と比較を行った．GNSS と PS 干渉

SAR 解析で得られた時系列地表変動を比較するため，

GNSS の地表変動は衛星視線方向へ投影を行った． 
PS 干渉 SAR 解析で推定された時系列地表変動の特

徴を解釈するため，時系列地表変動モデルを用いた．

本研究では，推定された時系列地表変動が 1 年の周

期をもつ季節性の地表変動および長期的な地表変動

で構成されるとした．季節性の地表変動は，季節性

の地下水位変化に伴う地表変動を模擬しており，長

期性の地表変動は，2016 年熊本地震に伴って発生し

た年周期をもたない地表変動を模擬した．この季節

性の地表変動は，年周期のサイン関数でモデル化し，

長期的な地表変動は指数関数でモデル化した．これ

らのモデルに含まれる変数は，最小二乗法で推定し

た． 
 

3. 解析対象の概要 
 
本研究の解析対象地域である熊本地域は，九州の中

心部に位置し，豊富な地下水資源が存在することが

知られている．地下水は阿蘇火山の西麗で涵養し, 
地形に沿って熊本地域に流入し，有明海に流出する．

熊本地域の地表地質は，西部では主に沖積層で構成

され，東部は主に阿蘇火砕堆積物で構成される

（Fig. 1c）．帯水層は主にこの阿蘇火砕流堆積物で

成ることが知られている．浅部の帯水層は比較的新

しい火砕堆積物で構成されるが，深部の帯水層はよ

り古い火砕堆積物で構成され，主に被圧帯水層であ

る．浅部の堆積層の標高は，熊本地域東部の台地で

約 0–200 m であり，西部の沖積平野では-50–0 m で

ある．浅部および深部帯水層における地下水流動パ

ターンは大よそ整合していると報告されている [9]． 
2016 年熊本地震は，4 月 14 日（Mw 6.2）と 4 月 16
日（Mw 7.0）に日奈久断層帯および布田川断層帯で

発生した（Fig. 1b）．この地震に伴って，地下水位

変化が観測され，熊本中心部で地表面の亀裂が発生

した箇所においては，地震後 30–45 日は，地下水位

の低下が主に観測された．一方，熊本地域東部では，

地下水位の継続的な上昇も観測された．[10] は，こ

の熊本地域東部での地下水位上昇は，2016 年熊本地

震に伴って阿蘇火山からの地下水放出量が増加した

ためと報告している．  

 
Fig. 1 (a) 解析対象範囲，(b) 対象地域の

範囲（黒点線）および本地域における大よその地

下水位流動方向（水色の矢印），2016 年熊本地震

の震源位置（黄色星印）．(c) 対象地域における地

表地質． 
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Fig. 2 2007 年 1 月 7 日から 2011 年 3 月 5

日に南行軌道で取得された ALOS/PALSAR データ

による地表変動．(a) 長期的な地表変動パターンの

最初の 1 年間の変動量，(b) 季節的な地表変動の大

きさ． 
 

4. 解析結果 
 
2007 年 1 月–2011 年 3 月の PALSAR データを用いて

解析した結果を Fig. 2 に示す．Fig. 2a は時間的に指

数関数で表した地表変動モデルで得られた長期的な

地表変動の最初の 1 年間における地表変動量であり，

Fig. 2b はサイン関数で表した季節性の地表変動の大

きさを表す．GNSS との比較においては，長期的な

地表変動の誤差の絶対値は 0.30 cm であり，季節性

地表変動の大きさの誤差の絶対値は 0.15 cm であっ

た． 

 
Fig. 3 2016 年 4 月 18 日から 2018 年 12 月

10 日に南行軌道で取得された ALOS-2/PALSAR-2
データによる地表変動．(a) 長期的な地表変動パタ

ーンの最初の 1 年間の変動量，(b) 季節的な地表変

動の大きさ． 
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Fig. 4 2016 年 7 月 1 日から 2018 年 12 月

