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The ALOS Kyoto & Carbon Initiative 
 

Results from Phase 1 (2006-2008) 
 

The ALOS Kyoto & Carbon (K&C) Initiative is an international collaborative project 
led by the Japan Aerospace Exploration Agency, JAXA. The Initiative builds on the 
experience gained from the JERS-1 Global Rain Forest and Boreal Forest Mapping 
(GRFM/GBFM) projects, in which SAR data from the JERS-1 satellite were used to 
generate image mosaics over the entire tropical and boreal zones of Earth. While the 
GRFM/GBFM projects were undertaken already in the mid 1990's, they demonstrated 
the utility of L-band SAR data for mapping and monitoring forest and wetland areas 
and the importance of providing spatially and temporally consistent satellite 
acquisitions for regional-scale monitoring and surveillance. 
 
The ALOS K&C Initiative is set out to support data and information needs raised by 
international environmental Conventions, Carbon cycle science and Conservation of 
the environment. The project is led by JAXA EORC and supported by an 
international Science Team consisting of some 25 research groups from 14 countries.  
 
The objective of the ALOS K&C Initiative is to develop regional-scale applications 
and thematic products derived primarily from ALOS PALSAR data that can be used 
to meet the specific information requirements relating to Conventions, Carbon and 
Conservation. The Initiative is undertaken within the context of three themes which 
relate to three specific global biomes: Forests, Wetlands and Deserts. A fourth theme 
deals with the generation of continental-scale ALOS PALSAR image mosaics. Each 
theme has identified key products that are generated from the PALSAR data including 
land cover (forest mapping), forest change mapping and forest biomass and structure 
(Forests), global wetlands inventory and change (Wetlands), freshwater resources and 
desertification (Deserts). Each of these products is generated using a combination of 
PALSAR, in situ and ancillary datasets.     
 
This report presents results obtained by the Science Team within the first two years of 
ALOS PALSAR operations (Nov. 2006 - Jan. 2009). 
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Abstract—Focusing on northern Australia and specifically the 

State of Queensland, ALOS PALSAR and Landsat-derived 

Foliage Projected Cover (FPC) 50 m strip mosaics were 

investigated for their potential for regional mapping of regrowth 

(non-remnant areas only) and above ground biomass (as a 

surrogate for growth stage) and for detecting dead standing 

timber, either induced naturally or through anthropogenic 

activities.   Whilst approaches to mapping were developed and 

implemented at a regional level, the accuracy of the estimates was 

compromised by the variability in backscatter across and 

between strips.   Current research is focusing on correction of 

mosaics and the collection and collation of new field and airborne 

datasets to support the regional mapping of growth stages, 

primarily between 2007 and 2011.  Comparisons with historical 

JERS-1 SAR are also being undertaken.  

Index Terms—ALOS PALSAR, K&C Initiative, Forest 

Theme, forest growth stage, Queensland, Australia. 

I.  INTRODUCTION 

A. Defining forest growth stage 

All forests can be associated with a growth stage but the 

spatial extent and size class distribution of trees at different 

stages of growth varies.  Where plantations occur or forests 

are re-establishing on previously cleared land, relatively 

homogenous even-aged stands of forests occur.  However, 

heterogeneity in the growth stage is introduced through 

competition and also where forests have experienced 

interrupted succession through processes that are natural, such 

as fires or drought, associated with human activities, such as 

grazing and selective thinning. Variability in the structure of 

forests at different stages of growth is also introduced at 

various scales through differences in physical environment 

and climate. Quantifying forest growth stage, particularly at 

regional levels, is therefore complex.  

In all its forms, knowledge of the forest growth is 

fundamental for a number of reasons.  In particular, regional 

estimation of growth stage can inform on the capacity of 

forests to recover carbon and biodiversity lost previously 

through deforestation and degradation activities.  By 

understanding the impact of past land use and type as well as 

natural processes and events on the regrowth capacity of 

forests, options for greater sustainability of the land can also 

be developed.   

B. Remote sensing of growth stage 

Forest growth is a continuum but stages of growth are often 

described to more simply convey the state of the forest and 

methods, particularly those based on remote sensing data, 

vary. The scale at which forests are observed also impacts on 

the methods used for the description and quantification of 

growth stage using remote sensing data.   

Detailed, albeit spatially limited, observations of individual 

trees and stands (e.g., in terms of height and size class 

distributions) can be undertaken using, for example, fine (< 1 

m) spatial resolution data such as Light Detection and Ranging 

(LiDAR), aerial photography and/or multi/hyperspectral data 

(e.g., Ikonos, Quickbird, CASI [1]).  More commonly, 

however, growth stage is defined using coarser spatial 

resolution optical and/or radar remote sensing data because of 

the requirement for characterisation and mapping across more 

extensive areas (e.g., for commercial forest inventory).    

Many studies focusing on forest growth stage mapping 

have utilised optical remote sensing data, largely because of 

the availability of time-series, which can extend back to the 

early 1970s (in the case of Landsat).  Using these data, the 

stage of growth is often defined on the basis of forest age, as 

estimated by comparing time-series classifications of land 

cover, or by establishing relationships with biophysical 

properties (e.g., height, density, or crown cover) that vary over 

the growth period.  Spectral differences in reflectance may 

also indicate the growth stage as a function of the species 

composition, which may change rapidly as the forest 

regenerates, particularly in tropical environments [2]. Actual 

and relative biomass is also commonly used to indicate growth 

stage, although measures need ideally to be relative to the 



potential maximum biomass for a particular biome and 

environmental envelope.  

With the increased availability of Synthetic Aperture Radar 

(SAR) data from spaceborne sensors, approaches to growth 

stage mapping have varied.  The majority have indirectly 

quantified growth stage by utilising the recognised 

relationship between SAR backscatter and biomass or have 

established relationships with other structural attributes (e.g., 

stem number density, volume; (e.g. [3]), which vary as the 

forests regenerate. Time-series of SAR data have also been 

exploited to track the structural development of forests.  

Options for integrating SAR and optical data for mapping 

regeneration stage have also been considered. As an example, 

[4] combined NASA Jet Propulsion Laboratory (JPL) 

AIRSAR L-band HH SAR backscatter data and Landsat-

derived Foliage Projected Cover (FPC) to map the extent of 

regrowth dominated by Acacia harpophylla (Brigalow) in 

south central Queensland, Australia. Based on the known 

relationship between L-band HV backscatter and biomass, 

several stages of regeneration were mapped.   

C. Project objectives 

The overall objective of the project is to investigate and 

demonstrate the potential of the Japanese Space Exploration 

Agency’s (JAXA) Advanced Land Observing Satellite 

(ALOS) Phased Array L-band SAR (PALSAR), either 

singularly or in combination with optical data, for quantifying 

forest growth stage in northern Australia, focusing primarily 

on the State of Queensland and regenerating forests in 

particular.   The study also sought to establish whether 

measures of growth stage might also be extracted from these 

data, including above ground biomass (relative to potential) or 

the extent of dead standing timber.   

II. BACKGROUND  

A. Vegetation mapping in Queensland 

The survey and mapping of Queensland’s vegetation is a 

major program of the State’s Environmental Protection 

Agency (EPA). The mapping program provides detailed 

information on regional ecosystems in terms of their 

distribution, rate of clearing and conservation status. The 

majority of regional ecosystem information has been produced 

at a scale of 1:100 000 although some coastal areas are 

mapped at a larger (1:50,0000) scale, including parts of 

Southeast Queensland and the Wet Tropics bioregions. Areas 

of non-remnant with vegetation (e.g., young regrowth or 

heavily disturbed vegetation) are not included [6].  For woody 

vegetation to be mapped as remnant, the dominant canopy 

must have > 70% of the height and > 50% of the cover relative 

to the undisturbed height and cover of that stratum and be 

dominated by species characteristic of the vegetation’s 

undisturbed canopy. [20] provides further details on these 

definitions and the methodology used to survey and map 

vegetation in Queensland.  

 

B. Forest growth stages in Queensland 

Prior to European settlement, over 80 % of Queensland 

supported woody vegetation, including a diversity of forests, 

shrubs and heaths [5], with these ranging from tropical 

rainforest to low open mallee.  Much of this vegetation, 

particularly in the northern regions, is still regarded as remnant 

although nevertheless suffers disturbance from natural 

processes (e.g., drought) or events (e.g., fire).   In these areas, 

growth stage is more difficult to define because of the 

complexity of regeneration patterns associated with the 

differential response of species to adverse conditions and their 

capacity to recover, and limited knowledge of the 

characteristics of the mature state.   A number of studies have, 

nevertheless, attempted to establish what is the biomass 

potential of these areas based on both pre-European and 

present-day distributions of ecosystems [6].   Differences 

between these two datasets may therefore provide some 

indication of the growth stage of forests, although factors such 

as fire extent, frequency and intensity are not easily accounted 

for.  

Whilst much of Queensland is still regarded as remnant, 

significant clearing of vegetation has historically occurred in 

the south central and south-eastern regions.  The Brigalow 

Bioregion, for example, has experienced some of the highest 

clearance rates with less than 15 % of forests with brigalow of 

gidgee (Acacia cambagei) as a major component occurring [7].   

Other forest types that are disproportionately affected by 

clearing include flood and other depositional plains, which are 

typically dominated by Eucalpytus species.  Within these 

regions, methods of clearing, and hence the subsequent 

regrowth of woody vegetation, vary.   Where clearing occurs at 

the same time and over large areas, subsequent regrowth is 

often relatively even-aged.  However, where processes such as 

ring-barking or stem injection occur [8], the regeneration is 

more piecemeal.  The species composition and structure (e.g., 

density, canopy cover) of regenerating vegetation vary 

depending upon biogeographic distributions as well as the use 

and management of the land prior to abandonment (e.g., 

burning and reclearance frequency). Variations in topography, 

soils, geology, hydrology and climate also impact upon 

regrowth rates. 

C. Current approaches to mapping growth stage 

Within Australia, mapping of growth stage has commonly 

been undertaken using aerial photography, with young, early 

mature, mature, late mature and over-mature stages often 

defined.  [9] suggested seven classes, with these depending 

largely upon the size, shape and condition of crowns.  

However, the mapping of equivalent classes using spaceborne 

sensors is more difficult and alternative approaches are needed. 

For mapping the extent of early regrowth in areas where 

Acacia dominated, the method developed in [4] was based on 

the premise that whilst such forests typically support an FPC 

equivalent to forests, as defined by the Queensland Department 

of Natural Resources and Water (QDNRW), the size and 

density of stems has to be of sufficient magnitude to evoke a 

response at L-band and particularly at the HH polarisation 



where double bounce scattering between stems and the ground 

surface is prominent. Therefore, the extent of woody regrowth 

was associated with areas supporting an FPC > 12 % 

(approximately equivalent to 20 % canopy cover) but with an 

L-band HH backscatter equivalent to that of non-forest.  The 

accuracy of classification for the Injune study area in central 

south east Queensland, as assessed against hyperspectral 

Hymap data, exceeded 80 %.  

L-band SAR data also showed potential for discriminating 

stages of growth within the mapped area of regrowth.  

Modelling of L-band SAR backscatter from stands dominated 

by A. harpophylla at various stages of growth suggested that 

stems (which occur in clusters) individually have to be at least 

2.5 m in height (which equates to about 2 - 5 cm in diameter) 

for the L-band backscatter to exceed that of non-forested areas.  

The model also indicated that volume scattering at L-band HV 

started to increase where trees were approaching 4 m in height, 

which was attributable to the increase in the size of branches 

within the canopy. The L-band HV backscatter was also shown 

by [10] to be more sensitive to increases in above ground 

biomass compared to L-band HH and provided an avenue for 

quantifying regrowth stage (i.e., by binning biomass classes). 

An alternative approach to tracking the development of forests 

is to utilise time-series of FPC on the assumption that increases 

and changes in spatial distribution of FPC occur as the canopy 

expands, particularly in open forest systems.   

III. STUDY AREA 

Within Queensland, the extent of vegetation has been 

mapped using a combination of historical aerial photography 

and satellite sensor data [11] by the Queensland Herbarium of 

the Environmental Protection Agency (EPA; Figure 1).  Areas 

of vegetation clearance over the period 1988 to 2009 have also 

been mapped on an annual basis by QDNRW. By linking 

clearance data with the distributions of mapped ecosystems, 

losses of vegetation by forest type are determined and areas 

regarded as remnant or non-remnant defined. 

Within this region, the study focused initially on the Injune 

Landscape Collaborative Project study area ([12,13]; Figure 2), 

which is located within the Southern Brigalow Belt. In the late 

1990s and early 2000s, extensive clearance of forests within 

and below the southern section of the Injune study area 

occurred.  However, the areas cleared were difficult to 

maintain as active pasture and extensive tracts of regrowth, 

dominated primarily by brigalow, but also other species such as 

Poplar Box (E. populnea) and Silver-leaved ironbark (E. 

melanaphloia) regenerated. Other areas of regrowth distributed 

throughout Queensland and for which plot-based data had been 

collected, were also identified, with these being associated with 

Acacia-dominated forests but also a range of other forest types.   

 

 
Figure 1).  Mapped distribution of major forest types 

 in Queensland, Australia [6] 

IV. AVAILABLE DATA  

A. Satellite sensor data. 

For northern Australia, ALOS PALSAR fine beam dual 

(FBD) strip data were provided by the JAXA Kyoto and 

Carbon (K&C) Initiative for both 2007 and 2008.  These data 

were provided at 50 m spatial resolution, in slant-range 

geometry, amplitude format, and 64 looks (4 in range and 16 in 

azimuth), with a swath width approximating 70 km.   

 

 
Figure 2).  The location of the Injune Landscape Collaborative Project and 

other regrowth sites in the IBRA bioregion of Brigalow Belt South, 

Queensland. 
 



A regional mosaic of Landsat FPC data was also generated for 

2006 by the Queensland Department of Natural Resources and 

Water (QDNRW) and the analysis focused on only those areas 

associated with non-remnant vegetation. To support the 

mapping of forest growth stages, a number of additional 

datasets were collated or collected including: 

 

a) Compact Airborne Spectrographic Imager (CASI)  

and hyperspectral HyMap data, for extensive areas of 

regrowth within the Injune study area. 

b) Plot-based measurements, including forest inventory 

from the Injune site [13], other regrowth sites 14], and 

through the TRAPS network of permanent plots [15].   

 

These data were used to inform on the location of areas of 

regrowth.  Additional datasets are currently in the process of 

being acquired.  

V. METHODS 

A. Pre-processing of satellite sensor data. 

The ALOS PALSAR strip data were provided in slant 

range geometry, amplitude format, and were converted to 

intensity and calibrated (absolute calibration) using Gamma 

SAR processing software [16]. Geocoding of the strip data was 

undertaken with the Gamma Differential Interferometry and 

Geocoding (DIFF and GEO) suite.  Initially, the geometric 

transformation from image to reference coordinates was 

undertaken by first using orbital state vectors and SRTM-

derived DEM to approximate the position of each image strip 

and, second, establishing offsets between the ALOS PALSAR 

data and a SAR image simulated using the same SRTM-

derived DEM to refine the registration.  In this process, 

correlations were established between a large number of n x n 

windows passed over both images, with those with greatest 

correlation retained.  However, as much of the northern 

Australia has very little significant relief, the refinement of the 

geometric transformation was undertaken (for Queensland 

only) by using Landsat Enhanced Thematic Mapper (ETM+) 

panchromatic mosaics for zones 54 to 56 and the same 

automated cross-correlation procedure. Each strip was then 

resampled using the resulting transformation.  Geocoding 

errors were typically less than < 50 m.  Across track correction 

and mosaicing was undertaken using Gamma and procedures 

developed by the European Commission’s Joint Research 

Centre (JRC). 

The Landsat FPC mosaic was generated using procedures 

outlined in [4,19].  As these were generated using the same 

Landsat sensor data associated with the panchromatic bands, 

the Landsat FPC and other State-wide datasets (e.g., land use 

change, vegetation mapping; several of which were obtained 

using the Landsat sensor data themselves), were also well 

registered and able to be integrated into subsequent analyses. 

B. Mapping regrowth and dead standing timber (non-

remnant areas) 

Within the Brigalow Bioregion, and as observed using 

airborne SAR data, areas of regrowth dominated primarily by 

A. harpophylla, exhibited an FPC equivalent to that of forests 

and an ALOS PALSAR L-band HH backscatter equivalent to 

non-forest.  To map the extent of regrowth, a rule-based 

classification was undertaken within Definiens Developer 

image segmentation and classification software, whereby areas 

defined as forest (FPC threshold > 12 %; equating to a canopy 

cover of ~ 20 %) and with a low (< ~ -14 dB) L-band HH 

backscatter were mapped as regrowth.  Within this mapped 

area, relative stages of regrowth were defined by binning 

biomass values obtained using a relationship established with 

L-band HV backscatter (for low biomass forests). The same 

approach for mapping regrowth was applied to other sites and 

also to the strip mosaic of Queensland (non-remnant areas 

only).   

Based on previous analysis of airborne data [8], areas of 

dead standing timber were identified as having an FPC typical 

of non-forest (< 12 % FPC) and an L-band HH typical of 

forests (e.g., > -14 dB), with this combination indicating the 

presence of woody material but no leaves.  

C. Biomass estimation 

For the local study areas and also for the full mosaic, 

above ground biomass (B) was estimated using a modification 

of the algorithm of [18], which included only the L-band HH 

and HV backscattering coefficient (!o) such that: 

 
Ln (B) = a0 + a1!

oHH + a2!
o(HV)2 + a3!

oHV + a4!
o(HV)2  (1) 

 

where a0 to a4 represent equation coefficients and !o represents 

the backscatter coefficient (dB). The algorithm was re-

parameterized by including measures of biomass collected for 

regrowth and intact forest sites (e.g., the permanent plot data 

acquired as part of the TRAPS network).    

VI. RESULTS 

A. Regional mosaics of ALOS PALSAR and Landat FPC 

For Queensland, combined mosaics of Landsat-derived 

FPC and ALOS PALSAR HH and HV data were generated 

using both the 2007 and 2008 (Figure 3) acquisitions.  Whilst 

at a regional level, the mosaic evidently suffers from the 

across track variability and the between-image differences 

(including, although to a far lesser degree, that associated with 

the Landsat FPC), unique information on vegetation and other 

surface structures is apparent within subsets of the mosaic (see 

example in Figure 4).  Refinement of the strip correction and 

mosaicking process is ongoing with a view to generating a 

more seamless mosaic with standardized backscatter values.    

Based on SAR simulation [13], L-band microwave 

interactions associated with the HH and HV data are primarily 

the result of double bounce scattering with the trunks and 

volume scattering from larger branches, respectively.   By 

contrast, FPC is directly retrieved from Landsat sensor and 

ancillary (e.g., climate data; [19]) data and provides a 

quantitative a measure of foliage cover.  The combination of 

these within the mosaic therefore provides a new regional data 

layer which can assist characterization and mapping of a range 

of forest structural types, including growth stage (particularly 



regeneration stage and standing dead or senescent timber).   

Unique information on the distribution and characteristics of 

wetlands (including mangroves) is also provided. 

 
a) 

 
Figure 3) Landsat FPC and ALOS PALSAR L-band HH and HV mosaic of 

Queensland and b) a forested area in southern Queensland showing areas of 

closed tropical forest (pink), coastal mangrove (orange) and wooded savanna 

(shades of red and green)  

 

 
Figure 4) Landsat FPC and ALOS PALSAR L-band HH and HV mosaic of a 

forested area in north east Cape York Bioregion, Queensland, showing areas 

of closed tropical forest (pink), coastal mangrove (orange) and wooded 

savanna (shades of red and green)  
 

B. Regrowth extent and growth stage, Injune 

For the Injune study area, composites of Landsat FPC and 

L-band HH and HV data (in RGB respectively) were 

generated (Figure 5) which highlighted areas associated with 

regrowth (red).   

 

 
Figure 5).  Subset of Landsat-derived FPC mosaic and ALOS HH and HV 

mosaics in RGB showing areas occupied by dead standing timber (green).   

Remnant vegetation supports higher FPC and  

HH and HV returns (shades of white). 

 

For non-remnant forests, a diversity of information on the 

structure of forests within these three data layers was 

particularly evident.  The map of regrowth extent and 

classification of two growth stages (Figure 6) within areas 

defined as non-remnant vegetation showed a close 

correspondence with the distribution observed within the 

composite image. The distribution was also similar to that 

mapped previously using a combination of AIRSAR L-band 

data and Landsat FPC over the study area. 

 



 
Figure 6). Classification of remnant forest (dark green), non-remnant forest 

(light green), early regrowth (orange) and late regrowth (red; see inset in Figure 

5)  

 

Preliminary regrowth maps have also been generated for 

areas regarded as non-remnant (i.e., previously cleared) in 

Queensland.  Whilst a general correspondence between the 

mapped distributions of regrowth with field data and 

observations was noted, some discrepancies were observed. In 

particular, confusion between the early stages of regrowth and 

other vegetation types, including understorey vegetation, sand 

dune vegetation, heathlands and low mangroves led to the 

overestimation of regrowth extent.  Older stages of regrowth 

or those occurring within areas with older remnant trees were 

also less well mapped.  The variability in overall forest 

structure, which is largely associated with different species 

dominating regrowth and the spatial patterns of regeneration, 

was also considered responsible for the inconsistencies in 

classification, which are currently being investigated.  

 

C. Dead standing timber 

Preliminary assessments of the distribution of dead standing 

timber were undertaken for selected areas with ground 

information with a view to extrapolating to the wider area 

following correction of the ALOS PALSAR mosaics.  Areas of 

of dead standing timber are noticeable in Figure 5 (dark green).  

Additional areas are being investigated with a view to regional 

mapping in Phase 2. 

 

D. Biomass estimation 

Using 10-fold cross validation, the model for retrieving 

biomass yielded a root mean square error of 28.5 Mg ha
-1

 and a 

coefficient of determination between observed and predicted of 

0.48.  Errors in the model were associated with discrepancies in 

the timing of the acquisitions of ALOS PALSAR and field data 

and also to within (across track) and between differences in the 

image data.  Such issues are currently being addressed in Phase 

2. 

This model was nevertheless applied to the ALOS 

PALSAR 2007 and 2008 mosaics of Queensland to generate a 

preliminary map of biomass (Figure 6).  The mapping largely 

reflected the known distribution of biomass within the region, 

with greater amounts associated with forests on the coastal 

regions towards the north and west of Australia.  However, the 

biomass of many of the subtropical and tropical forests was 

under-estimated and this was attributed to the algorithm being 

developed primarily using data obtained for wooded savannas. 

The upper range of biomass (approximated here at 150 Mg 
ha-

1
) is uncertain because of saturation of L-band SAR. 

Discrepancies are clearly associated with variation within and 

between strips. 

Our studies using airborne data have suggested that 

different algorithms need to be developed and applied as a 

function of the structure of the forest (and particularly in 

relation to canopy closure). For this reason, revisions of the 

algorithm are being undertaken in Phase 2 using new 

collations of existing field data acquired over periods 

corresponding to past and future ALOS PALSAR acquisitions.  

New field and airborne (e.g., LiDAR) data acquisitions are 

also being conducted in 2009 to support this analysis. 