30 日に南行軌道で取得された Sentinel-1 データによ

る地表変動．(a) 長期的な地表変動パターンの最初

の 1 年間の変動量，(b) 季節的な地表変動の大きさ． 

 
Fig. 5 Sentinel-1 の北行軌道と南行軌道の

データから得られた(a)準上下方向および(b)準東西

方向の地表変動（長期的な地表変動パターンの最

初の 1 年間の変動量）． 

続いて，2016 年熊本地震後の長期的および季節性の

地表変動量の傾向について議論を行う．Fig. 3a およ

び 3b は 2016 年 4 月から 2018 年 12 月における

PALSAR-2 の南行軌道で取得されたデータから得ら

れた長期的な地表変動の最初の 1 年間における地表

変動量と季節性の地表変動の大きさである．GNSS
観測点との比較を行ったところ，長期的な地表変動

量の誤差の絶対値は 0.12 cm であり，季節性の地表

変動量の誤差の絶対値は 0.072 cmであった．また，

Sentinel-1 の南行軌道で得られたデータによる地表

変動（長期的な地表変動の最初の 1 年間における変

動量と季節性の地表変動の大きさ）を Fig. 4a および

Fig. 4b に示す．GNSS で得られた地表変動量との比

較では，長期的な地表変動量の誤差の絶対値は 0.19 
cm であり，季節性の地表変動量の誤差の絶対値は

0.027 cmであった． 
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PALSAR-2 および Sentinel-1 の南行軌道から得られ