VII.  DISCUSSION 

A. Overview 

Consideration of the differential interaction of microwaves 

with different components of the forest volume is important in 

understanding how and why different forest growth stages 

may be differentiated and mapped using SAR data.  The 

following provides an overview of observations using airborne 

multi-frequency polarimetric SAR data and then discusses 

these in the context of mapping biomass, regrowth, dead 

standing timber from ALOS PALSAR data.   

 

B. Microwave interactions 

For most forests with a full canopy, a high C-band backscatter 

is typically observed, primarily because of volume scattering 

from the leaves and small branches [13].  In many ways, these 

data provide similar information as the Landsat FPC.  

However, for forests to be observed within lower frequency L- 

and P-band data, the size (diameter and also length) and 

density of stems have to be sufficient to evoke a response.  

This is highlighted below using two examples from woody 

savannas (Lucas et al., 2006b).   

In the first example, areas of regrowth and more mature 

forest are not distinguishable at C-band (and also within 

Landsat FPC data) because the amount of foliage and small 



branches in the canopy is similar.   However, the L- and 

particularly the P-band backscatter from the younger regrowth 

forests is lower compared to the mature forest because there is 

an insufficient amount of woody material for double bounce or 

volume scattering mechanisms to fully operate.   In the second 

example, medium size (e.g., 5 - 10 cm diameter) trees (as 

delineated within hyperspectral data) are observed at L-band 

but not at P-band, suggesting that even less and perhaps a 

significant proportion of the woody material remain 

undetected.   

This knowledge can assist with interpretation of 

relationship between backscatter and biomass.  In closed 

forests, for example, saturation occurs above a certain level of 

biomass density as no increase in backscatter with biomass is 

observed.  In more open forest, however, the same magnitude 

of backscatter may not be attained because of the lack of 

interaction with woody material below a certain size and 

density. At P-band HV, for example, ‘saturation’ within 

wooded savannas is observed at about 65 Mg ha
-1

 [10], which 

is lower than that typically observed for closed forests (100-

150 Mg ha
-1

) simply because the P-band is only showing 

sensitivity to the larger woody components and many of the 

smaller trees and components are simply not observed. The 

relatively wide spacing of trees may also reduce the overall 

backscatter as greater interactions with the ground surface 

occur.  

Other factors also complicate interpretation.  For example, 

as a greater amount of backscatter returns from ground 

interactions occurs in more open forests, rainfall and 

associated increases in soil moisture can also increase 

backscatter and give a false impression of increased biomass.   

Backscatter also increases with surface roughness and, 

particularly in areas of rocky terrain, can lead to inaccuracies 

in biomass retrieval.  

 

C. Biomass estimation 

For wooded savannas of relatively low biomass, and 

depending on their structure, L-band microwaves are well 

suited for estimating biomass because of greater interaction 

with a wider range of size classes (i.e., of woody branches and 

trunks).  Differences in the biomass-backscatter relationships 

as a function of canopy closure are currently being evaluated 

but indicate that different algorithms are required for 

estimating the biomass of open and closed forests.   This is 

partly evident from Figure 8 where many of the higher 

biomass tropical and subtropical rainforests on the east coast 

are (incorrectly) not associated with a high biomass value.   

However, wooded savannas known to support higher biomass 

values (e.g., the west coast of Cape York) have been 

identified.    

Whilst the current algorithm has been developed for 

retrieval of biomass without consideration of forest type, the 

formulation of separate algorithms for open and closed forests 

is anticipated.  However, the following needs to be 

undertaken:   

 

 

a) 

 
b) 

 
Figure  8.  Preliminary estimates of biomass for top) Queensland and bottom) 

north Cape York based on ALOS PALSAR data acquired in 2008  

a) A range of field-based biomass data needs to be 

collated and collected for both open and closed forests.  This 

is currently being undertaken with focus on data acquired 

during the period of the ALOS operation.   A proportion of the 



available field data was acquired prior to this period, which 

has led to inaccuracies in parameterization of the algorithm.  

This is particularly an issue in northern Australia where forests 

are dynamic and responding differently to processes such as 

drought, flooding, fires and anthropogenic disturbance.   

b) Scatter in the relationships between L-band data and 

biomass attributed to variations within (due to cross track 

effects) and between the ALOS PALSAR images/strips needs 

to be reduced through better correction of the data. 

D. Regeneration stage 

The combination of L-band HH and Landsat FPC is a 

simple approach to the mapping of regrowth that can be 

applied using image pairs acquired on proximal dates.   The 

main limitation is the inconsistency of the approach between 

regions.   Whilst the approach provides good estimates where 

a relatively closed canopy, such as that typified by brigalow 

occurs, regrowth with sparser canopies or older regrowth is 

more difficult to detect. The approach to mapping is therefore 

being evaluated for a wider range of regrowth types and across 

bioregions.   

E. Dead standing timber 

The combination of Landsat-derived FPC and L-band HH 

data allowed known areas of dead standing timber to be 

mapped. Typically, identified areas were associated with 

clearance for agriculture (particularly grazing) as many trees 

are killed but left standing and a grass layer maintained 

beneath. However, where tree death occurs through natural 

causes such as fire, flooding or drought, regeneration often 

occurs either from the understorey or through epicormal 

growth.  FPC may therefore return to levels associated with 

forest cover after several years of growth.  Confusion with 

woody debris and also rocky outcrops or surfaces also 

occurred, although the ratio of L-band HH and HV assisted in 

discrimination.    

Whilst in theory, the approach to classification should 

provide relatively consistent mapping, the high level of 

variability in the structure of dead standing timber (e.g., in 

terms of size class distributions), the causes of tree death and 

the nature of recovery requires adaption of algorithms which is 

an ongoing process.  Nevertheless, the potential exists for the 

regional mapping of dead standing timber over time which, if 

combined with Landsat FPC and climate data, may provide 

unique insights into the longer-term response of forests to 

natural and human-induced (including climate) change.   

VIII. CONCLUSIONS 

The research has provided a first evaluation of the use of 

the ALOS PALSAR and Landsat-derived FPC mosaics for 

regional mapping of forest growth stage in Queensland, 

Australia.   Options for quantifying the regional extent of 

different stages of early regrowth and standing dead or 

senescent timber have been presented.  An algorithm for the 

estimation of above ground biomass has been formulated and 

applied regionally.  Key highlights of the work are as follows: 

a) The Landsat FPC and ALOS PALSAR HH and HV 

mosaics have provided unique regional datasets that give 

information on different structural attributes of woody 

vegetation (leaves, branches, trunks).   Given the diversity of 

structural formations across Queensland and northern 

Australia in general, which are largely attributable to 

environmental (e.g., climate) gradients, the interpretation of 

these mosaics is complex.  Nevertheless, our studies have 

shown that an enormous amount of information on vegetation 

and particularly growth stage and also structural type, can be 

extracted.  

b) Options for mapping regrowth and dead standing 

timber in non-remnant areas have been provided.  Information 

on the extent of regenerating forests on land cleared of 

vegetation since European settlement (defined as non-

remnant) is required to better understand the recovery of 

forests following clearance and also to determine their relative 

biomass and contribution to regional carbon budgets.  Whilst 

discrepancies in the extent of regrowth were observed, options 

exist for resolving these issues. The extent of dead standing 

timber, particularly over time, is important for understanding 

ecosystem response to climatic variation (e.g., drought cycles), 

particularly if integrated with time-series of JERS-1 SAR data.  

Detection of dead standing timber associated with human 

activities rather than natural events and processes appears to 

be more successful, although options for mapping the latter 

are being considered.    

c) The estimation of biomass from ALOS PALSAR 

dual polarimetric data is feasible although better 

parameterisation of the model is required through use of field 

and airborne-derived estimates acquired over similar time-

periods.   Different biomass retrieval algorithms are therefore 

being developed, at least for closed and open forests.    

Despite these advances, the provision of the regional 

mosaics has raised particular issues in relation to correction of 

the strip data and the availability of appropriate and timely 

ground truth data, particularly given the dynamic nature of the 

Australian forests.   For these reasons, current research is 

focusing on better correction of the strip mosaic data and 

collection of field and airborne data in late 2008/early 2009 

such that more appropriate datasets are used to support the 

development of mapping algorithms.   Such activities include: 

 

a) Reprocessing of the ALOS PALSAR data to reduce 

within (across track) and between strip variation and 

gaining a better understanding of the reasons for such 

variation through reference to meteorological and 

vegetation datasets. 

b) Acquisition of full waveform LiDAR for 20 sites 

covering a range of forest structural types (from sparse 

open woodland to closed subtropical forests) and 

associated collection of ground truth (including 

terrestrial laser scanner data).  Data have already been 

acquired for 19 sites and LiDAR are to be acquired for 

Injune (Site 20) in April, 2009 (9 years following the 

previous acquisition in 2000).  Such data will also then 

be used to establish whether change can be detected 

(e.g., regrowth, tree mortality, woody thickening) 



through time-series comparison of SAR data, and in 

combination with the Landsat time-series. 

c) Focused studies on areas in Queensland associated with 

change.  Examples include the Bunya Mountains where 

woody thickening and rainforest encroachment has 

occurred in recent decades. 

d) The advancement of algorithms for retrieving the above 

ground biomass of forests with modifications for 

closed and open forests. 

 

These activities are being conducted currently and will also 

feed into the interpretation of the 2010 and 2011 ALOS 

PALSAR mosaics to be provided under the K&C Initiative in 

Phase 2.
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Abstract— This paper presents a preliminary assessment of 
ALOS/PALSAR - Kyoto and Carbon Initiative radar images for 
the Brazilian Forest Monitoring Program. Using deforestation 
polygons mapped by DETER project, two ALOS/PALSAR 
ScanSAR images were analyzed considering the capability to 
detect deforestation patterns. Approximately 50% of polygons 
could be detected by ALOS/PALSAR images without 
orthoretification or radiometric calibration. Additional research 
efforts to develop better image products and multi-temporal 
approach should improve the deforestation detection capability. 
Considering the importance and the extension of Amazon forest 
and the cloud cover conditions, ALOS/PALSAR data has a 
strong potential to complement the Forest Monitoring Program. 
Having radar data operational at DETER project would also 
prepare the Forest Monitoring Program to integrate further 
radar data from planned Brazilian satellites – MAPSAR and 
CBERS-7.    

Index Terms—ALOS PALSAR, K&C Initiative, forest 
monitoring, DETER. 

I.  INTRODUCTION 

A. Deforestation and SAR data over Brazilian Amazon  
Early deforestation stages as slash-and-burn practices were 

previously identified at SAR image, L band, JERS sensor as 
spectrally distinct from original forest cover over Brazilian 
Amazon [1]. L Band seemed to be very sensitive to variations 
between deforestation increase and primary forest [2].  

Polarimetric radar data from Mapsar showed also to be very 
useful to detect recent deforestation over Tapajós National 
Forest (Pará), in the Brazilian Amazon [3].  Among 
polarimetric data, HH-HV showed to be the more adequate 
polarization to general forest mapping, it is possible to 
discriminate primary forest, secondary forest, bare soil, 

agriculture and degraded forest [4]. Preliminary investigations 
using ALOS PALSAR images, using only HH polarization, 
over Amazonia, showed distinct responses from slash-and-burn 
practices and also different degradation stages of the forest [5]. 

Comparisons between optical and radar images suggested 
that SAR L-band images are an important and complementary 
information source to land change cover mapping, specially 
over frequent cloud cover areas as Amazonia region [6]. 

This paper describes the project developed at Kyoto & 
Carbon (K&C) Initiative [7] where we assess the use of ALOS 
PALSAR K&C images for the DETER qualification 
procedure as initial steps to introduce ALOS PALSAR 
products at Brazilian Forest Monitoring Program.  
 

B. ALOS Imagery for forest monitoring in Brazil 
At INPE’s Brazilian Amazon Deforestation Monitoring 

Program, the DETER System (the Real-Time Deforestation 
Detection System) [8] identifies and maps deforested areas in 
tropical Amazon forests. This system uses images from 
MODIS sensors on the NASA TERRA satellite and WFI on 
the Brazilian INPE CBERS-2B satellite. With spatial 
resolution limited to 250 meters, the images from these 
sensors allow detection of deforestation in areas greater than 
0.25 km2 (or 25 ha). In DETER, all deforestation identified in 
an image and not previously detected by Legal Amazon 
Deforestation Monitoring Project (PRODES) [9] is considered 
new deforestation, regardless of chronological time. The 
PRODES map, containing deforestation from prior years, 
together with non-forest areas (such as savannah, bodies of 
water and rocky outcrops) is used to eliminate old 
deforestation being identified and counted again. Identification 
of deforestation is performed through photo-interpretation of 



the MODIS image, taking into account only the portion of the 
image that supposedly still contains forest cover. 

Every 15 days, when observation conditions are favorable, 
DETER produces a digital map with all deforestation 
occurrences observed during the preceding period. These 
digital maps containing Alert polygons and tables describing 
them are sent every 15 days to IBAMA (Instituto Brasileiro do 
Meio Ambiente e dos Recursos Naturais Renováveis), along 
with the cloud cover map for the period, thus indicating the 
area to be effectively monitored. The maps for the two halves 
of each month are integrated and, together with the cloud 
cover maps and images for the period, are placed on the 
Internet (http://www.obt.inpe.br/deter/) for consultation, 
where they remain available for download.  

For every month, associated to DETER data, a technical 
report assessing DETER information and results is also 
published on the Internet. Based on cloud free and medium 
spatial resolution images (20 –30m), a sample of DETER 
Alert polygons is qualified.  Multi-temporal and visual 
analysis classify DETER Alert polygons as light progressive 
forest degradation, moderate progressive forest degradation, 
high intensity forest degradation, clear cutting, or non-
confirmed deforestation. Qualification results provides basic 
information about types of deforestation mapped by DETER 
and data accuracy, considering also the information about 
polygons area. From May to August, 2008, an average of 91% 
of DETER Alert polygons were confirmed as deforestation 
[10]. Data from field observation is also periodically obtained 
to improve DETER methodology and data evaluation [11]. In 
September 2008 INPE team went for a field expedition along 
the southwest of Para. With IBAMA collaboration, DETER 
Alert polygons were checked from a helicopter flight.        

This qualification of DETER Alert polygons using optical 
remote sensing imagery is strongly limited by the cloud cover 
over the Amazon region. 

A preliminary but essential application for ALOS 
PALSAR K&C images for deforestation monitoring could 
reside in qualifying DETER Alert polygons procedures. It is 
not expected that PALSAR imagery would provide 
information about different deforestation intensity, as it is 
usually detected by optical images and multi-temporal 
approach. However, radar backscatter data provides 
information about general forest cover condition:  

 Deforested areas older than one year (PRODES 
mapping) presented dark patterns at L-band SAR; 

 Less than one year deforestation (PRODES mapping) 
are detected at L-band SAR as lighter areas; 

 Very recent deforestation mapped by DETER 
Program is discernible at L-band SAR as lighter 
polygons. 

 Besides the clear-cut pattern, forest degradation is also 
detected with PALSAR Fine resolution data.  

 

II. DESCRIPTION OF THE PROJECT 

A. Relevance to the K&C drivers 
The use of ALOS imagery operationally at DETER system, 

as an improvement of the forest monitoring system, is in 
according to the Conservation thematic driver outlined in the 
K&C Science Plan [12]. To effectively monitor deforestation, 
specially over frequent cloud cover areas, ALOS information 
will be very helpful to define policy and plans of actions, either 
for carbon emission reduction or conservation strategies.  

 

B. Work approach 
This project was conducted in two parts. Initially, we had to 

assess ALOS PALSAR K&C imagery for deforestation 
detection. Secondly, some methodological development was 
needed to specify image processing to define the products and 
procedures. By the time that we finish the studies and the 
products and procedures tested and validated, we will be able 
to introduce PALSAR data operationally in the Forest 
Monitoring Program.  

Although ALOS PALSAR Fine Mode provided an 
excellent spatial resolution to detailed study sites, ScanSAR 
data were preferred because these images cover larger 
extensions, essential capability when considering the Amazon 
forest as area of interest. Parallel to the image processing 
development to improve radiometric and geometric precision, 
we compared the ability of ScanSAR images to deforestation 
detection obtained from DETER system.  
 

C. Satellite and ground data 
For this analysis, the ALOS-PALSAR ScanSAR image of 

August 30, 2008 (WB1, HH polarization, slant range KC_003-
21406N09S21WB1SLT1) was georeferenced (resampled to 
spatial resolution of 50 m) based only on the image acquisition 
parameters (geo_factors) with SARSCAPE software, 
converted to 8 bits tiff file to be integrated with deforestation 
data sources using geographical information systems 
developed by INPE (SPRING and TERRAVIEW).  Every 
clear-cut polygon was visually interpreted over the PALSAR 
image, seeking to identify differences in the radar signal as 
lighter digital values, linear boundaries, or patterns different 
from the forest background and the darker pattern from older 
deforested areas. Comparing to radar forest backscatter, clear-
cut areas present lighter patterns in PALSAR images. 

DETER Alert polygons from May to August 2008 checked 
during the fieldwork (September, 2008) were superposed to a 
PALSAR K&C image from August (Figure 1). All of the 
analyzed DETER polygons referred to clear-cut deforestation, 
comprising areas that will be mostly converted to pasture, 
located at municipalities of Itaituba, Novo Progresso and 
Altamira (PA) (Figure 2). 

located at municipalities of Itaituba, Novo Progresso and 
Altamira (PA) (Figure 2).   
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  Figure 1. INPE Fieldwork location. Helicopter flight route over (a) Landsat-TM colour composition, and  (b) ALOS ScanSAR image (WB1-HH–083008). 

Municipalities of Altamira, Novo Progresso and Itaituba – state of Pará, Brazil.  

 

 
Figure 2. Example of Clear-cut Deter Alert polygons over ALOS ScanSAR image (WBS-HH–083008). Deter polygons from June (light blue), July (dark 

blue) and August (black) in a region close to Curuá River (Altamira-PA). 
 

A second analysis were performed observing only DETER 
Alert Polygons for September 2008, over ALOS PALSAR 
ScanSAR image from October (10-15-2008), with the same 
methodological procedure. This analysis simulated the use of 
ALOS PALSAR at an operational approach.  

III. RESULTS AND SUMMARY 
Considering the methodological part of this project, we 

first managed to develop a tool to store and recover every 
image from K&C project. An automatic procedure was 
implemented to regularly access JAXA ftp sites and organize 
the ALOS PALSAR K&C available images in a database. 

Using a web portal, credentialed users can consult the 
downloaded images by date, polarization or central 
geographical coordinate (Figure 3). The image swath can be 
visualized and the selected images can be ordered to the 
database manager. As soon as JAXA authorizes, this portal 
can be open to the Brazilian scientific community to freely 
access this PALSAR image database.  

The analysis of ALOS ScanSAR images for deforestation 
detection indicated the need of additional methodology, 
described after the Deter comparison results. 

 
 

 



  
 

Figure 3. Web Portal to select ALOS PALSAR K&C images, verifying scenes coverage (http://www.dpi.inpe.br/sima/bancos/) 
 
Considering only clear-cut DETER Alert polygons verified 

in the fieldwork (a total of 67 polygons, from May to August, 
2008), ALOS-PALSAR images could register difference in 
image response for only 55.22% of the clear-cut polygons 
(Table 1).   

 
 Table 1 – ALOS-PALSAR ScanSAR image assessment for DETER clear-

cut polygons verified during the fieldwork. 
 Deter Clear-cut ALOS detection % 

May 12 6 50.00 

June 17 7 41.18 

July 14 10 71.43 

August 24 14 58.33 

Total 67 37 55.22 
 

Some factors could contribute to this result: 

The image was not properly radiometrically calibrated, 
there was significant difference in image illumination that 
difficult the interpretation.  
Clear-cut DETER polygons located in flat terrain are 
easier to detected than in those in hilly areas. Small hills are 
very frequent in the study area.  
Variation in size and shape of clear-cut polygons 
interferes in the radar image response. 

It was observed that DETER Alert polygons detected by the 
ALOS (Table 2) image had an average of 4.33 km2, in contrast 
to the polygons not detected in the ALOS image, that presented 
average areas of 2.65 km2. 

  Table 2 – ALOS-PALSAR ScanSAR image assessment for DETER clear-cut 
polygons verified during the fieldwork. 

   DETER polygons average area (km2) 

 Month Detected Not detected 
May 7.00 3.86 

June 5.51 3.21 

July 2.46 1.68 
August 2.35 1.83 

 Average 4.33 2.65 
 

Observing DETER Alert Polygons for September 2008 
over ALOS PALSAR image from October (10-15-2008), only 
76 polygons from 565 where placed over the scene. Even with 
DETER polygons smaller than registered previously, 45% of 
the polygons were identified over PALSAR image (Table 2). 
Most of the deforestation polygons presented darker response 
in the PALSAR image, suggesting older clear-cut areas.  

Table 3 – ALOS-PALSAR ScanSAR image (October) assessment for DETER 
clear-cut polygons registered for September 2008. 

ALOS                   
(10-15-2008) 

DETER Polygons 
(Sept-2008) % 

Area 
(km2) 

 Detected  34 44.74 0.92 

Undetected 42 55.26 0.75 

Total 76   
 

ALOS PALSAR ScanSAR images covered the north part 
of Amazonia, where cloud cover makes the deforestation 
detection difficult (Figure 3). To be used in an operational 
basis, ScanSAR images should be accessed and processed as 
soon as possible to enable DETER qualification, what is 
planned for the continuity of this work. 

Deforestation detection by SAR L Band has also a 
temporal dynamic that interferes on image interpretation. 
Recent deforestation shows brighter pattern than the what is 
found on intact forest cover and it progressively becomes 
darker areas. This change the backscattering pattern occurs 
within approximately 5 months time. Such temporal variation 
was not enough quantified and understood, and it will be 
subject of further research. 

Considering the results showing the potential ALOS 
PALSAR for deforestation detection, and the temporal 
variability of deforestation backscattering patterns, it is 
necessary to adapt the methodology for an operational forest 
monitoring. Change detection, multi-temporal approach 
should be defined, in order to compare a new radar image with 
previous images of the same season.   

 
 
 
 



  
 

 
Figure 4 (a) ALOS PALSAR WB1 image (10-15-2008) coverage and DETER Alert Polygons for September 2008 (red vectors). (b) DETER Alert polygons for 

September qualification report: cloud cover (pink) and DETER polygons qualification sites (green dots). 
 

 

IV. FINAL COMMNENTS  
ALOS K&C Initiative gave us the opportunity to consider 

the use of radar data to overcome the cloud cover problem in 
the Brazilian forest monitoring system. Radar data availability 
in a regular basis enables the development of an operational 
procedure to use L Band for deforestation detection.  

The results obtained so far indicate that ALOS PALSAR 
imagery has a potential to detect only part of the deforestation 
polygons that are normally published as deforestation alerts. 
However, as the deforestation detection has to be operational 
and expedited, we need an uncomplicated approach, based on 
ScanSAR – HH polarization data, the methodology is not 
completely defined. We plan to build an ALOS PALSAR 
mosaic images for the four seasons and work with multi-
temporal analysis to detect deforestation.  

Another benefit from being part of ALOS K&C Initiative 
and conduct this project, it the construction of a radar culture, 
not only at the scientific level, but also in an operational basis 
with implications on the public awareness about the 
technological capability of remotely sensed monitoring of the 
deforestation process in Brazil. This is especially important 
considering that the Brazilian Spatial Program is planning to 
develop radar sensors onboard of Brazilian satellites in the next 
decade.   
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()@'-,)9().2H$+-,.(&.',)$2&.',)$,)$.1($,88'&($2)A$,)$.1($8'(HAL$

X'.1$ .1($ 3=++,-.$ ,8$ ?2.',)2H$ I)3.'.=.($ 8,-$ %+2&($ *(3(2-&1$

lI?07mQ$ .12.$ 92A($ 2@2'H2>H($ ,+.'&2H$ '92E(3$ 2)A$ +-,9,.($ .1($

A(@(H,+9().$,8$)(6$9(.1,A,H,E'(3$ 8,-$@(E(.2.',)$9,)'.,-')E$

6'.1$ 32.(HH'.($ '92E(3Q$ F-2G'H'2)$ E,@(-)9().$ 12A$ '9+-,@($ .1($

9,)'.,-')E$3\3.(93$8,-$@(E(.2.',)$+-,.(&.',)L$

J1(3($2A@2)&(3$,8$%;*$9(.1,A,H,E'(3$.,$>($=3(A$.,$>='HAO

=+$,+(-2.',)2H$3\3.(93$.,$'9+-,@($.,$9,)'.,-')E$,8$.1($.-,+'&2H$

@(E(.2.',)$ '3$ 2)$ '9+,-.2).$ 2++-,2&1$ .,$ &,).-'>=.($ .,$ .1($

-(A=&.',)$ ,8$ .1($ #2->,)$ (9'33',)3$ 23$ 6(HH$ 23$ .,$ .1($

#,)3(-@2.',)$,8$.1($.-,+'&2H$-2')$8,-(3.3$')$F-2G'HL$J1(3($8,-(3.3$

2-($+H2\')E$'9+,-.2).$1,H($,)$&2->,)$2)A$62.(-$&\&H(3$2)A$2-($

&,)3'A(-(A$ 1,.$ 3+,.3$ ,8$ >',A'@(-3'.\$ &,)3(-@2.',)L$ J1($

2&1'(@(9().3$2H-(2A\$,>.2')(A$&,)8'-9$.12.$6($3.'HH$12@($9,-($

.,$'9+-,@($')$.1($,+(-2.',)2H$32.(HH'.($9,)'.,-')E$3\3.(93$=3')E$

;5e%O0;5%;*L$ J1($ !"#$ 3&'()&($ 2A@'3,-\$ +2)(H$ gKh$ 6'HH$

&,).-'>=.($,8$A(@(H,+$%;*$9(.1,A,H,E'(3$ .12.$&2)$+,.().'2HH\$

>($=3(A$8,-$,.1(-$&,=).-'(3$.12.$62).$(3.2>H'31$%;*$,+(-2.',)2H$
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J1($ .6,$ +-,.,.\+(3$ 2-(23$ ,)$ .1($ +-,+,3(A$ +-,V(&.$ 2-($ .1($

;92G,)'2)$*2')$P,-(3.$2)A$.1($.-,+'&2H$-2')$8,-(3.Q$&H,3($.,$.1($

F-2G'H'2)$(23.$&,3.$1(-(28.(-$&2HH(A$;.H2).'&$P,-(3.L$F,.1$2-(23$

6(-($=3(A$.,$.(3.$+-'92-\$9(.1,A,H,E\$@'2>'H'.\$3.=A'(3L$e)$.1($

;92G,)'2)$ -(E',)$ 8,=-$ 2++-,2&1(3$ 6(-($ A(@(H,+(A$ ')$

3&2H(2>H($')&-(23')E$,)$2-(2$2)A$&,9+H(i'.\L$

e)$.1($;92G,)'2)$-(E',)$.1($3.=A\$2-(2$-(H2.(A$.,$.1($8'-3.$
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H,&2.(A$')$.1($3.2.($,8$02-[Q$F-2G'HQ$&().-(A$&,,-A')2.(3$,8$cK,$
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$
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.12)$ 2$ \(2-$ H,)E$ l8'EL$ _mL$F\$ .1($ >(E'))')E$,8$ .1($A-\$ 3(23,)$
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31,6')E$ 3,9($ A(8,-(3.2.',)$ .12.$92\$ >($ ),.$ 2>H($ .,$ A(.(&.$ A=-')E$ .1($ -2')\$

3(23,)L$

$

$

F"! /0'*5,$%5(0'-*

$

e)$ .1($ 8'-3.$ 2++-,2&1$ .1($ 3.-'+$ ,8$ KR_Sp9$ ,8$ H()E.1$ >\$
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,-.1,-(&.'8'(A$'92E(3$8-,9$Y(,&,@(-$52)A32.$P2&'H'.'(3$+-,V(&.$
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'A().'8\$ ,.1(-$ A(8,-(3.(A$ 2-(23$ ),.$ A(.(&.(A$ >\$ :7J7*L$ J1($
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+,H\E,)3$2)A$.6,$A2.2$&,HH(&.',)$,)$1(H'&,+.(-3$6(-($A,)($l8'EL$

^mL$J1($')&-(23($')$ .1($').()3'.\$,8$ .1($0;5%;*$'92E(3$6(-($

&,)8'-9(A$623$2-(23$,8$A'3.=->2)&($,8$.1($8,-(3.$3.-=&.=-($2)A$

3,9($82'H$.-((3$6(-($8,=)AL$

$

$$$$$$$$$$$$$$$$$$$$$$$$$$l2m$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$l>m$

P'E=-($ ^L$ $ l2m$ ;5e%$ 0;5%;*$ P')($ F(29$ %')EH($ B,A($ lPF%m$ <<$ 3.-'+$

;5e%$!"#$?*@!A!BCD/E$ 2)A$ .1($ 1(H'&,+.(-$ 2=.,),9\$ 4cS9'H(3$ ')$
>H=($2)A$A,.3$31,6')E$.1($Y0%$.-2&p3Q$l>m$;5e%$0;5%;*$<<$A(8,-(3.2.',)$

A(.(&.',)$+,H\E,)$2)A$.1($.'9($3\)&1-,)'G(A$+'&.=-(3$.2p()$>\$.1($1(H'&,+.(-L$$

e)$ .1($ .1'-A$2++-,2&1$,)$ .1($;92G,)'2)$ -(E',)$;5e%O

%&2)%;*$ '92E(3$ 6(-($ =3(A$ .,$ >='HAO=+$ .(9+,-2H$ &,H,-$

&,9+,3'.(3Q$ .1'3$9(.1,A,H,E\$6(-($=3(A$ .,E(.1(-$6'.1$@'3=2H$

').(-+-(.2.',)$ ')3'A($ ,8$ .1($ A(.2')(A$ 2-(23$ 6(-($ 2$ 8')($ 6(-($

2++H'(A$>\$.1($()8,-&(A$H26$2E().3$,8$IF;B;L$$P'E=-($R$2-($

31,6')E$,)($(i29+H($,8$.(9+,-2H$&,H,-$&,9+,3'.($2++H'(A$')$

,)($,8$.1($(H(@()$3.-'+3$.12.$&,@(-$2HH$.1($A(.2')(A$2-(23L$$

$
P'E=-($RL$$J(9+,-2H$*YF$&,9+,3'.',)$=3')E$.-(($%&2)%;*$%.-'+$'92E(3$,8$.-(($

A'88(-().$A2.(3$6(-($:?$,8$'92E(3$31,6$&12)E(3$6'.1$A'88(-().$&,H,-3$;5e%$

!"#$?*@!A!BCD/EL$$$$

J1($ ;5e%O%&2)%;*$ '92E(3$ ,8$ :(&(9>(-$ KSST$ 2)A$

D2)=2-\$ KSSU$ 6(-($ =3(A$ .,$ A(.(&.$ )(6$ A(8,-(3.2.',)3$ ,)$ .1($

&H,=A\$3(23,)$,)$.1($;92G,)'2)$-(E',)L$

$

P'E=-($TL$$l2m$;5e%O%&2)%;*$3.-'+3Q$')$>H=($.1($&H,=A$&,@(-$,)$:(&(9>(-$>\$

:7J7*$9,)'.,-')E$3\3.(9Q$')$-(A$)(6$A(8,-(3.2.',)$A(.(&.',)3$>\$;5e%L$

e)$ .1($ 8'E=-($ T$ .1($ .(9+,-2H$ &,9+,3'.(3$ 6(-($ =3(A$ .,$

A(.(&.$ )(6$ A(8,-(3.2.',)3$ 61(-($ .12.$ .1($ ,+.'&2H$ 3\3.(9$

:7J7*$ &2)$ ),.$ A(.(&.$ A=($ .,$ .1($ +-(3()&($ ,8$ &H,=A3$ 8-,9$

e&.,>(-$.,$:(&(9>(-L$

IIIL!*7%f5J%$

$

e)$ .1($ 8'-3.$ 2++-,2&1Q$ :7J7*$ +,H\E,)3$ 6(-($ =3(A$ .,$

(i.-2&.$ 2@(-2E($ @2H=(3$ ')3'A($ .1(3($ 2-(23Q$ 623$ +,33'>H($ .,$

-(&,E)'G($ .12.$ 9,3.$ ,8$ ,HA(-$ A(8,-(3.2.',)3$ ')$ .1($ 329($ \(2-$

6(-($H,6$@2H=(3$&,9+2-(A$6'.1$.1($@(-\$-(&().$A(.(&.',)3L$J1($

8'E=-($ U$ 31,63$ .1($ 2@(-2E($ 3'E92$ @2H=(3$ ,>.2')(A$ 8,-$ ,HA$

A(8,-(3.2.',)3$ l92\$ >($ &-,+3$ ,-$ +23.=-(m$ &,9+2-(A$ 6'.1$ ,)($

\(2-$ ,HA$ A(8,-(3.(A$ 2-(23$ A(.(&.(A$ >\$ :7J7*$ 3\3.(9$ =3')E$

J(--2OBe:I%$ '92E(3$ 2)A$ .1($ 3'E)2H$ ,>.2')(A$ 8,-$ +-'92-\$

8,-(3.L$

$

$

P'E=-($UL$#,9+2-'3,)$>(.6(()$@(-\$-(&().$A(8,-(3.2.',)$8-,9$:7J7*$,8$.1($

\(2-$KSSRQ$:(8,-(3.2.',)$A(.(&.(A$6'.1$0*e:7%$3\3.(9$8-,9$4UUR$.,$KSS^$')$

2@(-2E($2)A$.1($-(9)2).$+-'92-\$8,-(3.$'A().'8'(A$>\$0*e:7%$A2.2>23(L$

$

J1($ -(3=H.3$ 31,6(A$ .12.$ 2-(23$ &,--(3+,)A')E$ .,$ ,HA$

A(8,-(3.2.',)$ 2-($ -(H2.(A$ .,$ H,6$ AF$ @2H=(3Q$ 61'H($ -(&().H\$

A(8,-(3.(A$ 2-(23$ 2-($ -(H2.(A$ .,$ 1'E1$ AF$ @2H=(3L$ J1($9(2)$σ,ss$

S2*((" 3'$*" G+," G*^" G$*," C)6"

#;E;A"

A$5$,)"

V<W"

KKRU$ O4KQ__S$ aQKSa$ OaQUUK$ 4QTU_$
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VXW"

4^KRTSSSS$ OKSQ_Ra$ SQTUU$ O44QSKS$ KQcSc$

"
V<W"

"
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@2H=($ 8,-$ -(&().$A(8,-(3.(A$2-(23$623$ OcL_4cAF$2)A$ .1($9(2)$

σ,$@2H=($8,-$+-(3(-@(A$)2.'@($8,-(3.3$623$O$RLc^UAFL$

F23(A$,)$.1($.1-(31,HA$@2H=($&H233'8'(A$;5e%$'92E(Q$4aR^$

+,H\E,)3$6(-($E()(-2.(AL$f3')E$.1($2->'.-2-\$&-'.(-'2$.12.$9,-($

.12)$ 4S$ A(E-((3$ 3H,+($ &2)$ >($ 288(&.(A$ 6'.1$ 2)$ ')&-(23(A$

>-'E1.)(33Q$ 4K_U$ +,H\E,)3$ ,)$ 3H,+($ 2-(23$ 6(-($ (H'9')2.(AL$

P-,9$ .1($ -(3=H.2).$ K_R$ +,H\E,)3Q$ 4__$ 6(-($ &,)8'-9(A$ .,$ >($

,@(-$ .1($ -(H'(8$ >=.$ 6(-($ ),.$ (H'9')2.(A$ >(&2=3($ .1(\$ 6(-($

E(,E-2+1'&2HH\$ A'3+H2&(AQ$ ,)($ 623$ 2$ 82H3($ A(.(&.',)Q$ 2)A$ UU$

6(-($ &,)8'-9(A$ A(8,-(3.2.',)3L$ P-,9$ .1($ UU$ A(8,-(3.(A$

+,H\E,)3Q$ 4U$ 6(-($ &,')&'A().$ 6'.1$ 0*e:7%$ 8-,9$ .1($ \(2-$

4UUR$ .,$KSS^$2)A$cc$+,H\E,)3$6'.1$0*e:7%$KSSR$ l8')'31(A$

,)$ 2=E=3.$ KSSRmQ$ a$ 6(-($ ,)$ 2-(23$ ,8$ ),)$ 8,-(3.$ l)('.1(-$

&,)3'A(-(A$ >\$ 0*e:7%$ ),-$ :7J7*m$ 2)A$ 4R$ 2-($ )(6$

A(.(&.',)3$,8$;5e%Q$),.$A(.(&.(A$>\$2)\$,.1(-$,+.'&2H$3\3.(9L$

e)$ .1($ 3(&,)A$ 2++-,2&1$ 8'@($ 3.-'+3$ ,8$ P')($ F(2)$ %')EH($

B,A(Q$ +,H2-'G2.',)$ <<$ 6'.1$ cS9$ -(3,H=.',)$ ,)$ .1($ 9,).1$

:(&(9>(-$KSSR$2)A$D2)=2-\$KSST$6(-($=3(A$.,$A(.(&.$+,33'>H($

-(&().$ A(8,-(3.2.',)$ >\$ @'3=2H$ ').(-+-(.2.',)$ >23(A$ ,)$ .1($

p),6H(AE($2&C='-(A$,)$.1($2++-,2&1$)=9>(-$,)(L$e@(-H2'A$.1($

0;5%;*$ '92E(3$ 6'.1$ 0*e:7%$ KSSR$ 2)A$ \(2-$ >(8,-($ 2)A$

2&&=9=H2.(A$ :7J7*$ 8-,9$ ;=E=3.$ .,$ :(&(9>(-$ KSSRQ$ R_T$

+,H\E,)3$ 6(-($ E()(-2.(A$ lJ2>H($ 4mL$ J1(3($ +,H\E,)3$ 6(-($

&,9+2-(A$6'.1$ .1($+,3.(-',-$A(.(&.',)$92A($>\$:7J7*$8-,9$

D2)=2-\$ .,$ %(+.(9>(-$ ,8$ KSSTQ$ 6(-($ 4_a^$ +,H\E,)3$ 6(-($

'A().'8'(A$,)$.1($329($2-(2$9,)'.,-(A$>\$;5e%L$P-,9$.1($.,.2H$

:7J7*$+,H\E,)3$KSR$ l4cL_Ttm$6(-($ ').(-3(&.(A$6'.1$;5e%$

0;5%;*$ +,H\E,)3Q$ TRT$ l^cLK_tm$ 6(-($ +,H\E,)3$ .12.$ .1('-$

2-(23$ 6(-($ 9,)'.,-(A$ 9,).1l3m$ >(8,-($ ')$ .1($ \(2-$ KSST$ 2)A$

6(-($ ),.$ A(.(&.(A$ l+,33'>H($ .1(3($ +,H\E,)3$ ,&&=--(A$ 28.(-$

;5e%$0;5%;*$A(.(&.',)mQ$2)A$K^4$l4UL_Utm$12A$.1('-$2-(23$

&,@(-(A$>\$&H,=A3$=).'H$.1('-$A(.(&.',)$>\$:7J7*Q$6($2-($),.$

2>H($ .,$ A(8')($61()$ '.$ ,&&=-3$ ')$ -(H2.',)$ .,$;5e%$ 0;5%;*$

A(.(&.',)3$l.2>LKmL$

$

J2>H($ K$ /$ #,9+2-'3,)$ >(.6(()$ .1($ ;5e%O0;5%;*$ 2)A$ ,+.'&2H$

&2+2>'H'.'(3$>\$:7J7*$3\3.(9$6'.1$Be:I%$'92E(3L$$

$ :7J7*$ ;5e%$ I).(-3(&.$ B;*$ ;F*$ B;u$ Df?$ Df5$ %70$

PF%^S$ 4_U$ K4c$ K4$ 4$ S$ S$ S$ U$ 44$

PF%^K$ 4_R$ 4SS$ 4_$ 44$ S$ S$ S$ 4$ 4$

PF%^U$ aSU$ KUS$ 444$ aT$ 4a$ _a$ a$ R$ a$
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PF%R4$ KKa$ c^$ K4$ _$ U$ ^$ K$ 4$ S$

E&)*2" <XaN" ZX>" LMZ" $ $ $ $ $ $
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$ $ $ $ $ $ $ >Z>"
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$ D;?$ P7F$ B;*$ ;0*$ B;u$ Df5$ EBE3K"

PF%^S$ S$ S$ K^$ S$ S$ a$ XM"

PF%^K$ S$ 4K$ S$ S$ S$ K$ <a"

PF%^U$ S$ S$ ca$ c$ 4$ _^$ =N"

PF%RS$ S$ S$ _T$ KT$ S$ T$ Za"

PF%R4$ S$ S$ Ka$ K_$ S$ S$ aZ"

$ $ $ $ $ $ $ LN<"

$

J1($)(6$A(8,-(3.2.',)$A(.(&.',)3$+-,A=&(A$>\$;5e%O

0;5%;*L,)$:(&(9>(-$KSSR$2)A$D2)=2-\$KSST$6(-($&,9+2-(A$

6'.1$.1($+,3.(-',-$A(.(&.',)3$+-,A=&(A$>\$:7J7*L$;3$:7J7*$

'3$>23(A$,)$,+.'&2H$3()3,-$Be:I%$3(@(-2H$A(.(&.',)3$&2)),.$>($

A(.(&.(A$61()$ .1($ 3+(&'8'&$ -(E',)$6(-($ &,@(-$ >\$ &H,=A3L$J1($

')&-(23($,8$.1($&,')&'A()&(3$8-,9$B2-&1$.,$%(+.(9>(-$,8$KSST$

'3$,HA$A(.(&.',)3$.12.$,&&=-$>(8,-($;5e%$A(.(&.',)3L$

$

$

$

$

$

$

$

$

$

P'E=-($4SL$J1($2&&=9=H2.(A$&,')&'A()&(3$>(.6(()$;5e%$:(&(9>(-$KSSR$2)A$

+,3.(-',-$:7J7*$A(.(&.',)$2H,)E$KSST$\(2-L$$

%((p')E$ 8,-$ &12)E(3$ 6($ &,=HA$ 8')A$ 2)$ 2-(2$ .12.$ 6(-($

&1(&p(A$>\$,+.'&2H$'92E(3$')$,.1(-$.,$E()(-2.($2)$')A'&2.'@($,8$

&12)E(3$.12.$92\$-(+-(3().$2)$>-(2p$A,6)$')$2$A(.2')(A$2-(23$

28.(-$-(&('@(A$2$8')($>\$.1($IF;B;v3$()8,-&(A$H26$2E().L$J1($

P'E=-($44$'3$+-(3().')E$2)$(i29+H($,8$&12)E')E$A(.(&.',)L$J1'3$

9(.1,A,H,E\$ 3.'HH$ )((A$9=&1$ 8'(HA$ 2&.'@'.'(3$ .,$ A(.(-9')($ .1($

H(@(H$ ,8$ &12)E(3$;5e%$ 0;5%;*$ 2-($ 'A().'8\')E$ 2)A$ 1,6$ '.$

&2)$>($=3(A$>\$.1($()8,-&(A$H26$2E().3$.,$-(.=-)$')$.1($A(.2')(A$

2-(23L$

$
P'E=-($44L$$f+$H(8.$;5e%$%&2)%;*$.(9+,-2H$&,9+,3'.(3Q$,)$.1($-'E1.$#F7*%$

'92E(3$ =3(A$ .,$ &,)8'-9$ .1($ &12)E(3$ A(.(&.(A$ >\$ ;5e%$ 2)A$ 2$ I)A'&2.'@($ ,8$

.(9+,-2H$&12)E(3$')$A(.2')(A$2-(23L$

$

;)$2++-,2&1$6(-($2H3,$A(@(H,+(A$,)$.1($+-,.,.\+($2-(2$,8$

;.H2).'&$ P,-(3.$ .,$ 2)2H\3($ .1($ &2+2>'H'.\$ ,8$ P')($ F(2)$ :=2H$

B,A($3.-'+$9,A($!"#$A2.2$.,$A(.(&.$)(6$A(8,-(3.2.',)3L$J1($

!"#"$%&'(%)*+,%&--./.0&12(%-34'-4(2'-25
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2-(2$ 2)2H\3(A$ ,)$ .1($ 3,=.1$ ,8$ F21'2$ 31,63$ 2$ +,.().'2H$ .,$