たデータの PS 干渉 SAR 解析結果は整合しているこ

とが分かる．長期的な地表変動量の傾向としては，

布田川–日奈久断層帯の北部において衛星に向かう

方向の地表変動が得られている．一方，解析地域の

中央部周辺（Figs. 3 および 4 における I）および西

部の海岸付近（Figs. 3 および 4 における II）では，

両データともに衛星に遠ざかる方向の地表変動が推

定されている．I における最初の 1 年間の地表変動

量は約-1.1 cm（負の値は衛星から遠ざかる方向を示

す）であり，II では約-2.0 cmであった．季節性の地

表変動量においては，両データともに解析範囲の中

央部および北部（Figs. 3 および 4 における III）にお

いて，約 0.5 cmの大きさで発生していることが分か

った． 
 Sentinel-1 の南行軌道と北行軌道のデータから得ら

れた長期的な地表変動の最初の 1 年間の変動量を用

いて 2.5 次元解析を適用した結果を Fig. 5 に示す．

本研究で用いた Sentinel-1 の北行軌道のデータの期

間は 2016 年 11 月 16 日から 2018年 6月 15日であり，

本研究で用いた南行軌道のデータの全期間よりもや

や短い．そのため，2.5 次元解析では，南行軌道に

おいても 2016 年 11 月 22 日から 2018 年 6 月 9 日の

間のデータの解析結果をもちいて，北行軌道のデー

タの期間と大よそ一致するようにした．Fig. 5 より，

最初のデータは 2016 年熊本地震より 7 か月後であ

るが，上述の I および II における衛星から遠ざかる

方向の変動が捉えられている．また，この衛星から

遠ざかる方向の地表変動は，主に沈下方向の地表変

動であることが，2.5 次元解析結果より分かった

（Fig. 5）．また，布田川断層帯周辺の地表変動は，

東西方向の地表変動も有することが分かった． 
PALSAR-2 と Sentinel-1 の地表変動がどの程度整合

しているか定量的に評価するため，観測された地表

変動量が主に鉛直方向の成分である（準東西方向の

地表変動の差の絶対値が 0.05 cm 以下である）地点

において差を計算した．準東西方向の地表変動量は

上述の 2.5 次元解析の結果を用いた．その結果，

PALSAR-2 と Sentinel-1 の南行軌道のデータから推

定された年間地表変動の差の平均は 0.55 cm であっ

た．また，PALSAR-2 の南行軌道と Sentinel-1 北行

軌道のデータの年間地表変動量の差の平均は 0. 54 
cmであった．Sentinel-1 の南行軌道と Sentinel-1 の北

行軌道のデータから得られた年間地表変動量の差の

平均は 0.24 cm であった．この値は，[11] によるイ

ンドネシアバンドン平野における同様の比較が 0.75 
cm であったことを考えると，よい精度で地表変動

を推定できていると言える．また，本研究で議論を

行う地表変動（例えば，Figs. 3, 4, 5 における I, II, III
の変動）は誤差より十分に大きいと言える． 
 

5. 地表変動から分かる地下水システムの変化 
 
大規模な地震に伴い，地下水位が変化する事例はこ

れまでに多く報告されている [12] [13]．この地震に

伴う地下水位の低下のメカニズムは，間隙水圧の変

化 [14]や浸透性の変化 [15]，クラックの膨張 [16]等
の複数要因が指摘されている．ただし，このような

地下水位変化に起因する地表変動を捉えた事例は，

間隙水圧の変化については，[14]や[17]などがある

が，それ以外については，浸透性の変化に伴う地下

水位変化による地表変動の可能性を[8]で指摘してい

るのみであり，地震と地下水位変化，地表変動との

相互作用について明らかになっていない点も多い． 
2016 年熊本地震後の熊本地域の地表変動の一部は，

[18]や[19]によって，下部地殻及び上部マントルの

粘弾性変形により説明がされている．これは，地震

による応力変化に伴って，下部地殻や上部マントル

が粘弾性的に変形し，地表変動に表れるものである．

これらの先行研究では，粘弾性変形をする深度は約

20–80 kmと推定されている．本研究で捉えた局所的

な地表変動（Figs. 3 および 4 における I, II, III）は数 
km の空間スケールの地表変動であるため，広域に

表れる粘弾性変形では説明がつかない．また，震源

断層が地震後の非地震性のすべりを起こすことによ

って地表変動が発生することも知られているが，

Figs. 3 および 4 の I, II, III での地表変動の空間パタ

ーンは震源断層の形状と合っていないため，このよ

うなメカニズムでも説明が難しい． 
一方，地下水位変化に伴う地表変動である蓋然性が

高いと考えている．I の地域では，2016 年熊本地震

の本震の地表変動の解析により，地表面の亀裂が捉

えられている [20]．また，この亀裂が生じた場所に

おいて，4.74 m の地下水位の低下が観測されており，

この地下水位の低下は，2.7×107 m3 の体積量の地下

水位が放出されたことが得られている [21]．本研究

で沈下が観測された地域は，亀裂発生地域および地

下水位が低下域と整合しており，地下水位の低下に

伴う地表変動と解釈できる． 
解析地域東部（II の地域）で推定された沈下域では，

2016 年熊本地震後に地下水位が 1 mほど上昇してい

ることが分かっている．この沈下と地下水位の上昇

は，液状化によって説明することができると考えら

れる．沈下が推定された地域では，2016 年熊本地震

後に液状化に伴う噴砂が確認された地域である． 
熊本地域の地下水位は季節性のパターンを示すこと

が知られている．降雨量は 6 月から 8 月ごろに増加

し，地下水位も 6 月から 10 月ごろに増加の傾向を

示す．本研究で捉えた季節性の地表変動（Figs. 3, 4
の III の地域）の周期は，地下水位の周期と大よそ

一致しており，地下水位変化に伴う季節性の地表変

動を捉えたものと考えられる．ALOS/PALSAR の解

析では，この季節性の地表変動が十分に捉えられて

いない点を考えると，2016 年熊本地震以降にこの季
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節 性 の 地 表 変 動 が 発 生 し た 可 能 性 お よ び