2)2H\3($H2-E($3'G($A(8,-(3.2.',)$+,H\E,)3$l8'EL$4KmL$

$

$ $ $

V*W" V4W" V5W"
P'E=-($4KL$l2m$.1($3'.=2.',)$2.$V=H\$KSSRQ$$l>m$2.$V=H\$KSST$2)A$l&m$.1($.(9+,-2H$

&12)E($')$,)($\(2-$.'9($&12)E(L$

IbL!:I%#f%%Ie?%$

$

J1($ 9(2)$ σ,ss$ @2H=($ 8,-$ -(&().$ A(8,-(3.(A$ 2-(23Q$ 8,-$

+-(3(-@(A$)2.'@($8,-(3.3$2)A$,HA$A(8,-(3.(A$2-(23$2-($3'9'H2-$.,$

.1,3($8,=)A$>\$,.1(-$2=.1,-3$2-($31,6)$,)$.1($J2>H($_L$

J2>H($ _$ /$ #,9+2-'3,)$ >(.6(()$ .1($ 3'E92$ @2H=(3$ ,>.2')(A$ 8-,9$ A'88(-().$

3.=A'(3j$l4m$+-(3().$3.=A\Q$lKm$%E-()G2-,H'$"$2HL$gchQ$ l_m$%22.&1'$"$2HLQ$g^h$2)A$

lam$5=&p92)$"$2HL$g_hL$

$

;H9('A2OP'H1,$ "$ 2HL$ gRh$ ),.'&($ .1($ '9+,-.2)&($ ,8$ 1'E1$

C=2H'.\$ E(,-(E'3.-2.',)$ ,)$ .1($ 3(@(-2H$ A2.2>23(3$ ')$ ,-A(-$ .,$

'9+H(9().$2)$,+(-2.',)2H$9,)'.,-')E$3\3.(9L$I)$.1'3$3.=A\$.1($

E(,-(E'3.-2.',)$623$2$@(-\$ H'9'.')E$ 82&.,-$ 2)A$623$ 3,H@(A$>\$

=3')E$ .1($ -(&().$ '9+H(9().2.',)$ ,8$ .1($ E(,&,A(A$

9(.1,A,H,E\L$

$

bL!#e?#5f%Ie?%$

J1($ (i(&=.(A$ 9(.1,A,H,E\Q$ =3')E$ 2$ .1-(31,HA$ .,$ &H233'8\$

)(6$A(8,-(3.(A$2-(23Q$123$2$E,,A$+,.().'2H$ .,$>($.1($>23($,8$2$

3(9'2=.,92.'&$A(.(&.',)$3\3.(9$8,-$,+(-2.',)2H$+=-+,3(3Q$=3')E$

%&2)%;*$ '92E(3L$ J1'3$ 3\3.(9$ 123$ +,.().'2H$ .,$ +-,A=&($ A2.2$

.12.$&,=HA$&,9+H(9().$ .1($')8,-92.',)$2H-(2A\$2@2'H2>H($8-,9$

,+.'&2H$3()3,-$32.(HH'.(3$l#F7*%O##:Q$52)A32.OJB$2)A$J(--2O

Be:I%$ '92E(3mL$ J1($ -(3=H.(A$9,)'.,-')E$ 3\3.(9Q$ &,9>')')E$

,+.'&2H$ 2)A$%;*$A2.2Q$6,=HA$A(&-(23($ .1($ 2@(-2E($ 2E($,8$ .1($

A(8,-(3.(A$2-(23L$;3$2$-(3=H.Q$ .1($ -(3+,)3($ .'9($-(H2.(A$ .,$ H26$

()8,-&(9().$ 2&.'@'.'(3$ .,$ &,9>2.$ 'HH(E2H$ H,EE')E$ 6,=HA$

A(&-(23(L$

J6,$ +,').3$ )((A$ .,$ >($ 3.-(33(A$ 1(-(L$ e)($ '3$ .1($ )(6$

A(.(&.',)3$ ,8$;5e%$ '92E(3$61'&1$6(-($ ),.$ A(.(&.(A$ >\$ 2)\$

,.1(-$,+.'&2H$3\3.(93L$J1(3($A(.(&.',)3$2-($+-,>2>H\$-(H2.(A$.,$

@(-\$ -(&().$ A(8,-(3.2.',)3$ .12.$92\$ 12@($ ,&&=--(A$ 3,9($ A2\3$

>(8,-($ ;5e%$ '92E($ 2&C='3'.',)L$ J1($ 3(&,)A$ +,').$ '3$ .1($

)=9>(-$ ,8$ ;5e%$ A(.(&.',)$ &,')&'A().$ 6'.1$ 0*e:7%$ KSSRQ$

.1(3($ A(.(&.',)3$ &2)$ >($ =3(A$ .,$ .1($ ()8,-&(9().$ H26$ 2E().3Q$

>(&2=3($.1(3($+,H\E,)3$61(-($),.$A(.(&.(A$>\$:7J7*$=).'H$.1($

()A$,8$.1($\(2-$61()$.1($923p$6(-($&12)E(A$.,$.1($0*e:7%$

KSSR$A2.2>23(L$

J1($ :7J7*$ A(.(&.',)3$ 6(-($ 2H62\3$ &,--(&.$ 2)A$ .1($ 2-(2$

),.$ &,@(-(A$ >\$ &H,=A3$ >(8,-($ :7J7*$ A(.(&.',)3$ 9(2)3$ .12.$

.1(-($ 623$ ),$ A(8,-(3.2.',)$ ,)$ .1'3$ 2-(23L$ J1'3$ +-(3=9+.',)$

+-(3=9(3$ .12.$ A(.(&.',)$ -(&,E)'G(A$ 28.(-$ 2-($ )(6$ @(-\$ -(&().$

A(8,-(3.2.',)3L$

I)$.1($.1'-A$2++-,2&1$.1($),$&12)E(3$&2)$),.$>($)(&(332-'H\$

A(8')(A$ =3$ &,9+H'9().$ A(.(-9')(A$ ')$ .1($ A(.2')(A$ 2-(23Q$ =3$

6(HH$=3Q$3,9($&23(3$,8$&12)E(3$)((A$.,$>($3.=A'(A$.,$A(.(-9')($

.1($H(@(H$,8$&12)E($&2)$>($-(H2.(A$.,$-(OE-,6.1$+-,&(33L$

J1($2++-,2&1(3$-(@(H(A$.12.$.1(-($2-($3'9+H($9(.1,A,H,E'(3$

.12.$ &2)$ >($ 2++H'(A$ ,)$ ,+(-2.',)2H$ 3\3.(93$ >=.$ '.$ 3.'HH$ )((A$

'9+H(9().2.',)$ 8,-$ 3(9'O2=.,92.'&$ +-,&(33')EL$ J1($

'9+-,@(9().$,)$3,8.62-($A(@(H,+9().$8,-$823.$+-,&(33')E$6'HH$

>($ )((A$ 8,-$ '9+H(9().2.',)$ ,8$ -2+'A$ -(3+,)3($ %;*$ >23(A$

@(E(.2.',)$ 9,)'.,-')EL$ 5,,p')E$ 8,-62-AQ$ 2),.1(-$ (i.()3',)$

)((A(A$ '3$ .,$ ')&-(23($ .1($ )=9>(-$ ,8$ -(E',)2H$ ,88'&(3$ .12.$ &2)$
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Abstract—The production of spatially detailed maps of (very) 
large areas, and time series of these maps, requires dedicated 
processing approaches. This paper introduces finite mixture 
modelling and Markov Random Field classification as a tool for 
production and mosaicing of detailed thematic maps. Results are 
shown for a multi-temporal classification of the entire island of 
Borneo for the year 2007 using 50 m resolution PALSAR FBS an 
FBD strip data. First results indicate that more than 20 classes of 
forest and land cover can be distinguished well, even though 
strips have been collected over a 46-day cycle of observation.  

Validation of the Borneo map is still ongoing using large ground 
data sets and other reference sets spread over Borneo. It is 
pursued to develop legends in compliance with LCCS and IPCC 
guidelines. These results may be of key interest to develop REDD 
projects for the humid tropics. 

Maps created for the Central Kalimantan prototype area 
indicate good results for LULC mapping, flood frequency 
mapping and peat swamp hydrology may be obtained. 
These maps are already used by local organisations. 
 

Index Terms—ALOS PALSAR, K&C Initiative, Tropical 
Forest  

I.  0BINTRODUCTION 
Significance of tropical rain forests 
Deforestation and degradation of tropical rain forests is 
continuing and currently may occur faster than ever before. It 
threatens the livelihoods of millions of people depending on 
the forests, and threatens biodiversity conservation, carbon 
storage capacity, and other important functions these forests 
provide.  
Environmental awareness and consumer demand for more 
socially responsible products from tropical forest areas 
increased in recent years. As a result, all biofuel for the 
European market for example should be produced in 
compliance with forthcoming EC regulations on greenhouse 

gas emission reduction. This will prohibit conversion of 
tropical forest to biomass plantations.  
Moreover, agreements are negotiated under the UN 
Framework Convention on Climate Change (UNFCCC) to 
compensate tropical nations for reduced emissions from 
deforestation and forest degradation (REDD).  
The availability of credible and regularly updated spatial 
information on forest and land use/cover change will be a 
precondition for successful implementation of initiatives such 
as mentioned above. In cloudy tropical forest areas new radar 
satellite imaging techniques will play a key role as one of the 
most objective methods to measure forest, land cover, biomass 
and hydrological changes.  

 
Information needs 
Ongoing consultation with potential user organisations 
indicates that satellite observations are needed, as area change 
is typically dynamic and covers large geographic areas. It is 
the only objective approach to support reduced deforestation 
and sustainable biomass production projects in developing 
countries, providing proof that deforestation rates have 
decreased and that plantations have been developed inside or 
outside forest areas. 
The following satellite based information maps are required:  

 Land use/cover  
 Land use/cover change (including deforestation and 

degradation)  
Emerging international guidelines require that these maps are 
made available at multiple time intervals using a transparent 
and consistent methodology. Spatial resolution in the order of 
10-100 m is sufficient. 
High attention and expectation for the inclusion of forest 
degradation in payment agreements for reducing emissions 
from deforestation and forest degradation requires new 
approaches for mapping crown canopy structure of (tropical) 
forests at high spatial detail. To monitor forest degradation 
(canopy openings) details smaller than 20m should be clearly 



visible requiring a spatial resolution of less than 5m; 1-2 m 
would be ideal. Permanent clouds are making optical satellite 
imagery useless; again the use of radar satellite imagery is 
needed (Figure 1). 
 

 
 
Figure 1. Persistent cloud cover prevents optical remote sensing monitoring of 
the world’s tropical rain forest areas. The colour code shows the estimated 
number of months per year LANDSAT fails to deliver useful images (Source: 
[2]). 
 
 

II. 1BPALSAR STRIP DATA HANDLING AND 
MOSAICING 

The production of a high resolution continental scale map 
requires the use of a very large number of (radar) images. 
Within K&C this problem is mitigated by using strip data, 
which have the same swath width as standard PALSAR radar 
images (i.e. 70 km, for Fine Beam data), but may span the 
entire area of interest (up to several thousands of km). For a 
complete coverage of the entire area of interest many strips 
may be needed. Borneo, for example, requires 22 of such 
strips (Figure 2). Often a single coverage will not suffice to 
meet the required information needs. For forest and land cover 
mapping in tropical rain forest areas it is advantageous to 
combine wet and dry season observations, and to combine HH 
and HV polarisation. For monitoring tropical forest cover 
change repetitive yearly observation is needed. Very dynamic 
areas, notably wetlands and agricultural areas, may require 
even more observations per year to fulfill specific information 
needs.  
 

 
 
Figure 2. Three strips of radar data projected over Borneo and displayed in 
Google Earth. 

 
For our work in Insular SE Asia and PNG systematic 
observations were used for modes summarised in Table 1. The 
selected cycles are shown in Table 2. To be able to produce a 
2007 forest and land cover map of Borneo, for example, all the 
strips collected during the ascending passes of cycle 9 (FBS 
mode) and cycle 13 (FBD mode) should be used. For technical 
reasons which are not discussed here, it is not always possible 
to collect radar data for every pass of the satellite over the area 
of interest. The success rate in some areas of the world may 
even drop below 80%. Consequently, most mosaics cannot be 
created with strips collected within one cycle of systematic 
observation. In such a case replacement data may be available 
from a preceding or following cycle.  For example, when 
strips are missing from the FBS cycle 9 these can be replaced 
from the FBS cycle 8 acquisitions.  
 
Table 1. PALSAR default observation modes 

Polarization Incidence 
range 

Swath 
width 

Resolution 
(4 looks) 

(FBS) HH 36.6°~40.9° 70 km 10 m 
(FBD) HH+HV 36.6°~40.9° 70 km 20 m 
ScanSAR (HH) 18.0°~43.0° 361 km ~100 m 

 
Table 2. Selected cycles for this study 

Default mode Polarisation Cycles 
2007 

Cycles 
2008 

FBS HH 9 17 
FBD HH+HV 13 21 

ScanSAR HH 7-16  
 
The time structure within one cycle is such that the time 
elapsed between observations of adjacent strips is 17 days or 
29 days. This can be explained as follows. Starting East and 
moving West adjacent strips make jumps of 17 days. For 
example when RSP412 is the first strip acquired, the adjacent 
strip RSP413 is collected 17 days later and strip RSP414 34 
days later. The next strip RSP415 is collected 3x17 = 51 days 
later, but this is in the next cycle. To remain in the same cycle 
46 days can be subtracted and a jump of 5 days with respect to 
the first strip RSP412 remains, which is -29 days with respect 
to the previous strip. For the Borneo mosaic of 2007 4 (out of 
22) replacement strips have been collected from cycles 12 and 
14 for FBD mode and 3 (out of 22) from cycles 17 and 18 
(one year later!) for FBS mode. 
The time laps are an inherent feature of any mosaic and these 
have to be dealt with carefully within classification 
procedures. 
 
Backscatter of terrain is modulated by the surface geometry of 
hills and mountains. This modulation is a function of slope 
steepness, slope orientation and the scattering mechanism of 
the terrain. Results for an area in central Borneo which is 
almost completely covered by dense forest are shown in the 
Figures 3 and 4. In Figure 5 the entire mosaic, which is a 
multi-temporal aggregate of FBS and FBD data, is shown. 
 



(a) 

(b) 
 
Figure 3. Slope correction for all pixels in a small test area in a mountainous 
section of central Borneo; (a) backscatter (gamma in dB) as function of slope 
aspect; (b) idem, after correction (Note: the vertical lines present the radar 
orientation angles). 

 

(a) 

(b) 
Figure 4. (a) PALSAR FBS/FBD aggregate for an area (~42x46km) typical for 
the mountainous forested terrain in the centre of Borneo; (b) idem, relief 
corrected. Some effects of overlay and shadow remain visible and are masked 
after classification. ALOS K&C © JAXA/METI 
 

 
Figure 5. FBS/FDB mosaics of Borneo after radiometric balancing and slope 
correction. The RSP strips and  two patches of classified data are 
superimposed. ALOS K&C © JAXA/METI 
 

III. CLASSIFICATION METHODOLOGY 

Several approaches for continental scale mapping (and 
monitoring) have been tested. The most promising and by far 
the most accurate approach is based on (unsupervised) mixture 
modelling followed by Markov Random Field (MRF) 
classification. The approach has been tested very successfully 
on agricultural areas [3, 4, 5]. The approach is ideal for the 



complex and heterogeneous landscapes encountered in the 
tropics, where ground truth is often very limited or missing. 
 
In mixture modelling the feature space is assumed to be a 
superposition of a certain number of clusters, each cluster 
having a certain pre-defined type of distribution, and pixels 
belong to one or more clusters. The model can be made for 
any number of pre-defined clusters. In case ground truth is 
available the optimum number of clusters can be found by 
trial-and-error and clusters, or aggregates of clusters, can be 
labelled with a class name. An example is given in Figures 6 
for a polarimetric PALSAR image.  
 

 
Figure 6. Mixture modelling followed by Markov Random Field classification 
of a small part of a polarimetric image over Central Kalimantan. Models of 
increasing complexity reveal a hierarchy of classes. For example, model 2 
shows forest non-forest, model 3 adds the class water, while in model 10 re-
generating forests can be distinguished (black arrow). Note that model 2 has 43 
parameters, increasing to 219 parameters for model 10 and that the model 
number equals the number of clusters g. ALOS K&C © JAXA/METI 

 
In case the complexity of the terrain is not well-known the 
optimum number of clusters can be computed from the so-
called Bayesian Information Criterion (BIC). Figures 7a and 
7b show the value of BIC as a function of the number of 
clusters g for a (complex) disturbed peat swamp forest terrain 
and an almost undisturbed mountain forest area, respectively. 
The results indicate, for the peat swamp area, that many 
clusters are needed to describe the information content of the 
image appropriately. Consequently, when ground truth is 
available many different classes could be distinguished. For 
the mountain forest area the result indicates that at least 
several classes (i.e. forest types) can be distinguished. It 
should be noted that the latter classes may not be present in 
the peat swamp area, and vice versa. 
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Figure 7a. BIC as a function of mixture model number g for a complex 
disturbed peat swamp area in Central Kalimantan (2007 FBS-FBD composite). 
The result indicates at least 25 clusters are needed to describe feature space. 
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Figure7b. BIC as a function of mixture model number g for a typical 
undisturbed forest area in the heart of Borneo (2007 FBS-FBD composite). The 
result indicates that ~7 clusters are sufficient to describe feature space.  
 
 
IV. MAP FRAGMENTS OF FOREST AND LAND COVER 

A first series of map fragments for Borneo have been 
produced according the methodology introduced in Sections 2 
and 3. This involves the following steps: 

1. Selection of strip data and, when necessary, 
replacement data; 

2. Radiometric balancing, orthorectification and relief 
correction; 

3. Cluster analysis in key ecological, deforestation and 
agricultural regions; 

4. Selection of key clusters for the description of the 
entire Borneo data set; 

5. Aggregation of key clusters into broad classes; 
6. Classification and outlier analysis; 
7. Evaluation of results and legend using reference data; 
8. Optionally, refinements follow by (iteratively) 

repeating steps 3-7. 
 
A first iteration of cluster analysis in 14 key areas yielded the 
following tentative legend (Table 3). It comprises classes 



typical for wetland areas, namely the mangroves and the peat 
swamps, several typical dry land forest areas, and other more 
general broad classes. The latter includes the class “other land 
cover types or mixed”.  
 
The “class other land cover types or mixed” contains either (1) 
very fragmented small areas of mixed cover type which can 
not be classified well because of the abundance of mixed 
pixels, or (2) it contains an area for which an adequate 
representative cluster has not been selected yet. Since such an 
area can be detected, as a result of the outlier analysis, and the 
unknown area can be identified on the basis of appropriate 
reference data, the legend can be extended in the next 
iteration. 
 
Table 3. Draft legend Borneo 

 Wetland areas 
 Mangrove 1 (Nipah) 
 Mangrove 2 
 Peat swamp less dense 
 Peat swamp low pole 
 Burnt (peat) forest and bare 
 Burnt shrubs and bare 
 Forest and forest on peat/heath 

 Dry land forest areas 
 Forest - Lower biomass and/or degraded 
 Forest - Higher Biomass 
 Deforestation types 

 Global types 
 Riverine-riperian and swamp forest 
 Shrub land 
 Shrub land �– other types 
 Bare 
 Tree plantations and Palm oil 
 Dry land agriculture 
 Sawah 

  
 Water 

 Other land cover types / mixed 
 No data (radar shadow and layover) 

 
Selected results are shown in Figures 8-10. 
 

 
 

 
 
Figure 8. (a) PALSAR mosaic for an area (~43x31km) typical for deforestation 
in hilly/mountainous forested terrain in Borneo; (b) idem, classification. 
ALOS K&C © JAXA/METI 
 

 
 



 
 

Figure 9. (a) PALSAR mosaic for the Mawas area in Central Kalimantan 
(~58x62km), which is typical for a (fairly) undisturbed peat swamp forest 
ecosystem; (b) idem, classification. ALOS K&C © JAXA/METI 

 

 

 
Figure 10. (a) PALSAR mosaic showing an old oil palm plantation 
development area and mangroves (Nipah) in Sabah (~58x32km); (b) idem, 
classification. ALOS K&C © JAXA/METI 

 
V. FIELD DATA AND VALIDATION 

For K&C dedicated data collection campaigns have been 
made (1) to collect extensive ground truth and reference data 
over Borneo in the framework of a systematic validation study 
funded by the Netherlands government; (2) to collect ground 
water level data in wetland areas to calibrate PALSAR for 
flooding fraction and ground water level [6, 7]. An accuracy 
assessment will be made for the Borneo map, as well as for 
each individual class of this map [8]. Guidelines provided by 
GOFC-GOLD [9] and GlobCover 2006 [10] for global 
mapping will be followed as much as possible. These state, for 
example, that the creation of an international expert network is 
the key element of the validation process [10]. This is also 
pursued within this project. An extensive partnership network 
of local end users in Insular SE Asia is already in place. 
 
Within K&C it is pursued to produce maps to support UN 
conventions and development of REDD projects. Hence, two 
types of legend are under consideration: (1) using IPCC 
classes and (2) using the FAO LCCS system. 
For validation the following reference data sets have been 
collected: 

• Landsat 
• MODIS 2007 (year aggregate) 
• Ministry of Forestry classification, 2005 



• NRM classification, 1997 
• GlobCover, 2006 
• Selected validation data set (samples) 

Because of rapid changes in vast areas many of the reference 
data, even those of the Ministry of Forestry, are already 
outdated. This forms a major complication in the validation 
process. Nevertheless, the first results (presented as maps 
during the conference) are promising. 
 

VI. MAPS OF PROTOTYPE AREA  

It is intended to produce high resolution continental scale 
maps according methodologies and validation procedures 
introduced in Chapter 3 and Chapter 5, respectively, as the 
final K&C products. For development and evaluation 
purposes, however, several tentative products have been made 
at regional and local scale. These have been presented as K&C 
mid-term products (or posters), and will be briefly summarised 
in this section. 

(A)  LULC map Central Kalimantan 

The main product development area of this project is in 
Central Kalimantan. In this area the intended methodology 
based on mixture modelling and Markov Random Field 
classification has been tested first. Use was made of the FBD 
mosaic produced by the K&C mosaicing theme, and a Scansar 
(WB1 HH) image of the wet season. Relief correction is not 
necessary since the terrain (a wetland area) is flat. An accurate 
forest and land use/cover map with more than 20 classes 
resulted (Figure 11).  
This map is currently used for spatial planning in the Ex Mega 
Rice Project area (EMRP) by the provincial government of the 
Central Kalimantan, and has replaced older maps based on 
LANDSAT. The information is applied, among others, for 
ecological restoration and conservation of wild orangutan 
populations. Dedicated ground truth collection and evaluation 
based on reference data (Table 4) reveals an accuracy of at 
least 84%. In [11] full details on the production and accuracy 
assessment are reported. 
 

Table 4. Reference data used for evaluation of the prototype 
area land use / land cover map of the Ex Mega Rice Project 
area in Central Kalimantan. 

Reference data 
�• LANDSAT-7 ETM: Path row 118-062. 2000-07-16 
�• MODIS Tree cover percentage, University of 

Maryland / SDSU MODIS VCF 2005. 
�• Fire hotspot data. Database NASA/ University of 

Maryland MODIS, ESA/ESRIN AATSR, January 
2004 �– June 2007 

�• UOther LULC maps:U  
�• Ministry of Forestry Peta Penuputan 

Lahan Provinsi Kalimantan Tengah 2003 
�• Ministry of Forestry / BAPPEDA Peta 

Kawasan Vegetasi 2003 
�• Bakosurtanal Liputan Lahan 1:250,000 

LULC map 2003EU  
 

(B)  Flood frequency map Central Kalimantan 

There is a large demand for inventory and physical 
characterization of peat swamp forests in South-East Asia in 
support of hydrological modelling, management, protection 
and restoration. The current loss of peat swamp forest causes 
enormous emissions of CO2 at the global level.  
The need for such data is particularly high in the main product 
development area of this project, in Central Kalimantan, 
where the Mega-Rice Project was located. For the Central-
Kalimantan prototype area a series of flood event maps have 
been produced for the period November 2006 until December 
2007 (Figure 12). Use is made of systematic and frequent 
observation by PALSAR radar (Table 5) and the previously 
produced LULC map (see above). The approach is based on 
land cover dependant backscatter fluctuation caused by 
flooding or peat soil ground water level change. In [12] full 
details on the production and accuracy assessment are 
reported. 
 

Table 5. Input data used for the production of the Central-
Kalimantan flood frequency map. 