ALOS/PALSAR の解析期間以降の本研究で解析を行

っていない期間に季節性の地表変動が発生し始めた

可能性がある． 
 

6. まとめ 
 
本研究では，ALOS/PALSAR，ALOS-2/PALSAR-2 お

よび Sentinel-1 の SAR データを用いて，2007 年 1 月

–2011 年 3 月および 2016 年 4 月–2018年 12月におけ

る熊本地域の地表変動をマッピングした．また，地

下水位の変化と地表変動が関連することを示した．

本研究の成果は，熊本地域の地下水モニタリングへ

の干渉 SAR 時系列解析のモニタリングの有効性を

示すとともに，本手法が地震による地下水位変化へ

の理解を深める点においても有効であることを示し

ていると考えている． 
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1. INTRODUCTION

Detritical and evaporitic environments known as salt flats
or salars evolve following physicochemical processes
(crystal growing, precipitation, dissolution, others) that
are not dominant or even present in other widely-studied
environments such as soils, ice, and oceans.

This study is aimed to analyze the behavior of SAR
backscattering over a highland salt flat using
multitemporal analyses with Sentinel 1 (5.40 GHz, 5.55
cm) and ALOS 2/PALSAR 2 (1.23 GHz, 24,3 cm).
Dual-frequency SAR images allow capturing information
at different depths according to the wavelength of
operation. Microwave response of halite crystal
aggregates is linked to surface roughness of the salt crusts
by means of the single-scattering surface-only model
Integral Equation Model with multiple scattering at
second order (IEM2Mc) and two-layer scattering model
based on the second-order scattering solution of the Small
Perturbation Model (SPM) in media with complex
permittivity such as the brine-soil mixtures found in
salars.

2. MATERIALS AND METHODS

2.1 Study Area

The Salar de Aguas Calientes Sur is a 476 km2 salt flat
located in the high puna of northern Chilean Andes
(67°41'16"W/23°58'27"S), at an altitude of approximately
4,000 m (Figure 1). The containing basin is endorheic and
intra-volcanic. Overall, the northern and southern margins
have shallow lakes. The most abundant evaporitic
minerals found in the salt flat are gypsum and halite. To
the west it is located the Salar de Capur and to the east the
Laguna Tuyajto.

In Andes Highlands, geographical and climatic conditions
are particular with two winter seasons per year (Altiplanic
and austral winter), facing snow falls and strong winds.
These features are underexplored with SAR in other salt
flats.

Field observations and morphological analysis over the
Salar de Aguas Calientes Sur were conducted on April 3,
2018 (Figure 2). Field observations showed highly
heterogeneous pan crust environments that could be

grouped into three different crust types.

The first is a hard crust (referred to as hard pan crust 1
(Figure 2(a)) formed primarily by gypsum, halite and
detrital particles. It is characterized by an irregular
concave shape, uplifted rims, and salt enrichments
crystallized as granular forms and thin sheets covering the
gypsum pan over the borders indicating that most of the
time remains not flooded. These salts with granular form
indicate that they were formed from evaporation and rise
of brines by capillarity. This crust surface is rough over
microwave scales from millimeter to centimeter such that
of the sensors Sentinel 1 and ALOS 2.

Figure 1: Sentinel 1B image, VV polarization in
decibels (dB), acquired on April 3, 2018 over the study
area. Location and boundary of the Aguas Calientes
Sur salt flat is shown in light yellow.

The second crust type is referred to hard pan crust 2
(Figure 2(b)), and it is distributed along the east edge of
the salt flat, formed by gypsum and halite containing
cavities that indicate dissolution of salts due to infiltration
and percolation of water causing loss of stiffness. The
surface is somewhat soft, as can be noted from the
footprint tracks left over as seen on the right in Figure
2(b).
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A third salt crust with soft consistency is distributed over
the northwest and southwest (Figure 2(c)). Almost flat
with mud-crack polygons that contain a mixture of
moistened salts, mainly halite, and some gypsum. The
polygons indicate water loss after flooding events. This
crust is over a lower part of the pan so that it is easily
flooded. Its surface appeared smooth to microwave
frequencies.

Towards the north and south of the salt flat, a few
perennial lagoons are observed. The permanent inflow
prevents them from drying out entirely by evaporation.

In the rest of the salt pan, the deposition of halite and
gypsum crystals through evaporation and the following
halite growth by the upward movement of capillary water
plays an essential role in the temporal variability of the
backscattered signal on the surface of the salt flat.

Figure 2: Types of salt crust observed in the field on
April 3, 2018. (a) Upper panel: Hard pan crust 1,
mixture of salts and sediments (rough surface); (b)
Center panel: Hard pan crust 2 (gypsum and halite);
(c) Bottom panel: Soft pan crust with contents of
organic matter and thrust polygons by interaction
with water.

2.2 Multitemporal SAR data

Sentinel 1A/B (C-band, 5.55 cm) and
ALOS-2/PALSAR-2 (L-band, 23.4 cm) sensors provided
the SAR imagery for this study. The former was acquired
in Interferometric Wide Swath (IW) mode, level 1
processing, and Ground Range Detected (GRD) with a
spatial resolution of 20 m x 22 m (range by azimuth) and
a swath width of 250 km. The latter in StripMap (SM)
Fine [10 m] mode with a spatial resolution of 10 m and a
70 km swath. The Sentinel 1 dataset encompasses five
scenes per month from July 1, 2017 to December 29,
2018, in dual polarization (VV and VH) and ascending
passes. In the same period, ALOS-2/PALSAR-2 dataset
has three images in HH and HV polarization in ascending
orbit.

For Sentinel 1, image processing started with usual
preprocessing steps such as orbit correction and thermal
noise removal. Then, Sentinel and ALOS images are
radiometrically calibrated. Subsequently, a Refined Lee
filter with a 7x7 pixel window was used to improve
radiometric quality. Finally, the geometric terrain
correction was applied by assigning the digital elevation
model SRTM 1Sec HTG and bilinear interpolation,
resulting in an image with a nominal pixel size of 10 m x
10 m. As a final product, output bands of backscattering
coefficients σ0 for Sentinel 1 (VV, VH) and
ALOS-2/PALSAR-2 (HH, HV), along with their
corresponding local incidence angle, were generated.

2.3 Microwave rough-surface scattering model

The Integral Equation Model with multiple scattering at
second order for complex-permittivity media, referred to
as IEM2Mc [Alvarez-Perez 2012] is the name given to an
improved, enhanced version of the Integral Equation
Model originally developed by Fung [Fung 1994] to
describe rough-surface scattering in the field of radar
remote sensing for Earth observation. Surface parameters
for IEM2Mc are complex dielectric constant, surface
standard deviation s, power spectrum and correlation
length l. Research on dry salt lakes suggested that s/l~0.10
[Aly 2007, Lasne 2008, Liu 2016], with s on the
millimeter scale. An exponential power spectrum is
known to better fit natural surfaces [Barber16].

2.4 Microwave two-layer scattering model

In this work, the small perturbation method SPM will be
used, which is based on solving Maxwell's equations in a
perturbative way. A remarkable result is that, at second
order perturbations, the SPM conserves energy [Johnson
1999, Demir 2003, Tsang 2004]. Furthermore, this model
can be used both to solve the EM scattering problem only
with a rough interface and in a layered medium. In the
latter case, the scattering geometry includes volume
scattering effects [Tabatabaeenejad 2006, Demir 2012]. A
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schematic view of the two-layer model is shown in Figure
3. Layer parameters are the same as the one surface case
but adding the layer depth d.

Relative dielectric constant of primary constituents of dry
lake saline soils are silicates (ε=5.90), halite (ε=4.48), and
gypsum (ε=6.88) [Wadge 2003], all exhibiting a
negligible imaginary part and a frequency-independent
behavior in the microwave band [Ulaby et al., 2014,
4-8.1]. The dielectric loss in the media is entirely given by
the brine under the dry lake floor through salts dissolved
in the water therein. Salinity of the water is expressed in
psu which is approximately equal to parts per thousand of
solid salt in grams dissolved in 1 kg of solution.