ALOS PALSAR ScanSAR HH (WB1); 
EOC standard product Level 1.5; 

11-11-2006 
29-03-2007 
29-09-2007 

27-12-2006 
14-05-2007 
14-11-2007 

11-02-2007 
14-08-2007 
30-12-2007 

 



 
Riverine-Riparian forest (cover > 11%) Mangrove (cover 1-10%)
Peat swamp forest (cover > 11%) Mangrove (cover > 11%)
Woodland-degraded vegetation (cover 1-10%) Sedges temporarily flooded
Shrubland (cover > 50%) non flooded Fish ponds
Shrubland (cover > 50%) flooded Sawah
Shrubland (cover 11-50%) flooded and non flooded Dryland agriculture
Shrubland (cover 1-10%) Swamp forest (cover > 11%)
Grassland and/ or ferns Tree crops
Water River
Burnt shrubs and bare Road
Burnt forest and bare Settlement
Low pole forest (cover > 11%)
Low pole forest (cover 1-10%)  

Figure 11. Map of forest and land use/cover 2007 of the main product development area (the EMRP project area and Sebangau) in Central Kalimantan based on FBD 
and WB1 HH data (K&C mid-term product 1). 



 
 

 
 

Figure 12 Map of flooding frequency in 2007 of the main product development area (the EMRP project area and Sebangau) in Central Kalimantan based on 9 
PALSAR WB1 HH images (K&C mid-term product 2). 



 

VII. FIRST RESULTS PEAT SWAMP HYDROLOGY  
(B) Mawas ALOS PALSAR observation example To study peat swamp hydrology, ecology and radar wave 

interaction in a systematic way a dedicated research station 
has been established in the Mawas peat swamp forest 
conservation area, which is located some 80 km east of 
Palangkaraya, in the province Central Kalimantan. The main 
feature is a research bridge, 23 km in length, crossing an entire 
peat dome. Instruments placed along this bridge automatically 
measure rainfall and water level every hour. In December 
2004, an airborne radar survey (the ESA INDREX-2 
campaign) was carried out along this bridge to test a variety of 
advanced imaging radar techniques [13], [14].  The intention 
is to collect field data over an extended period (i.e. 10 years) 
to develop hydrological modelling, examine relationships 
between hydrological, soil and vegetation characteristics, 
study carbon sequestration and to relate biomass and water 
(flooding) levels to L-band radar observations of the ALOS 
PALSAR instrument [6], [7]. 

 
In the JERS-1 image of January 1998 (dry period) shown in 
Figure 14 the area demarcated by the red line is an area within 
the Mawas area suffering from excess drought. In the 
PALSAR image of 9 November 2006 (dry period) this area 
has decreased above the main east-west canal because of the 
construction of dams in the canal going North (canal Neraka). 
In the area south of the main east-west canal a large network 
of canals is still present and the continued drainage has 
worsened the situation. Note the very low radar backscatter 
(intense black) caused by very dry bare peat areas and the 
bright white area, which is a strongly degraded open forest 
with fire damage. The areas demarcated in blue are 
hydrologically intact, allowing forests previously damaged to 
regenerate. 
 

 
(A) Hydrological characterisation  
 
Peat domes are formed in ombrogenous peat swamp areas, 
which are purely rain-fed and, consequently, nutrient poor. 
Vegetation types are located in concentric zones, with the 
'poorer' forest types located towards the centre of the dome. 
To characterize the hydrology of such a dome, where water is 
flowing from the top in the centre towards the edges, the water 
level variation along the flow is monitored. An example result 
for one of the instruments along the bridge is shown in Figure 
13. 
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Figure 13. Water table variation WL-time (solid curve) and peat soil surface 
roughness (dashed curve). The vertical axis shows water level and soil surface 
height (both in cm). The horizontal axis shows horizontal distance (in cm) 
along the soil surface roughness profile (i.e. from -1000 to 1000 cm) as well as 
time (i.e. from 9-Nov-03 to 14 Mar-04). The position of the water table 
measurement is at the centre of this profile. These measurements are made 
every hour. The results for the period 9 Nov2003 until 14 March 2004 are 
shown (also along the horizontal axis). The three horizontal lines show the 
maximum (WL-Max), average WL-Ave) and minimum (WL-Min) water level. 
The percentage terrain flooding, thus, can be deduced from the combined 
roughness and water table measurements. 



 
Figure 14. Peat swamp degradation (B) and restoration (A) in the Mawas area 
between  1998 (JERS-1) (left) and 2006 (PALSAR) (right). The red area is 
degraded, the blue area is intact or regenerating. 

 

VIII. DISCUSSION AND CONCLUSIONS 

The demonstrated methodology for continental wide mapping 
of forest and land cover at high resolution yields very 
promising results, and is generally applicable. These results 
are especially relevant for the humid tropical rain forest areas 
where other (optical) techniques have a poor performance 
because of persistent cloud cover. For monitoring, or the 
development of future REDD projects, radar observation 
seems to be irreplaceable. 
The tentative legend shown already contains six forest types 
which have typical biomass ranges, and which can be mapped 
fairly accurate. Since more classes can be differentiated (on 
the continental scale) than initially foreseen, more validation 
effort is required. The (ongoing) validation study likely may 
reveal that more types of deforestation, tree plantations and 
shrubs can be differentiated. 
First validation results show good agreement with the maps of 
the Ministry of Forestry which are based on visual 
interpretation of Landsat, but in general are outdated. The 
PALSAR maps would be perfect to improve GlobCover [10] 
in tropical rain forest areas with persistent cloud cover.  
Maps of the Central Kalimantan prototype area indicate high 
accuracy for LULC mapping (over 84% for 20 classes), flood 
frequency mapping and peat swamp hydrology may be 
obtained. These maps are already used by local organisations. 
It is expected that more characteristics of agricultural and peat 
forest areas can be obtained when the PALSAR ScanSAR 
cycles are included in the classification (or parameter 
retrieval) procedures. These features are mainly related to 
cropping cycles, hydrological/seasonal cycles and flooding 
events. 
The work will be continued within the extension (phase 2) of 
the JAXA Kyoto & Carbon Initiative. 
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Abstract— Deforestation in the Sumatran province of Riau is 
found to cause an initial marked increase in HH backscatter. 
Large areas can therefore be rapidly surveyed for evidence of 
deforestation by measuring temporal variability in a time-series 
of ScanSAR data. Regions of anomalous change can then be 
subjected to temporal analysis to find the timing of deforestation 
events to within 46 days. Algorithms to perform these operations 
automatically have been implemented and are currently being 
assessed and refined using field data. Comparable results for 
annual change are also achievable using Fine Beam Dual (FBD) 
data, but this involves more substantial data handling and cannot 
localise the time of deforestation. Though the analysis has been 
developed only over Riau, it is expected to be generic and 
transferable, and will be tested in other regions once suitable 
data are acquired, with the intention of extending it to the whole 
of Indonesia. 

Index Terms— ALOS PALSAR, K&C Initiative, change 
detection, ScanSAR, tropical deforestation 

I. INTRODUCTION 

A. Project objectives 
The objectives of this project are: 
 
1. To demonstrate that ALOS ScanSAR and FBD data 
can successfully detect natural forest cover change in 
Indonesia, where cloud and haze hamper natural forest 
monitoring based on optical remote sensing data. 
2. To assess the ability of ALOS data to detect key 
natural forest and land cover types in Indonesia. 
3. To develop software that permits ALOS-based forest 
monitoring to be carried out in a scientifically robust manner 
at technician level. 
4. To provide the Indonesian and global community 
with tools for using ALOS-PALSAR data that allow 
transparent, accurate and frequent tracking of natural forest 
cover change independently of cloud and haze and that can be 
used as a basis for action on biodiversity conservation, forest 
carbon management, etc. 
 
Up to now, work has been directed primarily toward the first 
and third objectives, with particular emphasis on the analysis 

of ScanSAR time series.  The analysis this involves also 
contributes to meeting the second objective.  Our immediate 
aim is to be able to detect all new deforestation occurring from 
the start of the ALOS time-series so that it can be reported on 
at 46 day intervals, and the current drive is focussed on 
developing the machinery needed to achieve this goal. 
 
Up to now, we have carried out a case study applied to a single 
time-series of ScanSAR data for the year 2007, in order to 
develop methods that highlight regions showing evidence of 
deforestation and track the progress of these events. These 
methods should be able to analyse a year’s ScanSAR images 
for a single scene within 12 hours. A more rapid but 
approximate analysis should be achievable within an hour.   
 

B. Scientific findings 
Analysis of PALSAR data seems to indicate that multi-
temporal ScanSAR data is as capable of measuring 
deforestation as Fine Beam Dual (FBD) data. This provides 
major advantages, particularly coverage of wider areas and the 
ability to locate the timing of deforestation events to within 46 
days. Deforestation in Riau (the test area) typically leads to an 
increase in HH backscatter, but at the moment we have no 
datasets long enough to know how the signal subsequently 
develops over longer periods. Evidence from Brazil (backed 
up by physical argument) suggests that the signal will decline 
with time to values well below that of mature forest. The 
characteristic signal of a deforestation event indicates that 
large areas can be rapidly surveyed for evidence of 
deforestation by measuring temporal variability in a time-
series of ScanSAR data. Detected regions of change can then 
be subjected to temporal analysis to find the actual timing of 
the event. These operations can be realised by automatic 
algorithms which have been implemented and are currently 
being tested. Up to now, the analysis has been developed only 
over Riau, but we expect it to be generic and transferable, and 
it will be tested elsewhere once suitable data are acquired, 
with the intention of extending it to the whole of Indonesia. 



II. DESCRIPTION OF THE PROJECT 

A. Relevance to the K&C drivers 
The project was designed to gain better understanding of the 
land carbon cycle, and in doing so derive information relevant 
to UNFCCC reporting under Land Use, Land Use Change and 
Forestry. Its original focus was meant to be temperate forest, 
but this was modified for three reasons: (1) the greater 
importance of tropical land use change for the global carbon 
budget; (2) the proposal for the post-2012 Reduction of 
Emissions from Deforestation and Degradation mechanism at 
the Bali COP-12; (3) development of good working links 
between the University of Sheffield and WWF Indonesia, 
which gives a means to link technical developments to ground 
data, provides access to important institutional links in 
Indonesia, and supports applications on the ground.  
The key initial aim of the project was to develop methodology 
to map changes in forest cover using ALOS PALSAR data. 
The expectation was that multi-temporal (annual) FBD data 
would be crucial for this, but investigations at the Riau test 
site in Sumatra suggest that equivalent, and in fact more 
powerful, results may be obtained using 46-day repeat 
ScanSAR data. We also aimed to develop methods to estimate 
product accuracy, and thence to generate maps of forest cover 
and maps of forest changes, together with corresponding 
accuracy assessments. Substantial progress has been made in 
developing methods to detect deforestation and locating the 
times of these changes. We are currently planning work in 
Sumatra to test the performance of the algorithms and 
optimize the parameters used in them. We then intend, with 
the help of JAXA, to extend the methods to the whole of 
Indonesia. 

B. Work approach 
The work has benefited greatly from access to the WWF 2007 
land-cover database for Riau & Jambi [1].  This provides 
detailed information about vegetation types covering the 
region and is based on remote sensing data nominally for 
2007.  We also have ALOS ScanSAR and Fine Beam Dual 
images for much of the same region spanning the same year. 
With the help of the WWF database we can identify primary 
forest regions and assess their normal characteristics. It also 
allows us to reduce the processing task, since for deforestation 
studies we can ignore areas already known to have other types 
of land cover. This is very helpful, since a single ScanSAR 
image typically contains ~19×106 pixels, and a long time-
series of images represents a significant amount of data 
processing. The approach we have developed is to detect 
anomalous changes in regions labelled as forest; these are 
likely to indicate deforestation events. Subsequent operations 
aim test this hypothesis and determine when the changes 
occurred. The wider challenge is to extend the methods to 
regions outside the database where there may be less prior 
knowledge about forest cover. 
 
Temporal variability within a time-series of images can be 
charted by recording the temporal standard deviation at each 

pixel.  Seasonal fluctuations together with slow changes over 
the period of the time-series may contribute to this, hence to 
detect deforestation we need a more specific temporal 
signature. Initial searches used colour-coded combinations of 
images in conjunction with the WWF land-cover database to 
survey the type of changes that occur and to identify suspect 
regions within designated primary forest areas for more 
detailed study.  
 
Each pixel of a ScanSAR image covers a region of size 
100m × 100m and we have made the assumption that under 
deforestation enough of each pixel is cleared within the 46-day 
cycle to change significantly the scattering coefficient between 
successive images in the time-series, thus generating a step in 
the intensity (more subtle effects due to partial clearance or 
forest degradation will be studied later).  In practice the 
algorithms use a window to average over squares of 5×5 
pixels and we are thus currently working at a spatial resolution 
of 500m × 500m per cycle. 
 
A preliminary routine (changemap) distinguishes positive 
from negative changes that exceed a threshold value.  Areas of 
positive change are picked out as regions of suspected 
deforestation.  This increase is thought to be due to the 
practice of leaving tree stumps and other detritus behind after 
felling.  The stumps in particular would lead to high 
backscatter due to the double bounce mechanism.  In other 
areas of the world, alternative management practices may 
instead lead to a negative change, and partly for this reason it 
is worth retaining the possibility of studying both types of 
change. 
 
A more specific routine (stepmap) fits a step function to 
window-averaged data and filters out regions of positive or 
negative step-size that exceed a given threshold value.  This 
routine picks out many areas in common with changemap and 
some that are different.   It also produces extra valuable data 
on the time of step.  However it is relatively slow, taking about 
16 × the CPU time of changemap.  A third routine (noisemap) 
has also been developed to look more generally at regions of 
anomalous behaviour, particularly with a view to isolating 
regions that might lead to false detections.  This routine is 
relatively fast and may be used to initially screen large areas 
for possible regions of interest. Inside the WWF database 
region it is possible to focus only on known forest areas, but in 
regions without prior knowledge of land cover a means of 
locating regions of interest will be needed.  Using noisemap, 
pixels that do not include any period of scattering that exceeds 
the normal standard deviation can be identified and ignored, 
allowing use of the relatively slow stepmap to focus only on 
the remaining areas.   
 

C. Satellite and ground  data 
In the initial phase of program development we have 
concentrated on a set of eight ScanSAR images centred on 
Lat. 1.728 S, Long. 102.332 E  that partially overlap the WWF 



land-cover database for Riau [1].  This is the complete set of 
46-day ScanSAR images for 2007, and they are all acquired 
with the same geometry. Using such a limited dataset was 
necessary because data quota limitations prevented more 
extensive coverage. However, it has been sufficient for 
developing methods that should have much wider 
applicability. 
 
In addition, we have nearly full coverage of Riau by FBD data 
from June to August 2007; a missing strip had to be filled with 
November data. 
 
Before analysis the eight ScanSAR images were accurately 
co-referenced using Gamma software. A multi-channel filter 
[2] was then applied to remove speckle.   The IDL code for 
this procedure has been structured to work automatically with 
a large number of images and delivers de-speckled files of the 
same name with modified extensions.  The routine also finds 
the combined intersection areas of all input files and applies to 
all results.  In other words, any regions that are not covered by 
all input files are removed.  Processing takes less than 1 hour 
for 8 images and intermediate processing files are not 
currently saved.  However, if a significantly longer time base 
is available it may be worthwhile to implement an iterative 
procedure to speed the processing of new images [3], which 
would require the archiving of some intermediate files. The 
resulting average image is shown in context with the database 
in Figure 1.   
 

Figure 1.   A de-speckled and averaged PALSAR ScanSAR image of the Riau 
and Jambi regions of Sumatra overlaid by the WWF 2007 land-cover database.  

Images obtained Jan – Dec 2007, ALOS K&C © JAXA/METI 
 

1) Regions 
From the preliminary analysis using colour-coded 
combinations of images in conjunction with the WWF land-
cover database, ten regions are discussed here, as detailed in 

Table 1.  For each of these regions, the intensities of a 5×5 
window of pixels are plotted for comparison as a time-series 
in the Appendix.  Two of these (Regions 1 and 3) have all the 
hallmarks of deforestation events:  1) the intensity changes 
abruptly over a 46-day period in a region designated as forest; 
2) the regions have an angular appearance; 3) they are close to 
known cleared areas and plantations.  In addition, for region 1 
the progressive nature of the event is consistent with 
sequential forest clearance. For comparison, apparently 
undisturbed regions immediately adjacent to regions 1 and 3 
have also been investigated – these have a slow, probably 
seasonal intensity variation indistinguishable from other 
regions of primary forest.  Regions 5 – 10 have all been 
chosen because they belong to regions of relatively high 
temporal standard deviation.  These types of region could 
potentially be wrongly identified as deforestation; it is 
therefore important to know their characteristics. 
 
Table 1 Regions investigated in detail. 
 Latitude 

South 
Longitude 
East 

 

Region 1 0 34’ 36.13’’ 102 20’ 39.63’’ Suspected deforestation 
Region 2 0 33’ 10.18’’ 102 39’ 31.80’’ Adjacent forest to region 1 
Region 3 0 13’ 28.30’’ 102 54’ 25.47’’ Suspected deforestation 
Region 4 0 12’ 31.12’’ 102 55’ 10.97’’ Adjacent forest to region 3 
Region 5 0 15’ 28.30’’ 102 49’ 47.49’’ A forest region with 

unusually high s.d. 
Region 6 0 11’ 44.51’’ 102 40’ 48.73’’ River and associated forest 
Region 7 0 25’ 29.81’’ 102 49’ 57.83’’ An anomalously bright 

region 
Region 8 0 18’ 30.91’’ 102 35’ 13.05’’ Probable flood plain 
Region 9 0 18’ 30.94’’ 102 33’ 39.42’’ As above 
Region 10 0 42’ 36.26’’ 102 58’ 44.65’’ Paddy fields 
 
The WWF database is very detailed and for the purposes of 
the current study the regions have been amalgamated into just 
nine groups as shown in Table 2.  
 
Table 2  WWF database amalgamated regions 
Landcover Fill 
Primary Forest (all types)  
Shrub,Grass& Fern   
Regrowth (All types including Forest, Shrubs, Semak, Belukar Muda)   
Plantation (Rubber, Oil Palm, Acacia, Coconut)   
Paddy fields   
Water   
Agricultural (mixed agriculture, mixed garden)   
Cleared, cleared post acacia harvested, etc.  
Burnt   
Built   
 
All the regions given in Table 1 lie within the database.  Here, 
in Figure 2 we show the context of the two regions of main 
interest. The land-cover maps are superimposed on composite 
ScanSAR images colour-coded to reference the beginning, 
middle and end of the cycle.  In these images the regions of 
interest lie at the image centres.  Region 1 changed relatively 
late in the year (see Appendix) and appears as a bluish patch in 
Figure 2(a), region 3 changed closer to mid-cycle and appears 
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as a greenish patch in Figure 2(b). 
 

          
      (a)                                                                      (b) 
 

Figure 2  (a) A small section of a  time-averaged de-speckled PALSAR 
ScanSAR image surrounding region 3 showing texture probably associated 
with plantation drainage.  (b) A high resolution FBD image of the same area 
where the colour derives from polarisation channels shown as: HH-red, HV-

green, HH/HV-blue.  Images obtained Jan – Dec 2007, ALOS K&C © 
JAXA/METI 

 
2) Normalisation 

 
An initial view of the areas that are subject to change can 
easily be obtained from the temporal standard deviation for 
each pixel.  However, over a whole year, it is evident that the 
average backscatter of the forest regions changes significantly.  
Most of our work has therefore been carried out with images 
corrected for this (probably) seasonal variation by normalising 
intensities relative to the forest background.  Deviations 
relative to this background that lie within areas designated as 
primary forest then highlight regions of interest. By masking 
out non-forest regions these can easily be isolated and 
identified, as shown in figure 3. 

 
Figure 3. Temporal standard deviation map of areas labelled as forest in the 

WWF database that overlap with the image region.  Areas outside the forest or 
image are shown in black and the standard deviation of other regions is 

indicated by the colour-bar, with regions of highest standard deviation shown 
in white.  Images obtained Jan – Dec 2007, ALOS K&C © JAXA/METI 

 
3) Tools 

 
Three MATLAB routines have been developed and are 
described briefly below.  The routine noisemap was originally 
designed to seek anomalous areas that might confuse the step 
fitting routine.  In particular, if steps are found in data with 
overall high or low average values compared to forest they are 
unlikely to be part of the forest. Strongly fluctuating data 
might also lead to an erroneous fit.  All of these routines 
incorporate user-defined window-averaging and a detection 
threshold value, Td, expressed in units of the forest temporal 
standard deviation SDF:  
 

Fhd SDTT =                             (1) 
 

where Th is the threshold expressed as an intensity and the 
standard deviation is obtained from the fluctuations over the 
full extent of forest available in the image according to the 
WWF database.   
 
Table 3a  noisemap  
 
Inputs Meaning 
a The set of N images, i.e. time-series data 
Tnorm Forest intensity normalization data 
mask_stat Forest intensity statistics 
Td A detection threshold; see Eq. (1) 
nwin A window size for spatial averaging 
 
Outputs Output pixels are set = 0 unless the following criteria are 

met: 
hav Pixels with average intensity > mean + Th 
lav Pixels with average intensity < mean - Th  
nz Pixels with a noise metric nz >  mean + Th 
sdev Pixels with temporal standard deviation >  mean + Th 
nzmin Pixels with a temporal minimum value <  mean - Th 
nzmax Pixels with a temporal maximum value >  mean + Th 
 
The noise metric was designed to discriminate between a step 
function response and strong temporal fluctuations.  It can be 
represented as   
 

  
−

=
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1
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ijkij N
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where ijkσ  is the (i, j)’th pixel of the k’th image and 

1−−=Δ ijkijkijk σσσ  is the change in intensity between images.  
It is strongly correlated with other noise measures such as the 
standard deviation, but it may have a specific use in avoiding 
false positives, as we show later. 
 
The routine changemap fits a straight line to the window-
averaged intensity time-series. The input arguments are similar 
to those for noisemap, but include an additional mask, 
represented here as M, that limits the area over which the 
calculations are performed. This may be a mask obtained from 
regions of the WWF database (particularly forest) or it may be 
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obtained from regions identified by noisemap as having, e.g., a 
significantly high standard or other deviation from the norm.   
Note that the criterion for detecting positive change (“cpos”) 
in Table 3b could equally be expressed as “pixels with a fitted 
final image intensity > Tsd,” and similarly for cneg. 
 
Table 3b changemap 
 
Inputs Meaning 
a The set of N images, i.e. time-series data 
Tnorm Forest intensity normalization data 
mask_stat Forest intensity statistics 
Tsd A threshold relative to forest standard deviation 
nwin A window size for spatial averaging 
M A mask determining a region to be analysed 
 
Outputs Output pixels are set = 0 unless the following criteria are 

met: 
cpos Pixels with positive change gradient > Th / N 
cneg Pixels with negative change gradient < - Th / N 
C1pos Pixels with fitted 1st image intensity >  mean + Th  
C1neg Pixels with fitted 1st image intensity <  mean – Th  
 
The routine stepmap fits a step function to the window-
averaged intensity time-series using the matlab routine 
fminsearch; this in turn uses a Nelder-Mead simplex algorithm 
to optimise the fit.  The routine is initialised by finding the 
time of maximum change, the initial value and the final value.  
The fit is relatively slow compared to changemap and overall 
timings for this routine are roughly 16 × those for changemap.  
Like changemap, the input arguments include a mask, M, that 
limits the area over which the calculations are performed.  In 
the absence of any prior knowledge of forest cover, it 
currently seems as though this mask can best be chosen using 
values of nzmax from noisemap with a suitable threshold. This 
quantity simply identifies the maximum value for a window-
averaged pixel in the time series; clearly, unless some values 
in the time-series are above a given threshold, there is no point 
in applying a step fit.   
 
For a set of 8 images of size 400x400 pixels in the absence of 
any masks, timings obtained for Region 1 on our high-
performance computing system 
(http://www.shef.ac.uk/wrgrid/iceberg) were: noisemap ~ 19.3 
s, changemap 85.3 s and stepmap 1375.6 s. These would scale 
to roughly 39 min, 2.85 hr & 45.85 hrs respectively for the full 
image size. With masking provided by noisemap the values 
recorded for Region 1 were changemap 18.3 s and stepmap 
302 s, which scale to a more manageable 37 min and 10.1 hrs 
respectively for full images.   
 
Example fits using a line and a step function are shown in 
figure 4 for the data of Region 1. 
 

 
Table 3c stepmap 
 
Inputs Meaning 
a The set of N images, i.e. time series data 
Tnorm Forest intensity normalization data 
mask_stat Forest intensity statistics 
Tsd A threshold relative to forest standard deviation 
nwin A window size for spatial averaging 
M A mask determining a region to be analysed 
 
Outputs Output pixels are set = 0 unless the following criteria are 

met: 
spos Pixels with positive step change >  mean + Th 
sneg Pixels with negative step change <  mean + Th 
bpos Pixels with baseline >  mean + Th  
bneg Pixels with baseline <  mean – Th 
tpos Returns the image number for the time of greatest change if 

spos>0 
tneg Returns the image number for the time of greatest change if 

spos<0 
 
 

 
 

 
Figure 4. Fitting of normalized intensity time series for a region suspected of 

being subject to deforestation: (a) by a simple line (b) by a step function. Each 
fit is shown as a magenta line. Blue lines represent the normalized intensity 

over the whole series for 25 individual pixels centred at 0.576703 S, 
102.677675 E; the average of these is shown as a black line.  The red line 
shows the forest mean intensity and the green lines represent 1 standard 

deviation either side.   
 



III. RESULTS AND SUMMARY 
1) Results 

 
The results of the stepfitting exercise are illustrated in Figure 5 
for two different threshold levels.  In Table 4 the numbers of 
pixels for each category are recorded.  It can be seen that, of 
the 4481 pixels assigned, 2491 lie within the known forest, 
leaving 1990 outside.  This means that, in the absence of any 
prior land-cover knowledge, the false-positive ratio is at least 
44.4%.  For a higher threshold level the total number of hits 
decreases to 1353 of which 641 lie outside the known forest so 
that the false-positive ratio has increased to 47.3%.  An 
associated map of the step timings is shown for Figure 6 for 
the higher threshold.   A comparison with figure 5 shows that 
the areas chosen outside the forest return an early step time & 
this may be a way of distinguishing some false from true 
positives.   
 
Table 4 Pixel counts for detections with changemap and 
stepmap and the number of overlaps with each other and the 
forest class.  
 
(a) with thresholds set low at 0.5, 0.35, 0.65 

Count Forest cpos spos 
Forest 57009 5552 2491 
cpos 5552 9279 3529 
spos 2491 3529 4481 

 
(b) with thresholds set high at 1.0, 0.75, 0.75 

Count Forest cpos spos 
Forest 57009 1353 712 
cpos 1353 1917 960 
spos 712 960 1353 

 
 

 
 

 
Figure 5. An image centred on region 1 using the routine stepmap overlaid on 
the primary forest regions (shown green).  Non-zero values of spos are shown 
red or yellow where they overlay forest regions:  (a) with threshold set at 0.65 

standard deviations (b) with threshold set at 1.0 standard deviations.  

 

 
Figure 6. An image associated with 4(b) showing the time of step for the 

regions highlighted.  The colour-bar represents a continuous advancing time 
scale with 0 meaning no image and images 8 mapped on to 1.  It thus 

represents advancing time with are mapped on to the scale 0-1. 

In figure 7 the low threshold map of Figure 5(a) is overlaid by 
the primary forest regions and the noise metric, nz (Eq. (1)), 
which takes the blue channel. Where the noise metric overlays 
the high-step regions outside the forest the colour becomes 
pink, and it can be seen that many of these likely false-positive 
areas have been picked out in this colour.  These areas appear 
to be associated with paddy fields (compare with Figure 2(a)).  
The intensity plot shown as region 10 in the Appendix 
demonstrates that paddy fields can show very strong 
fluctuations, which suggests that nz may indeed be a useful 
tool for reducing this particular source of false positives.   
 

(a) 

(b) 



 
Figure 7  An image centred on region 1 using the routine stepmap overlaid on 
the primary forest regions (shown green).  Non-zero values of spos are shown 
red or yellow where they overlay forest regions.  Overlaid in blue are pixels 

with high values of nz; where coincident with the step-fitted regions these show 
as pink. Virtually none of the regions identified as suspect in the forest are 
overlaid by this metric (where they would appear white in this image).  The 

stepmap and noisemap thresholds were set at 0.65 and 1.0 standard deviations 
respectively. 

 

 
Figure 8  An image centred on region 1 using the routine stepmap overlaid on 
the primary forest regions (shown green).  Non zero values of spos are shown 
red or yellow where they overlay forest regions.  Overlaid in blue are pixels 
with high values of cpos; where coincident with the stepfitted regions these 

show as pink. Most of the regions identified as suspect in the forest are overlaid 
by this metric (where they appear white in this image).  The stepmap and 

noisemap thresholds were set at 0.65 and 1.0 standard deviations respectively. 
 
In figure 8 the low threshold map of Figure 5(a) is overlaid by 
the primary forest regions and high values of cpos, which 
indicates a high level of change over the time-series (see Table 
3b). Where this overlays spos (the high-change step-fit metric 
Table 3c) within the primary forest region the result is white, 
and where it overlays spos outside the forest region the result 

is pink.  The white areas suggest that changemap matches the 
results of stepmap within the forest regions and supports its 
use as a quick but possibly rough tool for locating suspect 
areas.  Note that the pink areas in figure 8 tend to complement 
those in figure 7.  A number of red areas remain and thus 
changemap may also be useful in combination with stepmap 
to cut down the false positive ratio. 
 
In figure 9, the results of step fitting are again combined with 
the noise function nz and the primary forest mask for Region 3 
and its surroundings.  In this figure the angular areas shown 
black are designated “cleared post acacia harvested” in the 
WWF database (see figure 2b) and are picked out well by 
plotting the hav metric of noisemap.  Red areas identified by 
stepmap overlap some of these regions and also extend into 
the forest, where they show as yellow.  Region 3 itself shows 
yellow in the centre of figure 9(a).  The noise metric nz has 
again been successful in picking out some erroneously 
identified regions outside the forest area (where blue and red 
combine to give pink) but has not picked out the mottled 
region inside the forest boundary in the lower-right quadrant 
(a typical locality has the position: 0 16’ 59.61’’ S,  102 57’ 
26.41 E’’).  This is labelled in the WWF database as “swamp 
forest very open canopy”.  This region is also picked out by 
changemap and so it is a probable false positive area that we 
cannot currently reject by using alternative metrics.  An 
associated map of the step timings is shown in Figure 9(b), 
where it is clear that this mottled region stands out in red 
(meaning the step was fitted at the end of the sequence) while 
the more likely suspects for deforestation changed around 
mid-sequence and are coloured blue or yellow. Time-series 
plots for this region show a steady increase in intensity over 
the year, suggesting that stepmap has erroneously fitted a 
region of change with a step at the sequence end.  This is a 
problem that may be remedied by using a longer time-
sequence but alternative means of identifying these difficult 
areas are also being sought. 
 
We have already made some comparisons with Fine Beam 
Dual (FBD) images, and expect to extend this, particularly 
with a view to developing the second objective of the project.  
A large region to the north-west of region 3 has clearly been 
affected by plantation work, as evidenced by linear features 
that are probably due to drainage channels.  These have not 
been picked out by our analysis so far because the forest 
region was probably cleared after the images used to compile 
the WWF database, but before 2007.  These are shown more 
clearly in figure 10(a) and compared with a higher resolution 
FBD image in Figure 10(b).  These features could probably be 
picked out on a ScanSAR images by using a texture filter, and 
this will be investigated during the next phase of the work.  
 
Although the exact location of Region 3 is seen to be within 
the WWF-designated primary forest area in Figure 9(a) in the 
FBD image (acquired 27/07/2007), in Figure 10(b) it is clearly 
seen to be part of the plantation, but also coloured blue.  The 
intensity plot for this region (shown in the Appendix) shows 



that the event occurred between images 3 and 4, which were 
acquired in May (03/05/2007) and June (18/06/2007) 
respectively – i.e. before the FBD image.  The evidence could 
suggest that primary deforestation occurred in June and the 
ground was quickly turned to plantation by July, or more 
likely (since much of the plantation seems established) that 
Region 3 is actually a plantation management event in a pre-
existing plantation rather than deforestation.  If this is true the 
WWF database is in error; currently planned fieldwork will 
establish this.  This clearly highlights the importance of FBD 
images to support or refute the results of temporal ScanSAR 
analysis. 

 
Figure 9(a) An image centred on region 3 using the routine stepmap overlaid 

on the primary forest regions (shown green).  Non-zero values of spos are 
shown red or yellow where they overlay forest regions.  Overlaid in blue are 

pixels with high values of nz; where coincident with the stepfitted regions 
these show as pink. Here, some regions show white where forest regions are 

overlaid by both metrics.  A mottled region (lower centre right) shows yellow, 
but seems unlikely to be due to deforestation.  The stepmap and noisemap 

thresholds were set at 0.65 and 0.5 standard deviations respectively. (b) The 
same image showing the time of step for the regions highlighted.  The colour 
bar represents a continuous advancing time scale with 0 meaning no image 

and image 8 mapped on to 1.  It thus represents advancing time mapped onto 
the scale 0 -1.  The mottled region shown as red in this figure indicates that a 

step has been fitted right at the end of the time-series.   

 

2) Potential difficulties 
 
We have seen that the high level of false positives recovered in 
Region 1 can be significantly reduced by using other metrics.  
The mottled (assumed) false-positive area in Region 3 
currently can only be recognised from its very late time-of-
step.  This is quite possibly the result of the step fitting routine 
attempting to fit something which is not a step, and 
investigating this will be a priority.  We are surer of the results 
that give a clear step signal in mid time-series, when there are 
data either side of the step to inform the routine.  However, the 
hope would be to identify regions that are being deforested 
during the most recent cycle, rather than those that have 
already been deforested, say 6 months ago.  A single step at 
the end of a sequence may therefore be insufficient for an 
unambiguous identification of deforestation. Regions that 
fluctuate wildly in scattering intensity or have an annual spiky 
variation (like paddy fields) can be discounted, but regions 
that have shown low variation in the past and suddenly change 
are clearly of interest.  An ability to recognise and map 
primary forest regions without prior knowledge forms part of 
the second objective of this project and clearly is important to 
the wider application of the approach described above.   
 
Further investigation is needed into how the analysis is 
affected by use of the known forest variation to normalise data 
and detect changes relative this background.  It is well known 
that rainfall varies markedly over Sumatra and so it may be 
expected that the annual variation of backscatter from forest 
may vary from place to place. In the absence of this 
knowledge we may be forced to normalise with respect to 
some local average or even with respect to the whole temporal 
image variation.  To this end it may be worth studying the 
annual variation of other land-cover categories for 
comparison. 
 

3)  Summary 
The characteristic sharp increase in backscatter caused by 
tropical deforestation allows large areas to be surveyed rapidly 
for evidence of deforestation by first measuring temporal 
variability in a time-series of ScanSAR data to detect regions 
of interest, then temporal analysis in these regions to locate the 
time of the event to within 46 days. This process has been 
implemented as an automatic algorithm, which is currently 
being assessed in a case study using ground data from Riau.  
 
Data have already been obtained to extend the time-series for 
the current ScanSAR scene.  These will be processed with an 
updated algorithm, together with the images used here, to 
assess the findings in this report; this is expected to show that 
an extended series gives better confidence in the results.  We 
then aim to analyse the whole scene and,  depending on data 
availability, extend the analysis to the whole of the area 
covered by the WWF database.   
 
Up to this point, our analysis has been developed only over 
Riau, but we expect it to be generic and transferable, and we 

(a) 

(b) 



will test it in other regions once suitable data are acquired, 
with the intention of extending it to the whole of Indonesia. 
This will require methods to define a prior approximate map 
of primary forest, which can be based on optical or radar data. 
This will be investigated in the next phase of the work. 
 
The work described in this report has its most important 
application in understanding the tropical carbon balance and in 
its contribution to the proposed UNFCCC Reduced Emissions 
from Deforestation and Degradation mechanism. The 
PALSAR sensor appears to be an extremely powerful tool for 
tracking tropical deforestation, but it is critical for its general 
acceptance that well-founded methods to use the data are 
developed, tested, demonstrated and made available in a form 
that can readily be applied by the tropical forest nations 
themselves. This work aims to make progress towards 
supplying both the necessary tools and confidence in their 
ability to deliver the required information. 

 

 
 

 
 

Figure 10  (a) A small region of a time-averaged de-speckled ScanSAR image 
surrounding region 3 showing texture probably associated with plantation 
drainage.  PALSAR in ScanSAR mode acquired Jan-Dec 2007 © JAXA/METI  
(b) A high resolution FBD image of the same area where the colour derives 
from polarisation channels shown as: HH-red, HV-green, HH/HV-blue. 
PALSAR in FBD mode acquired July 2007 © JAXA/MET 

 

IV. MISCELLANEOUS 
 

1) Appendix 
This Appendix displays time-series plots for the ten regions 
detailed in Table 1.  The 25 lines shown in each plot 
correspond to the individual pixels in a 5×5 window centred 
on the central pixel of each region.  The red and green lines 
show the mean and one standard deviation values for the 
whole image (excluding pixels with value zero). 
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Abstract—An extensive dataset of ALOS PALSAR L-band 
Synthetic Aperture Radar (SAR) backscatter images is 
investigated for clear-cut detection in Swedish forest. SAR data 
were available for the counties of Västerbotten and Västra 
Götaland as well as for two local test sites (Remningstorp and 
Krycklan). A strong forest/non-forest contrast and temporal 
consistency were found for the Fine Beam Dual HV-polarized 
backscatter in summer/fall. Thus, a simple thresholding 
algorithm could be used for clear-cut detection. Using the ALOS 
PALSAR data and methods applied so far, most pixels in the 
clear-felled areas could be correctly classified as changed. For the 
county of Västerbotten in northern Sweden, up to about 50% of 
the pixels were correctly classified as changed for about 90% of 
the clear-felled areas using a 2 dB threshold. The results were 
less good for the county of Västra Götaland in southern Sweden, 
where only up to about 40% of the pixels could be correctly 
identified as changed for about 65% of the clear-felled areas. For 
the south county, also much over classification of non changed 
areas occurred. It would still be possible to use the ALOS 
PALSAR data in a sampling routine, where changed areas are 
checked against cutting permits and samples of the remaining 
detected changes should be checked in situ for determining type 
of change. In the extension phase of the project, an up scaling of 
the mapping of clear-cuts, and possibly also biomass, to all of 
Sweden is planned. There is also a need for further algorithm 
development. 

Index Terms—ALOS PALSAR, K&C Initiative, boreal forest, 
forest theme, deforestation, clear-cuts, Sweden. 

I.  INTRODUCTION 
In Sweden, a nationwide coverage of satellite data is 

acquired annually by the government. The images are used by 
the Swedish Forest Agency for change detection in order to 
find clear-felled areas and subsequent verification of the 
cutting permits of about 70,000 clear-felled areas yearly. In 
combination with about 50,000 National Forest Inventory 
(NFI) field plots, the images are also used for producing 
nationwide forest maps, and for post stratification of forest 
variable estimates from the NFI plots. At present, optical 
satellite imagery are used. Sweden is, however, characterized 
by frequent cloud-cover and long periods of reduced solar 

illumination. In order to obtain the about 200 cloud-free SPOT 
scenes that are needed for a nation-wide coverage, about 6,000 
programming attempts of the SPOT satellite are needed. In 
this respect it is of interest to investigate space borne Synthetic 
Aperture Radar (SAR) as a future complement for forest 
monitoring due to its independence of cloud cover and thus 
the possibility to obtain the needed imagery in a foreseeable 
way. 

It is of particular interest to investigate the usefulness of L-
band SAR sensors, for which the backscattered signal has 
shown a high sensitivity to forest structural properties, in 
particular for the cross-polarized return (see e.g. [1-8]). This 
has motivated further investigation of the usefulness of the 
Advanced Land Observing Satellite (ALOS) Phased Array L-
band type Synthetic Aperture Radar (PALSAR) images for 
forest change detection and mapping. Logging activities and 
fire scars are characterized by noticeable decrease of the 
backscatter. The backscatter difference before and after the 
forest cover change has been devised to be a tool for mapping 
clear-cuts and deforestation in boreal [9-13] and tropical forest 
[14-17]. Several studies, however, highlighted the importance 
of the environmental conditions at the time of image 
acquisition, concluding that data acquired under dry 
conditions perform better than in case of wet conditions [14, 
15, 18, 19]. The importance of a multi-polarization and multi-
sensor approach for mapping of reforestation and disturbance 
has been reported by [11, 14, 20]. 

Although a few algorithms have been presented to detect 
deforestation, no large area applications of deforestation 
mapping using change detection with SAR data has been 
reported in literature yet. To fulfill the goals of the K&C 
Initiative project (see Section II), efforts had to be paid to the 
development of an algorithm for mapping deforestation at 
regional level. A further challenge was represented by the 
availability of temporally dense time series of data, which 
required a thorough investigation of ALOS PALSAR 
backscatter signatures in order to be able to develop a robust 
deforestation change detection algorithm [23]. 
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II. DESCRIPTION OF THE PROJECT 

A. Relevance to the K&C drivers 
The prime scope of this K&C Initiative project was to 

develop, verify and demonstrate a methodology for detection 
and delineation of deforestation (primarily clear-cuts) in 
managed forest regions in Sweden using multi-temporal ALOS 
PALSAR data. Methods for detecting land use change are of 
prime interest for green house gas reporting. In the case of 
Sweden most changes in mature forest will be clear-cuts, which 
are re-planted after a few years. It is of interest to develop a 
system that can detect all clear-felled areas and sort out the 
large majority of legal fellings by comparisons with granted 
cutting permits. The remaining detected forest changes are 
likely to be illegal fellings, large damages or permanent land 
cover changes and should, thus, be visited in field. 

B. Work approach 
To demonstrate the potential of ALOS PALSAR imagery 

to map deforestation, the counties of Västerbotten and Västra 
Götaland, in the north and in the south of Sweden, 
respectively, were selected (Fig. 1). These counties will be 
referred to as prototype areas, in agreement with the 
nomenclature adopted in the K&C Initiative (see also [21]). 
The two counties are covered predominantly by forests as 
shown in Table 1 and in Section II.C, Figs. 6 and 7). The 
county of Västerbotten consists of boreal forest, whereas the 
county of Västra Götaland is located within the hemi-boreal 
forest zone. The average annual timber production is 
substantially higher and the clear-felled areas are generally 
smaller but more frequent in Västra Götaland than in 
Västerbotten.  

Detection of deforestation was based on multi-temporal 
datasets of ALOS PALSAR images acquired in different 
seasons and with different polarizations (as further described 
in Section II. C). The deforestation part of the work approach 
was arranged in four parts: 
• Analysis of ALOS PALSAR backscatter signatures to 

understand which type of backscatter could be more 
suitable for detecting deforestation; 

• Development of an algorithm for the detection of 
deforestation using time series of ALOS PALSAR data; 

• Generation of deforestation maps using the developed 
algorithm; 

• Accuracy assessment of the produced deforestation maps. 
A detailed analysis of the temporal signatures at the two 

test sites of Remningstorp (Lat. 58°30’ N, Long. 13°40’ E) 
and Krycklan (Lat. 64°14’ N, Long. 19°50’ E) in the prototype 
areas (Fig. 1) has been recently reported in [23].  

 
Table 1. Statistics on forest status and clear-cut activities for the 

prototype areas [22]. 
 

 Västerbotten Västra Götaland 
Area of forest land 3.2 106 1.3 10 ha 6 ha 
Proportion of forest land 57.7% 54.3% 
Notified clear-cuts in 2007 5,033 6,025 
Area of notified clear-cuts in 2007 27,289 ha 15,805 ha 

 
Figure 1. The K&C Initiative prototype areas in Sweden and local test sites. 

 
In this K&C science report, we summarize the main 

findings, highlighting those that were relevant for the 
development of the change detection methodology. 
• The HV-backscatter is more sensitive than the HH- and 

VV-backscatter to forest growth stage, i.e. stem volume 
or biomass (see e.g. Fig. 2). 

• The HV-backscatter has a very high temporal 
consistency under unfrozen conditions (Fig. 3). No HV-
backscatter data were acquired under frozen conditions. 

• The HH-backscatter presents clear seasonal 
dependencies. The sensitivity to different growth stages 
is higher for unfrozen conditions. For unfrozen 
conditions the backscatter of dense mature forest is 
consistent, whereas it is affected by the wet or dry 
weather conditions in regrowing young forest (Fig. 4). 

• The sensitivity of the backscatter to forest growth stage 
increases slightly between 21.5 and 41.5 degrees look 
angle, both at HH- and HV-polarization. 

• The backscatter signatures do not change significantly 
between 20 m pixel size (ALOS PALSAR path data) and 
50 m pixel size (K&C ALOS PALSAR strip data).  

The strong sensitivity of the ALOS PALSAR HV-
backscatter data acquired under unfrozen conditions to forest 
growth stage and the strong temporal consistency suggested 
that a simple change detection algorithm based only on HV-
backscatter would be sufficient to detect deforestation. It is, 
however, foreseen in the extension phase to look at possible 
improvements, e.g. by also including HH-backscatter in the 
detection algorithm. 



 
 

Figure 2. Scatterplot of HH- and HV-backscatter for the test sites of Krycklan 
and Remningstorp. The SAR images were acquired under unfrozen conditions. 

Acquisition mode: Fine Beam Dual at 34.3 degrees look angle [23]. 
 

 
Figure 3. Scatterplot of HV-backscatter for the test site of Krycklan for six 
different dates with reference to a common date (2007-08-05). The SAR 

images were acquired under unfrozen conditions (Unfr). Acquisition mode: 
Fine Beam Dual at 34.3 degrees look angle [23]. 

 

 
Figure 4. Scatterplot of HH-backscatter for the test site of Krycklan for 25 

different images plotted along the y-axis with respect to a common date (2006-
06-07) plotted along the x-axis. Acquisition mode: Fine Beam with 34.3 

degrees look angle [23]. 

The change detection algorithm was developed based on 
the multi-temporal dataset of ALOS PALSAR HV-backscatter 
images available over the two prototype areas (see Section II. 
C). For each summer/fall during 2007 and 2008 several 
backscatter measurements were available for all points on the 
ground within the prototype areas. As a time series of 
backscatter measurements was available it was suggested to 
develop a slightly more complex algorithm than just adopting 
a simple two-date change detection algorithm.  