Fig. 3: Layer distribution within the salt flat volume.

Over the study area, subsurface brine salinity ranges
between 2 and 45 psu as reported in 2013 by [Troncoso
2013]. A salinity of 66 psu was measured recently in the
northern lake.

The brine layer within soil is a mixture consisting of solid
particles and saline water allocated within soil's pores. A
simple mixing model is used for modeling complex
dielectric constants of saline soils. The dielectric constant
of saline soil (εss) was calculated using the dielectric
values calculated for dry soil (εds) and saline water (εsw)
following [Ulaby et al., 2014], each weighted by its
respective proportion of the combined mixture,

εss = (1-φ)εds + φεsw (1)

where φ is the medium's average porosity. Typical
average porosity ranges 0.34-0.45 [Lasne 2008]. In
Equation (1), εsw is a function of frequency, salinity and,
to a lesser extent, soil temperature. Table 1 summarizes
the computed dielectric constants for each layer at the two
study frequencies.

TABLE 1. Dielectric constant of media modeled after
Ulaby 2014.

Frequency
[GHz] Medium Relative dielectric constant

5.40 1 (dry) 4.23+0i (lossless)

5.40 2 (saturated) 28.8+7.32i - 22.0+16.6i

1.23 1 (dry) 4.23+0i (lossless)

1.23 2 (saturated) 31.0+1.82i - 23.4+53.1i

4. RESULTS

4.1 Multitemporal analysis

Time series of Sentinel 1 VV-polarized and ALOS-2 σ0

over the three crust types mentioned in Section 2.1 is
shown in Figure 4. Precipitation information is also
shown as a bar plot for rainfall and as occurrence
instances for snowfall.

Fig. 4: Dual-frequency temporal backscattering
observed over the salt pan. Sentinel 1A (magenta) and
Sentinel 1B (blue) in ascending passes. VV
polarization is indicated as triangles, and VH are
circles. ALOS-2 is indicated with yellow markers. The
vertical dashed line indicates field visit on April 3,
2018 (see Figure 2). (a) Soft pan crust, the local
incidence angle is between 35.2°-35.4° (Sentinel) and
27.5°-28.4° (ALOS); (b) Hard pan crust 2, the local
incidence angle is between 39.9°-40.1° (Sentinel) and
31.8°-32.0° (ALOS); (c) Hard pan crust 1, local
incidence angle is between 39.2°-39.3° (ascending).
Accumulated rainfall is shown as bars and snow
occurrence is indicated as cross marks above the black
x-ayis.
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In this respect, Salar de Aguas Calientes Sur underwent
an increase in the available water due to continuous
snowfall events and some rainfalls from July to late
September 2017. The availability of water and the
evaporation that followed has driven the formation of
crusts and henceforth the change in surface roughness
detected at C-band. The rainfalls during February 2018
prevented σ0 from further increasing. Over the dry period
that followed, crust development resumed until late June
2018. A third cycle occurred during the dry period after
October 2018.

Changes in the backscattered power showed different
patterns depending on the salt pan spatial distribution and
composition. For type 2 and type 1 hard crusts, Figure 4
(b) and (c), respectively, σ0 increase-and-decrease pattern
accounted for inter-annual wet and dry periods. This is
more evident on the hard pan crust 1, where
backscattering coefficient had a 10-dB-increase between
the flooded and the well-developed crust surfaces in the
five-month period from September 2017 to January 2018.
On the other hand, for the soft pan crust, Figure 4(a),
annual seasonality had little impact on σ0.

In what follows, microwave rough-surface scattering from
modeling is presented for hard and soft pan crust sites.
Modeled against measured σ0 is compared on dates when
L- and C-band measurements are available.