The multi-temporal approach was based on the temporal 
consistency of the backscatter difference for each combination 
of backscatter measurements for a given point. If the 
backscatter difference for all image pairs covering the felling 
date of a forest was consistently above a certain level (e.g. 2 or 
3 dB), while the difference for image pairs acquired before 
and after the felling date was small, the pixel was classified as 
“change”. Support to this approach is illustrated in Fig. 5 that 
shows the temporal signatures of the HV-backscatter for a set 
of polygons clear-felled between 2006 and 2008 within a 
50×50 km2

An issue that had to be taken into account when 
developing the change detection algorithm concerned 
intercepts and slopes in the trend of co-plotted backscatter 
measurements. These can be due to the effect of large area 
variations of the environmental conditions or non-perfect data 
calibration. Such deviations can disturb the analysis if not 
accounted for. For example, if the second image of a pair has a 
consistently higher backscatter compared to the first image 
(e.g. top-left scatterplot in Fig. 5), clear-cuts occurred between 
the two acquisitions might not be detected because the 
backscatter difference might be too small. This suggested that 
it makes more sense to use the variation of the backscatter 
with respect to a reference level rather than the simple 
backscatter difference between the image acquisitions. The 
reference level can be obtained by fitting a linear or non-linear 
regression model to the pairs of backscatter values as shown 
by the solid red line in the top-left scatterplot of Fig. 5 and 
measure the difference between the backscatter on the first 
date and the model-based value for the second date, i.e. the 
model residual. 

 large area in Västerbotten. Red crosses refer to 
polygons clear-felled between the two image acquisition dates 
reported on the plot axes. Black crosses refer to polygons 
clear-felled before both image acquisition dates (lower 
backscatter) and green crosses refer to polygons reported as 
clear-felled in the reference dataset but not yet clear-felled at 
the time of both acquisitions (higher backscatter). Unchanged 
polygons between image acquisitions were mostly along the 
1:1 line, confirming the temporal consistency of the HV-
backscatter. A few of the unchanged polygons were off the 1:1 
line probably because of errors in the reference dataset or 
because felling had started at the time of the second image 
date, but had not yet been completed or registered. Polygons 
clear-felled between image acquisitions present a clear drop in 
most cases larger than 2 dB. Very few of these cases show a 
small variation of the backscatter, which could be related to 
the small size of the polygon, thus altering the temporal 
signatures of the backscatter in case of change. 



 
 

Figure 5. Scatterplots of HV-backscatter for clear-cuts in Västerbotten occurred between image acquisitions (red crosses) and outside the interval between the two 
image acquisitions (black and green crosses). 

 
 
An issue that had to be taken into account when 

developing the change detection algorithm concerned 
intercepts and slopes in the trend of co-plotted backscatter 
measurements. These can be due to the effect of large area 
variations of the environmental conditions or non-perfect data 
calibration. Such deviations can disturb the analysis if not 
accounted for. For example, if the second image of a pair has a 
consistently higher backscatter compared to the first image 
(e.g. top-left scatterplot in Fig. 5), clear-cuts occurred between 
the two acquisitions might not be detected because the 
backscatter difference might be too small. This suggested that 
it makes more sense to use the variation of the backscatter 
with respect to a reference level rather than the simple 
backscatter difference between the image acquisitions. The 
reference level can be obtained by fitting a linear or non-linear 
regression model to the pairs of backscatter values as shown 
by the solid red line in the top-left scatterplot of Fig. 5 and 
measure the difference between the backscatter on the first 
date and the model-based value for the second date, i.e. the 
model residual.  

Based on this rationale the multi-temporal clear-cut 
detection method was setup as follows: 
• The prototype area was first divided into areas of smaller 

size. The size was a trade-off between having on one 
hand a large number of measurements for accurate 
estimation of the regression model coefficients that 
describe the backscatter trend of two acquisitions and 
avoiding on the other hand that large-scale spatial 
variations of the environmental conditions (e.g. thaw in 

one area and dry conditions in another) might distort this 
trend. Dividing the prototype areas into 50×50 km2

• Given a tile, for each combination of images the 
coefficients of the regression model relating the 
backscatter at the two dates were estimated. For each pair 
of images the regression coefficients were estimated 
using the measurements of all pixels labeled as forest in a 
forest/non-forest map available from the Swedish 
National Land Survey. A linear regression model seemed 
to be sufficient. The residuals were then computed. It 
was assumed that within the tile the number of pixels 
subject to change was negligible with respect to the total 
number of pixels labeled as forest so that no a priori 
information on the actual forest cover at the time of 
image acquisitions was required to determine the 
estimates of the regression coefficients. 

 large 
tiles seemed to be reasonable. 

• For each pixel the temporal evolution of the residuals 
was analyzed with respect to a threshold value according 
to the basic idea presented at the beginning of this 
Section. 

To test the sensitivity of the classification to the threshold, 
three threshold values were used: 2 dB, 2.5 dB and 3 dB. The 
maps of detected deforestation were finally mosaiced together 
and majority filtering was applied. The filter was designed to 
remove isolated pixels up to groups of three neighboring 
pixels. This implies that detected deforestation smaller than 1 
ha has been neglected. 



C. Satellite and ground data 
For this K&C project, image strips have been provided by 

JAXA in form of multi-look amplitude images in slant range 
geometry with approximately 50 m pixel size [24]. Absolute 
calibration of the data was performed by using the updated 
calibration coefficients published in [25]. For each of the years 
2007 and 2008, one cycle of images acquired in FBS34 mode 
during winter and two cycles of images acquired in FBD34 
mode during summer/fall have been delivered. In total, data 
from six ALOS repeat-pass cycles have been obtained. For 
each season a complete coverage of the prototype areas was 
obtained. Because of the strong multi-looking applied, no 
action was taken to further reduce speckle effects. All image 
strips have been geocoded to 50 m pixel size in order to adhere 

to the original size of the data. To increase the geolocation 
accuracy co-registration of neighboring strips was applied after 
geocoding. Final co-registration errors were less than the pixel 
size. Topographic normalization of the backscatter for local 
incidence angle and pixel area was applied. For details on the 
processing it is referred to [23]. Figs. 6 and 7 show two 
mosaics in form of RGB color composites obtained from K&C 
ALOS PALSAR strip data. The red areas, overlaid on the 
mosaic, correspond to detected changes between summer 2007 
and fall 2008. Red corresponds to the HH-backscatter, green to 
the HV-backscatter and blue to their ratio. Forests appear in 
green. Bare surfaces, agricultural fields and marshes appear in 
purple. Rivers, lakes and the sea appear in blue. Urban 
settlements appear in yellow/pink. 

 

 
 

Figure 6. False color composite of ALOS PALSAR HH-backscatter (red), HV-backscatter (green) and backscatter ratio HH/HV (blue) for the county of 
Västerbotten. Time frame of ALOS PALSAR dataset: July 2007 - October 2008. The areas detected as deforestation during the time frame of the ALOS PALSAR 

dataset are overlaid in red. ALOS PALSAR images © JAXA/METI. 



 
 

Figure 7. False color composite of ALOS PALSAR HH-backscatter (red), HV-backscatter (green) and backscatter ratio HH/HV (blue) for the county of Västra 
Götaland. The false color composite includes the entire county of Västra Götaland (west) as well as the county of Jönköping (south-east). Time frame of ALOS 
PALSAR dataset: July 2007 - October 2008. The areas detected as deforestation during the time frame of the ALOS PALSAR dataset are overlaid in red. ALOS 

PALSAR images © JAXA/METI. 
 
To avoid that changes occurring in other land covers such 

as cropland would be confused with the detection of 
deforestation, a forest/non-forest map provided by the 
Swedish National Land Survey was used to mask out non-
forested areas. Temporal signatures of the backscatter for 
agricultural fields and clear-cut areas are in fact similar, i.e. 
sudden decrease of backscatter at harvest. 

For the establishment of the algorithm and the validation 
of the detected changes a GIS layer of forest polygons subject 
to felling between 2006 and 2008 was available from the 
Swedish forest company Sveaskog. All polygons were larger 
than 2 ha. For each polygon the date of completion of the 
clear-felling was reported. The dataset included 1068 
polygons for the county of Västerbotten, but only 65 polygons 
for the county of Västra Götaland. Of these 341 (Västerbotten) 
and 29 (Västra Götaland) polygons were clear-felled during 

the period of the HV-backscatter data acquisition, i.e. July 
2007 to October 2008. These sets were considered for the 
accuracy assessment. The remaining clear-fellings took place 
before July 2007. 

Fig. 8 shows the size distribution of the clear-cuts for the 
validation data available from the two counties. Clear-cuts in 
the Västerbotten county are on average larger, several 
exceeding 20 ha. In the Västra Götaland county the clear-cuts 
are smaller, none of them available in the reference dataset 
being larger than 20 ha. This aspect might be of importance 
considering that the pixel size of the ALOS PALSAR K&C 
strip data is 50 m, i.e. 1 ha corresponds to 4 pixels. In the 
following, it is primarily referred to the results obtained in the 
county of Västerbotten because of the larger number of 
reference polygons as well as the larger distribution of polygon 
sizes. 



  
(a) (b) 

 
Figure 8. Distribution of the size of the clear-cuts in the GIS database used for validating the developed methodology for detection of deforestation in the two 

prototype areas, (a) Västerbotten, (b) Västra Götaland. 
 

 
 

Figure 9. Subset of the image shown in Fig. 6 centered at the test site of Krycklan (Lat. 64°14’ N, Long. 19°50’ E), Västerbotten. ALOS PALSAR images © 
JAXA/METI. 

 

III. RESULTS AND SUMMARY 
 
The output of the change detection algorithm applied in this 

study consisted of maps of detected changes, i.e. detected 
deforestation, in the forested areas of the prototype areas, i.e. 
the Västerbotten county and the Västra Götaland county. The 
extent of the ALOS PALSAR strips also allowed mapping the 

Jönköping county, located south-east of the Västra Götaland 
county. The accuracy assessment, however, has been carried 
out for the prototype areas. The maps overlaid on the false 
color composite of ALOS PALSAR HH- and HV-backscatter 
imagery are illustrated in Figs. 6 and 7. For each pixel detected 
as change, the dates of the two images comprising the detected 
change were also reported. Fig. 9 shows a zoom of the image 
shown in Fig. 6 around the test site of Krycklan. 



The scope of the accuracy assessment of the deforestation 
maps was twofold 

1) For a given detection threshold verify whether a clear-
cut had been detected and determine a measure of the 
agreement in terms of correctly detected pixels. In this way, 
information was obtained on the capability of the 50 m 
resolution ALOS PALSAR K&C strip data to detect as well as 
to delineate clear-cuts. 

2) Verify the sensitivity to the different detection 
thresholds. In this way, information was obtained on the 
robustness of the change detection algorithm and whether 
improvements to the simple approach are required. 

Fig. 10 gives an example of the performance of the change 
detection algorithm based on a time series of ALOS PALSAR 
HV-backscatter data for the county of Västerbotten. On the x-
axis the percentage of pixels detected as deforestation (i.e. 
correctly classified) is reported for each of the reference 
polygons. On the y-axis the size of the polygons is reported. 
For Fig. 10 the detection result was based on the 2.5 dB 
threshold. The scatterplot shows that a large number of 
polygons were not only detected but also rather well 
delineated. Polygons showing less than 50% of correctly 
classified pixels are less compared to those including more 
than 50% of correctly classified pixels. When relating the 
percentage of correctly classified pixels to the size of the 
polygons no significant trend was seen, i.e. the classification 
accuracy did not improve when considering only larger 
polygons.  

Fig. 10 also shows a certain number of polygons with zero 
percentage of pixels classified as deforestation. These 25 
polygons were reported as clear-felled during the acquisition 
period of the HV-backscatter data, but were not detected by the 
change detection algorithm. A closer look at these polygons 
revealed that most of them were between 2 and 3 ha large, so 
that edge effects might have distorted the backscatter 
difference. Part of the largest polygons were actually detected 
with the 2.0 dB threshold, thus confirming the indication 
reported in Fig. 5 that not all clear-cuts present a strong 
variation of the HV-backscatter. This issue needs to be looked 
at in more detail in future work dealing with the improvement 
of the detection algorithm. Finally, for two polygons the felling 
date was reported to be two days after the date of the first 
ALOS PALSAR backscatter dataset. It is likely that the forest 
in the polygon had already been clear-felled at the time of the 
first image acquisition.  

As outcome of these observations it might be stated that:  
• The GIS database of clear-cut polygons (in Västerbotten) 

is reliable as validation dataset; 
• The impact of the spatial resolution of the ALOS 

PALSAR backscatter dataset on the detection accuracy is 
not marginal for clear-cuts smaller than 5 ha; 

• The detection accuracy seems to be reasonable even if the 
algorithm is simple and uses a global threshold. 

Further investigation on the detection accuracy is reported 
in Table 2, which gives a more general overview on the 
classification accuracy, also in terms of detection errors. 

 
 

Figure 10. Polygon-wise percentage of correctly detected pixels in relation to 
area of the polygon. Prototype area: Västerbotten. Number of polygons: 341. 

 
In Table 2, the total percentage of correctly detected pixels 

refers to the number of pixels detected as clear-cut and being 
actually reported as clear-felling within the temporal interval of 
ALOS PALSAR data for the specific pixel. The total error 
percentage is expressing the number of pixels classified as 
clear-cut for polygons that were clear-felled before the start of 
the time series of ALOS PALSAR data for the specific pixel. 
Table 2 shows that for increasing classification threshold the 
classification accuracy decreases from 78.2% to 57.4%, while 
the classification error also decreases from 9.7% to 3.0%. The 
detection of deforestation seems therefore to perform better 
when using lower threshold values, even though the detection 
errors increase with decreasing threshold value. Possible causes 
for the limited accuracy are 
• Spatial resolution of the ALOS PALSAR dataset; 
• Edge effects (edge erosion on the reference dataset was 

not performed); 
• The simplicity of the change detection algorithm. 

To assess the importance of each of these factors, the 
following studies could be considered in the K&C Initiative 
extension phase: 
• Apply the change detection algorithm to ALOS PALSAR 

path data at 20 m spatial resolution (or similar); 
• Apply edge erosion to the reference dataset and possibly 

exclude those polygons that do not cluster; 
• Improve the change detection algorithm. In its current 

version the algorithm makes use of a global threshold for 
the entire prototype area. It is likely that the detection 
accuracy might increase if the algorithm is made adaptive 
to the local properties of the backscatter following spatial 
variations of the environmental conditions.  

To provide indications on the capability of the change 
detection algorithm applied to ALOS PALSAR HV-
backscatter data (acquired under unfrozen conditions), Fig. 11 
shows the percentage of polygons for which the percentage of 
pixels classified as deforestation is above a certain threshold. 
When this requirement is satisfied, the polygon is referred to as 
“correctly classified”. One plot is reported for each prototype 
area and in each plot the trend is reported for the three different 
thresholds applied to the detection of deforestation.

 



Table 2. Global figures of detection accuracy for the three different classification thresholds. Prototype area: Västerbotten. 
 

Classification threshold Percentage of correctly detected pixels 
(reference dataset: 341 polygons) 

Percentage of erroneously detected pixels  
(reference dataset: 727 polygons) 

2.0 dB 78.2% 9.7% 
2.5 dB 68.4% 5.0% 
3.0 dB 57.4% 3.0% 

 

  
(a) (b) 

 
Figure 11. Percentage of correctly classified clear-cuts as a function of the minimum percentage of pixels correctly classified within the polygon for the prototype 

areas (a) Västerbotten, (b) Västra Götaland. 
 

Fig. 11 a shows that in the Västerbotten county for 2.0 and 
2.5 dB threshold and up to about 50% correctly classified 
polygons, the classification accuracy is about 90%. If a 
polygon is defined as correctly classified when more than half 
of the pixels within the polygon are correctly detected, then the 
classification accuracy decreases remarkably. For 3 dB 
threshold the decrease is steady and in general the detection 
accuracy is lower compared to the smaller thresholds of 2.0 
and 2.5 dB. The accuracy assessment in the Västra Götaland 
county showed a similar trend, although the overall accuracy 
was lower compared to the Västerbotten county. Nevertheless, 
it must be reminded that the number of polygons in Västra 
Götaland was small (only 29), i.e. the significance of the 
results appears to be rather limited. Combining these 
observations with those reported in the two previous 
paragraphs, it is concluded that  
• With the HV-backscatter from ALOS PALSAR K&C 

strip data it is possible to roughly delineate forest cover 
changes but not to fully match the extent of the 
deforestation; 

• The accuracy of the detection depends on the 
classification threshold; 

• Higher accuracy seems achievable with a threshold 
between 2.0 and 2.5 dB. 

To gain further insight on which detection threshold is 
more suitable to use in order to achieve a more accurate 
detection of deforestation, Fig. 12 reports the total area 
classified as change in relation to the detection threshold used 
for classification. Fig. 12 shows that for both prototype areas 
the total area detected as change decreases significantly, in 
particular when going from 2.0 to 2.5 dB. Considering that the 
figure of notified areas of felling in each county as reported in 

the Statistical Yearbook of Forestry 2008, published by the 
Swedish Forest Agency [22], is 273 km2 for Västerbotten and 
158 km2

The algorithm detected far more areas of change than in 
reality, which could be related to speckle noise or not fully 
compensated effects of the environmental conditions on the 
backscatter. Another issue that might explain the large 
discrepancy is the accuracy of the forest/non-forest map used 
as basis for selecting the areas on which the algorithm should 
be applied. Several small parcels were detected as forest cover 
change in areas of patched land-cover, as well as along the 
border between forest and fields or roads or urban settlements. 
These results indicate that a more in depth study on the reasons 
of the mismatches should be considered in the extension phase.  

 for Västra Götaland, it is obvious that the estimates 
corresponding to the 2.0 dB level are extremely biased.  

 
 

Figure 12. Total area classified as change, i.e. clear-felled areas (deforestation), 
for the three different detection thresholds used. 



For the simple algorithm developed during the first phase 
of this K&C Initiative project, it seems that a classification 
based on a global threshold close to 2.5 dB is sufficient for 
obtaining a first-order, but nonetheless reasonable estimate of 
the total area subject to change during the acquisition period of 
the ALOS PALSAR data used in this study. Assuming that an 
extrapolation from the values reported above (which are valid 
for a period of 12 months) over the 15 months for which ALOS 
PALSAR data were available can be considered as a good 
approximation of clear-felled areas that deforestation occurred 
during this time frame, we obtain 360 km2 and 200 km2 in 
Västerbotten and Västra Götaland, respectively. Considering 
the result based on a threshold value of 2.5 dB, the total area of 
detected changes from the ALOS PALSAR HV-backscatter 
data is 378 km2 and 161 km2

Future studies should investigate whether the smaller size 
of the clear-cuts in the Västra Götaland county can explain the 
larger discrepancy and whether the method for change 
detection needs to be improved following the indications 
mentioned so far (e.g. inclusion of the HH-backscatter in the 
change detection algorithm, adaptation of the threshold to the 
local conditions). 

 respectively, which corresponds 
to a +5% difference for the Västerbotten county and a -20% 
difference in the Västra Götaland county.  

In summary, it was found that K&C ALOS PALSAR HV-
backscatter strip data acquired during unfrozen environmental 
conditions was a stable data source for change detection of 
clear-cuts. It was also shown that large area change detection 
of clear-cuts could be performed using these data. For the 
prototype area of Västerbotten in northern Sweden, up to about 
50% of the pixels were correctly classified as changed for 
about 90% of the clear-felled areas using a simple thresholding 
algorithm with a threshold value of about 2 dB. The results 
were only partly satisfying for the prototype area of Västra 
Götaland in the southern Sweden. Here, up to about 40% of the 
pixels could be correctly identified as changed for about 65% 
of the clear-felled areas. This might be due to the limited 
reference dataset of clear-felled polygons, smaller stand size 
and maybe also the wetter soil conditions and the more 
abundant ground vegetation in these areas. In the extension 
phase of the K&C Initiative project, an up scaling of the 
mapping of clear-cuts, and possibly also biomass, to all of 
Sweden is planned. This phase will also involve further 
algorithm development. The possibility to timely find changed 
areas is of great interest for providing a sampling frame for in 
situ verifications of land cover changes. 
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Abstract—This report provides on overview on the accomplished 
work done by the Friedrich-Schiller-University in the framework 
of the K&C initiative.  Major aim was the derivation of forestry 
related thematic information over the whole prototype area which 
is located in Central Siberia. First of all a sophisticated SAR data 
processing chain had to be developed to handle the large amount 
of data. Afterwards four diverse classification strategies have been 
developed. These strategies comprise multitemporal 
methodologies, change detection and the implementation of 
interferometric coherence. In particular the latter strategy proved 
being valuable and having the potential for operational 
implementation. 

Index Terms—ALOS PALSAR, K&C Initiative, Forest 
Theme, Forest Cover Mapping, Change Mapping, Coherence, 
Siberia 

1. INTRODUCTION 
SAR DATA offer great potential for forest cover mapping, 

forest disturbance mapping (e.g. logging, forest fire, and wind 
damage) and forest biomass assessment. Lower radar 
frequencies turned out to be of particular adequacy. E.g. L-
band SAR backscatter data acquired by the JERS-1 SAR was 
found to be suitable for mapping forest cover in the boreal 
zone. Radar backscatter and interferometric coherence have 
been successfully implemented. The launch of ALOS 
PALSAR offers new dimensions regarding spaceborne SAR 
data driven investigations. Compared to its antecessor JERS-1, 
PALSAR features a much increased performance in terms of 
image radiometry, geometry, and orbit steadiness. The 
controlled interferometric baseline combined with the well-
defined observation strategy over the boreal zone greatly 
increases the potential of interferometry based SAR data 
examinations. 

The report first investigates the use of backscattered 
intensity and then evaluates the additional information obtained 
through synergistic use of intensity and coherence for large 
area forest monitoring in Siberia. Regarding the intensity a 
multitemporal approach and a change detection method have 
been developed. These mapping exercises are conducted on a 
pixel level. The mapping by means of intensity and coherence 
is based on image segments. 

 

2. SAR DATA PROCESSING 

A. SAR DATA PRE-PROCESSING 
The SAR pre-processing comprehends the processing steps 

summarised in Figure 1. Unfortunately, still (also at cycle 20) 
partially erroneous data (intensity ramps) were delivered. 
These intensity ramps at the edges of the data stripes could 
appear at far and near range as well at both azimuth sides. The 
magnitude and the width of the erroneous parts were varying. 
For sustaining as many rows and lines as possible, an 
interactive approach was chosen instead of a fixed cutting 
scheme (compare Figure 2). 