4.2 Rough-surface analysis

Table 2 and 3 indicate σ0 measurements for the rough,
hard pan crust 1 and smooth, soft pan crust. Figures 5 and
6 show contour levels in dB modeled by IEM2Mc
[Alvarez-Perez, 2012]. The contours are computed at
approximated angles 31º and 28º at L-band and 39º and
35º at C-band. The combinations of σ0 at L- and C-band
for in May 2018 is well modeled by the single-scattering
surface-only model, in accordance with a media with
homogeneous profile at several cm depth. On the
remaining dates, the salt pan condition is such that the
scatters dominating the VV polarized σ0 are at the top
surface whereas those of HH are deeper.

4.3 Simulation study for two-layer model

Backscattering coefficients modeled by a two-layer SPM
as a function of the normalized layer distance is shown in
Figure 4. The periodic features are due to a coherent
effect on the layer distance and enhanced responses occur
at certain layer depths. Interestingly, certain combinations
of depths result in HH at L-band close to VV at C-band.
Therefore, sub-surface profiling with L-band is feasible
(i.e. shallow water bed monitoring).

TABLE 2. 𝜎0 measurements for hard pan crust 1.

Date Sensor
(pol.)

Inc. angle
(deg.)

𝜎0
(dB)

11 Sept., 2017 ALOS 2 (HH) 30.9 -20.0

11 Sept., 2017 SENTINEL 1 (VV) 39.2 -18.4

7 May, 2018 ALOS 2 (HH) 30.9 -18.5

9 May, 2018 SENTINEL 1 (VV) 39.2 -11.1

3 Dec., 2018 ALOS 2 (HH) 30.9 -18.2

5 Dec., 2018 SENTINEL 1 (VV) 39.2 -11.4

Figure 5: Contour levels in dB modeled by IEM2Mc
for the hard pan crust. The contours are computed at
approximated angles 31 and 28 at L-band and 39 and
35 at C-band.

TABLE 3. 𝜎0 measurements for soft pan crust 1.

Date Sensor
(pol.)

Inc. angle
(deg.)

𝜎0
(dB)

11 Sept., 2017 ALOS 2 (HH) 28.1 -18.9

11 Sept., 2017 SENTINEL 1 (VV) 35.1 -15.6

7 May, 2018 ALOS 2 (HH) 27.8 -26.3

9 May, 2018 SENTINEL 1 (VV) 35.3 -11.8

3 Dec., 2018 ALOS 2 (HH) 27.6 -22.0

5 Dec., 2018 SENTINEL 1 (VV) 35.1 -18.6
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Figure 6: Contour levels in dB modeled by IEM2Mc
for the soft pan crust. The contours are computed at
approximated angles 31 and 28 at L-band and 39 and
35 at C-band.

Fig. 4: Backscattering coefficients for C-band (5.40
GHz), VV-polarized (upper) and L-band (1.23 GHz)
HH-polarized configuration at several incidence
angles using a two-layer SPM.

5. FINAL REMARKS

Research on evaporitic environments can largely benefit
from fully polarimetric data. L-band ALOS 2/PALSAR 2
measurements are combined along with that of C-band
Sentinel 1A/B to study an evaporitic environment in an
highland salar by means of its microwave response.
Disregarding any scattering mechanism other than surface
scattering, previous research has shown that C-band
VV-polarized σ0 has a strong dependence on surface
roughness, whereas the scatters dominating the HH
polarized σ0 are located in the subsurface.

In a previous study [Barber & Delsouc, 2021], a
single-scattering surface-only model showed its
limitations to predict single-frequency (C-band) σ0

measurements assuming that the dominant scatterers are
located on the surface.

A two-layer composite model seemed better suited when
dual-frequency microwave response of a salt flat is
available. The uppermost layer might be of salt crusts
whereas below it a brine-soil layer arises. However,
further research is needed in this way. Due to continuous
support from JAXA, this study will continue under a
EO-RA2 contract on a salt flat in Northern Argentina.
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