The DEM based (SRTM, 90 m) orthorectification is 
described by Wegmüller 1999. Each strip was processed 
separately; one lookup table was applied to both polarisations. 
Regarding topographic normalisation pixel area correction and 
angular adjustment as proposed by Castel at al. 2001 was 
implemented: 

 
 

(1)

 
 
where az and r denote azimuth and range pixel spacing 

respectively, and  represents the projection angle, which is 
defined as angle between surface normal and image plane 
normal. The true local SAR pixel size Aslope is then used to 
correct for topography induced pixel area distortions as 
follows: 
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where Aflat is the SAR pixel size for flat terrain, 0 is the 

backscattering coefficient, and 0
cor the corrected 



backscattering coefficient. The angular adjustment utilises the 
incidence angle ref for flat terrain and the actual local 
incidence angle loc to minimise variations in backscatter which 
are caused by topography driven variations of backscattering 
mechanisms. 
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Figure 1: Scheme of K&C SAR data strip pre-processing 
 

The geocoding accuracy was not checked in detail but can 
be assumed being high. The RMS errors between the 
automatically detected GCPs and the computed polynomials 

are in the order of 0.3 pixels. Geocoding details are preserved 
for each single strip and can be delivered if required. Figure 2 
demonstrates this high geolocation precision. The black 
vertical fissure is due to missing data between the two strips. 
At the position were both data strips connect no geolocation 
offset is detectable. Additionally, no offsets have been detected 
during the multitemporal data examinations. 

B. MOSAICING PROCEDURE 
Mosaicing was conducted after SAR data pre-processing. 

Four mosaics, one for each cycle (08, 12, 13, and 20), have 
been processed. Areas with no data have been masked out. 
Histogram adaptation or similar radiometric adjustments have 
not been utilised. In the overlap area between two stripes 
feathering was applied with a maximum of 50 pixels (50 pixels 
when the data overlap was at least 50 pixels). Eventually, the 
mosaics from the cycles 12, 13, and 20 have been combined to 
one single multitemporal mosaic to achieve the maximised 
spatial coverage for prototype area-wide landcover 
classification. The intensities are scaled in dB. 

C. FINAL DATA SETS 
Figure 3 and Figure 4 provide an overview on the processed 

data for the K&C prototype area. Data has been processed up 
to ~62°N, while the prototype area extends to 65°N. However, 
due to geocoding problems (only minor relief north of 62°N 
and no adequate DEM available) it was considered to exclude 
the northern part of the prototype area for the time being. 

None of the cycles provides a complete spatial coverage. 
Thus, multitemporal classification is not feasible for the whole 
prototype area. The lowest coverage was achieved for cycle 8. 
By means of combining all summer acquisitions an almost 
complete coverage of the prototype area can be achieved (see 
section 3.B). 

 



 
 

Figure 2: PALSAR HV/HH/HV composite for demonstration of high geolocation precision, ALOS K&C © JAXA/METI 
 



 
Figure 3: Processed summer FBD data in Siberia, ALOS K&C © JAXA/METI 
 

 
 
Figure 4: Processed winter FBS data in Siberia, ALOS K&C © JAXA/METI 



3. CLASSIFICATION 

A. MULTITEMPORAL CLASSIFICATION 

CLASSIFICATION METHODOLOGY 
The multitemporal classification makes use of the 

characteristic temporal backscattering variations of the 
considered classes. Thus, additionally to the multitemporal 
dataset, simple multitemporal metrics have been computed. 
The following table summarises the utilised data layers. The 
multitemporal metrics have been computed for both 
polarisations separately. 

Basing on these preconditions suited and robust metrics 
have been selected and thresholds for the considered classes 
have been defined. These thresholds are summarised in the 
following table. All conditions per line in the table must be 
fulfilled. The classes water and settlement are defined 
manifold. In these cases at least on of the definitions must be 
fulfilled. However, at some positions within the test area higher 
backscatter values occur at water bodies. This is due to an 
uneven water surface caused by wind or currents (in particular 
at river junctions). To overcome the wind problem the 
minimum backscatter for HH was chosen. However, the 
current problem could not be completely solved in doing so.  

 
PALSAR Data Multitemporal Metrics 
FBD HH/HV Cycle 12 (early summer 2007) Minimum 
FBD HH/HV Cycle 13 (late summer 2007) Mean 
FBD HH/HV Cycle 20 (early summer 2008) Maximum 
 Standard Deviation (averaged by 5x5 matrix) 

 
Aim of the multitemporal classification was to separate as 

many land cover types as possible. The classification considers 
the land cover types water, agriculture, settlement, clear-cuts & 
burnt areas, three forest classes, and a class containing recent 
changes such as new clear-cuts (formed between cycles 12 and 
20) and fire scars. The following table collects typical relative 
values for the available data layers from very high (++) to very 
low (--), 0 means medium values. These ratings are basing on 
fundamental knowledge and the examination of the available 
data. 

Potential misclassifications concern agricultural fields 
featuring a smooth surface and low temporal variations. Forests 
are characterised by very stable backscatter. In comparison to 
other land cover types the backscattering intensity is high, in 
particular at cross polarisation. The amount of backscatter is a 
function of forest biomass, whereby saturation occurs already 
at rather low biomass levels. Nevertheless three forest classes 
have been established against different backscattering levels. 
Forest 1 is forest with no evidence (related to PALSAR data) 
for disturbances, forest 2 ___:_  

 
 HH 

Min 
HH 

Mean 
HH 
Max 

HH 
Std. 

HV 
Min 

HV 
Mean 

HV 
Max 

HV 
Std. 

Water -- - 0 - -- -- - 0 
Agriculture -- -- 0 ++ -- - 0 0 
Forest 1 (dense, high biomass) + + + -- ++ ++ ++ -- 
Forest 2 (low biomass) 0 0 0 -- 0 0 0 -- 
Forest 3 (very low biomass) - - - - - - - - 
Clear-cuts & burnt areas -- - - - -- -- - - 
Settlement ++ ++ ++ + 0 + + + 
New clear-cuts and fire scars -- 0 + ++ -- 0 ++ ++ 

 
 HH 

Min 
HH 

Mean 
HH 
Max 

HH 
Std. 

HV 
Min 

HV 
Mean 

HV 
Max 

HV 
Std. 

Water (Def. 1) < -19 dB     < -26 dB   
Water (Def. 2) < -16 dB   < 1.0  < -26 dB   
Water (Def. 3) < -19 dB    < -30 dB    
Forest 1 (dense, high biomass)  < -2 dB     > -14 dB < 1.2 
Forest 2 (low biomass)  < -2 dB     > -17 dB < 1.0 
Forest 3 (very low biomass)  < -2 dB     > -20 dB < 0.8 
Settlement (Def. 1)  > -1 dB > 0 dB > 1.0     
Settlement (Def. 2)  > -3 dB > -2 dB > 2.0     
New clear-cuts and fire scars  < -4 dB    > -18 dB > -14 dB > 1.2 
Clear-cuts & burnt areas  > -9 dB  < 2.0     
Agriculture  < -9 dB  > 2.0     



corresponds to former clear-cuts or fire scars with 
considerable regrowth and forest 3 is related to initial regrowth 
or other temporally stable forestry related classes with low to 
medium cross polarisation backscatter. 

Settlements typically feature very high HH backscattering 
intensities. This particularly applies if geometric features of the 
settlements allow the generation of double bounce. Although 
settlements and their entities are rather stable in time, the 
backscattering intensity varies considerably. On the one hand, 
very high backscatter causes a high potential for very high 
variations, on the other hand, the amount of double bounce is 
driven by a number of variable conditions such as surface 
moisture or local incidence angle. In summary, only the parts 
of the settlements causing double bounce are detected as 
settlements. The other parts do not feature settlement specific 
backscattering signatures. Texture was not considered, as 50 m 
ground resolution cannot resolve relevant settlement objects. 

New clear-cuts and fire scars must feature forest typical 
backscattering signatures at least at one (the first) acquisition 
date, thus maximum backscatter must be the same as for forest. 
The conversion from forest to non-forested areas causes high 
backscatter variations. 

The remaining and so far not classified areas are 
agricultural land and clear-cuts / burnt areas with a maximum 
HV backscatter below -20 dB (minor volume scattering). This 
mixture can be segregated by the fact, that agricultural land is 
characterised by high temporal changes and thus high 
backscatter variations. Additionally, the mean HH backscatter 
is much lower compared to clear-cuts and burnt areas in 
particular. Although this multitemporal classification approach 
shows promising results (see below), the dataset in terms of the 
multitemporal dimension is not sufficient. For the derivation of 
multitemporal metrics with statistical significance many more 
acquisitions would have been required. The accuracy of all 
classes would benefit from such an extension of the data set. 
Still it could be demonstrated, that in principle an operational 
classification approach basing on multitemporal PALSAR data 
is feasible. 

TEST AREA AND RESULTS 
As a multitemporal dataset is required, the classification 

approach could not be applied to the whole prototype area. 
Thus, a spatial subset was created. The area covered by the 
tracks 467 and 468 of cycle 08 was taken as subset from 54°N 
to 60°N (see Figure 5). For this area data from all cycles (8, 12, 
13, and 20) were available. Unfortunately, as emerged during 
the classification process, a single winter intensity scene (cycle 
08) does not add supplementary information. Thus, data from 
cycle 08 was neglected. 

Figure 5 provides an RGB composite of the whole subset 
and the final map. Figure 6 provides the same information for a 
part of the subset. Accuracy assessment has not been 
accomplished so far. However, at first view the classification 
results seem to be promising. The greatest potential for 
misclassifications lies in the fuzziness of the classes related to 

diverse biomasses. Thus, the classes forest 3 and clear-cuts & 
burnt areas contain thematically similar land cover types and 
could be merged later on. Also, the subdivision of the three 
forest classes was conducted arbitrarily. No scientific, political 
or economical definition of the class forest was considered. 
The class settlement is obviously heavily underestimated.  

B. CLASSIFICATION OF BASIC LANDCOVER  FOR 
WHOLE PROTOTYPE AREA 

CLASSIFICATION METHODOLOGY 
Mapping was conducted by means of thresholds using one 

single mosaic (FBD intensities) for the whole prototype area. 
This mosaic contains data from three different observation 
cycles; the focus was put on filling data gaps. As none of the 
cycles is delivered completely, the mosaic contains data from 
two different years. This approach can provide a map with the 
most complete coverage of the prototype area but with the 
lowest accuracy. 

Figure 7 (top) shows a composite of the complete mosaic. 
As no histogram adaptation was conducted during the 
mosaicing process, some of the strips do not fit into the mosaic 
regarding their radiometry. This is most likely due to varying 
weather condition at the diverse acquisitions. Moreover, it can 
be observed, that the radiometric difference between two 
adjacent strips is varying, which complicates histogram 
matching efforts. 

Aim of the multitemporal classification was to separate 
only basic land cover types. The classification considers the 
land cover types water, forest/settlement, and very low biomass 
(agriculture, clear-cuts, fire scars, steppe etc.). The following 
table collects typical mean relative values for the available data 
layers from very high (++) to very low (--), 0 means medium 
values. These ratings are basing on basic knowledge and 
examination of the available data.  
 
 HH  HV 
Water -- -- 
Forest/Settlements + ++ 
Very low biomass - - 

 
As relatively broad classes have been considered, the 

signature spectrum of these classes exhibit great potential for 
overlaps. This is particularly true for the classes water and very 
low biomass. However, as no multitemporal metrics can be 
computed, the separation of more classes is not feasible. The 
table below summarised the thresholds for the classification. 
All conditions per line in the table must be fulfilled. 
 
 HH  HV 
Water < -19 dB < -26 dB 
Forest/Settlements > -8 dB > -20 dB 
Very low biomass Remaining values Remaining values 

 



 
 
Figure 5: SAR data (left) and classification result (right) for the whole subset. SAR data composite and map colour coding as at Figure 6. (Tracks 467 and 468, 
54°N-60°N), ALOS K&C © JAXA/METI 



 

 
 
Figure 6: SAR data (top) and classification result (bottom) for part of subset. SAR data composite: HH mean / HV mean / HV std. dev.; Colour coding map: water 
(blue), forest dense (dark green), forest low biomass (green), forest very low biomass (light green),  settlement (red), agriculture (brown), clear-cuts & burnt areas 
(grey), new clear-cuts and fire scars (purple), ALOS K&C © JAXA/METI 
 
 



TEST AREA AND RESULTS 
The result of the basic landcover classification for the 

whole prototype area is provided by Figure 7 (bottom) for the 
complete area and by Figure 8 for a subset of the area. The 
subset covers the same area as the map provided by Figure 6. 
Even if no accuracy assessment has been conducted so far it is 
obvious, that misclassifications are occurring. In particular the 
separation of water and very low biomass areas is not 
satisfying at all. In particular the steppe area in Tuwa (south-
western edge of the area) produces very low backscatter and 
cannot be separated from water. A similar problem can also be 
observed at the subset of this map (Figure 8, compare with 
Figure 6). Very low biomass areas are in general well detected, 
however further separation of this mixes class is not feasible. 
Also at this subset significant confusion between water and 
very low biomass is obvious. Multitemporal data (important for 
agricultural areas) or even better coherence data would 
overcome this separation problem. 

C. CLASSIFICATION OF CHANGES 

CLASSIFICATION METHODOLOGY 
Aim of the classification of changes is to detect areas with 

short term changes in land cover. Changes refer to deviation in 
land cover between cycle 12 and cycle 20. Due to radiometric 
deviations between the stripes the changes have to be detected 
stripe-wise. The classification of changes was not conducted 
for the whole prototype area, but for a subset. The subset is 
defined by the data coverage of track 468. 

Input for the classification was the normalised backscatter 
difference index NDBI. This change measure was derived as 
follows: 
 

(4)

 
The NBDI is computed for each polarisation separately. 

The indices t1 and t2 denote the two different acquisitions. The 
idea of normalising the backscatter difference was to achieve a 
better comparability between the different tracks and to reduce 
the impact of different weather conditions. No change and 
equal radiometric properties of both strips result in an NBDI of 
zero. Negative values flag areas with a decrease in backscatter 
and vice versa. Potential changes in the investigated area are 
related to agricultural activities and forest management. New 
fire scars and in particular clear-cuts will cause a reduction of 

backscatter and thus negative NBDI values. Forest regrowth 
could result in increasing backscatter. However, only minor 
effects can be expected. Major source of positive NBDI values 
are agricultural areas with respective crop rotations. 

Basing on the NBDI thresholds have been defined. These 
thresholds are summarised in the following table. All 
conditions per line in the table must be fulfilled. The class 
significant decrease of backscatter is defined twofold. At least 
on of the definitions must be fulfilled. The considered classes 
do not allow a statement on the actual change regarding the 
land cover type. These classes can be interpreted as change 
indicators. However, the combination of the change 
classification with the information derived by means of the 
multitemporal classification can close this gap. 
 
 NBDI HH  NBDI HV 
Significant increase of 
backscatter 0.25 0.10 

Significant decrease of 
backscatter -0.04 -0.02 

Significant decrease of 
backscatter -0.15  

TEST AREA AND RESULTS 
Input data and results for the change classification are 

presented in following. Figure 9 depicts the input data 
represented as NBDI RG (red-green) colour composite, where 
red represents the NBDI for HH and green for HV. Thus, bright 
areas flag areas with increasing backscatter, dark areas vice 
versa. Different hues are caused be unequal change of 
backscatter regarding the two polarisations. The change map is 
provided by Figure 10. Although only one year passed by 
between the two acquisitions, much change is visible. 
However, most of the change is due to agricultural activities. 
Such areas can be recognised by a heterogeneous pattern of 
increasing and decreasing backscattering intensity (as e.g. in 
the middle of the fourth tile of track 468).  

Figure 11 provides two subsets of the above presented 
dataset. The upper image pair represents a forest dominated 
area, the lower pair an agricultural area. The clear-cuts in the 
forest dominated section are obviously well captured by the 
change map. The massive change signal at the lower pair is 
most likely caused by crop rotation effects. Although the 
change map product is not yet validated, it seems to be a 
promising indicator for forestry related changes. Major issue is 
to separate the impacts of agriculture and clear-cutting (and 
forest fires). One solution could be the implementation of the 
multitemporal classification (section A). 

_________ 



 
 

 
 
Figure 7: SAR data (top) and classification result (bottom) of prototype area. SAR data composite: HH/HV/HH; Colour coding map: water (blue), 
forest/settlements (dark green), very forest low biomass (brown) , ALOS K&C © JAXA/METI 

 



 
Figure 8: Classification result for subset of prototype area. Colour coding map: water (blue), forest/settlements (dark green), very forest low biomass (brown) , 
ALOS K&C © JAXA/METI 



 

 
 

Figure 9: Input data for change map generation: Normalised Backscattering Difference Index (NBDI) of cycles 12 and 20 (RG composite: HH NBDI /HV NBDI).  
              Data taken from track 468, fragmented for better overview, ALOS K&C © JAXA/METI 
 

 
 
Figure 10: Change map. Colour coding: grey: no change, white: no data, red: decrease of backscatter, green: increase of backscatter. Data taken from track 468, 
fragmented for better overview, ALOS K&C © JAXA/METI 
 



 
Figure 11: Input data (left column) and change map (right column). Composite and colour coding as above (Figure 9 and Figure 10). Top: forest dominated area,  
Bottom: agriculture dominated area, ALOS K&C © JAXA/METI 

D. FOREST COVER MAPPING USING INTENSITY AND 
COHERENCE 

Summer intensity and winter coherence images are used for 
forest monitoring. The intensities (FBD HH/HV) have been 
acquired during summer 2007 and feature the K&C intensity 
stripes. This initial investigation was carried out in the 
framework of GSE Forest Monitoring. 

COHERENCE PROCESSING AND COMPOSITES 
For the coherence estimation standard level 1.1 FBS scenes 

were applied. The path numbers range from 461 to 473. The 43 
pairs have been acquired during the winters 2006/2007 (cycles 
8 & 9) and 2007/2008 (cycles 16 & 17). Each pair stems from 
consecutive cycles (46 days temporal baseline). During both 
winters suited weather conditions (temperatures during and 
between acquisitions steadily far below 0°C) have been 

reported by representative weather stations. Interferometric 
processing consisted of SLC data co-registration at sub-pixel 
level, slope adaptive common-band filtering in range (Santoro 
et al. 2007), and common-band filtering in azimuth. Texture 
was used for the coherence computation procedure which 
employs an adaptive estimation approach (Wegmüller et al. 
1998). All SAR images (K&C intensities and coherence) were 
orthorectified using SRTM elevation data. The final pixel size 
of the coherence is 50 by 50 m² and thus equal to the K&C 
data. The mosaic of the 43 coherence images is depicted in 
Figure 12.  

A first impression of the potential of the synergistic usage 
of backscattering intensity and coherence can be caught from 
Figure 13. This RGB composite is based on the backscattering 
intensities HV and HH as well as the coherence. Some 
landcover classes can be visually separated. Water appears in 
black, unforested areas show up in blue, and forest covered 



sections appear in orange, yellow and light green colour 
shades. These variances are due to differing forest types and 
biomass levels. The light blue patch in the middle of the subset 
corresponds to a fire scar. Eastward from that position another 
small light blue patch is visible next to the water body. This 
one corresponds to the city of Novaja Igirma (ca. 11,000 
inhabitants). 

CLASSIFICATION METHODOLOGY 
The presented SAR data (backscatter and coherence) 

provides the input for operational forest monitoring. The 
defined target classes as follows: forest, very low biomass 

forest and non-forest. Consequently, the large spectral 
variability of the non-forest class needs to be considered during 
the classification process. In fact, ten classes have been 
considered during the classification process. These are the 
classes old clear-cut, recent clear-cut, fire scar, agriculture, 
water, and urban plus four forest classes. For each class 20 
samples have been selected under consideration of a good 
distribution over the whole site and accounting for the class 
internal variations. The class merge resulting in the three 
named target classes was conducted after the classification. For 
the classification the Nearest Neighbour algorithm was used. 

 

 
 
Figure 12: Mosaic of interferometric coherence images: 53°-58°N, 97°-105°E, ALOS K&C © JAXA/METI 

 
The classification is based on image segments. The 

segments are identified using the multiresolution segmentation 
algorithm discussed by (Baatz & Schäpe 2000, Benz et al. 
2004) and realised by means of the Definiens Developer 

software. The segments do not necessarily represent the forest 
compartments, but in general identify homogeneous patches. 
The segment size is determined by a scale parameter and can 
range from single pixels to the entire scene. Due to the targeted 



minimum mapping unit (MMU) of 1 ha, small image segments 
have been created. The segmentation parameter set is 
summarised at the following table. 

 
Parameter Value 
Scale 2.0 
Shape / Colour 0.9 / 0.1 
Compactness / Smoothness 0.0 / 1.0 

 
The segmentation process only considers the summer 

intensity data with the same weight of both polarisations, as the 
edges between the image objects are more distinct (sharp) as 

for the coherence. An example of a segmented image is 
provided in Figure 14. The provided example shows evidently, 
that the borders of differing adjoining patches are clearly 
framed. Dark blue segments represent clear cut areas which 
have been recently clear felled; yellow, orange and greenish 
sections represent different types of forest. Low biomass forest 
stands appear in violet shades. Although the contrast of these 
patches is not as strong as for the recent clear cuts, these low 
biomass forest stands are well captured by the segmentation. 

 
 
 

 

 
 
Figure 13: Composite of HV & HH backscatter and winter coherence for a subset of the monitoring area (taken from north-eastern section) , © JAXA/METI 

 

 
 
Figure 14: Example of segmented dataset, ALOS K&C © JAXA/METI 



 

TEST AREA AND RESULTS  
The test area is located in central Siberia (in the centre of 

the prototype area) and comprises an area of about 
100,000 km² (Figure 15). 
 

 
Figure 15: Test area (light green patch, right image) in the centre of the 
prototype area 
  

The Middle Siberian Plateau in the southern part of the 
territory is characterised by hills up to 1,700 m. The northern 
part is flat with heights up to 500 m. Taiga forests (spruce, 
birch, larch, pine, etc.) dominate and cover ca. 82% of the 

region. The site exhibits continental climatic conditions. The 
yearly amount of precipitation is generally below 450 mm; the 
winters are very cold and dry, the summers are warm and 
include the precipitation season. Reference data has been 
available in terms of very high resolution optical data, very 
high resolution SAR data (TS-X), a digital forest compartment 
GIS data base on forest stand level, and analogue maps 
comprising recent and planned forest cover changes. 

Figure 16 provides the SAR data and the forest cover map 
for the monitoring area. Figure 17 depicts a subset taken from 
the northern part of the provided forest cover map. The 
accuracy assessment for the whole monitoring area is basing on 
1,000 point samples. The random sampling was stratified by 
class proportion. The sampling results provided the input for a 
standard confusion matrix. The overall accuracy of the forest 
cover map including the class water accounted for 90.87%. 
Although only three classes have been separated, an overall 
accuracy of 91% can be considered an excellent result. Major 
source of errors was some confusion between very low 
biomass forest and non-forest. This is due to the fact that a 
landscape with indiscrete landcover was separated into discrete 
classes. The introduction of more forest classes related to 
different biomass levels could overcome this handicap. 
However, a new potential source of confusion would be 
introduced. On the other hand, some confusion between 
diverse forest classes might be seen as awkward as between 
diverse land cover types. A further source of errors is the partly 
inexact delineation image segments. This in particular affects 
the classification accuracy at the edges between unlike 
landcover types.  

Regarding the achieved map results it gets obvious, that 
PALSAR data are very suited for large scale forest monitoring 
in Siberia. In particular, the implementation of winter 
coherence adds a new powerful dimension to the intensity data 
set. Due to the well intended ALOS observation strategy 
coherence images can be produced for whole Siberia. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 



 
Figure 16: SAR data (left: HV/HH/Coherence) and forest cover map for the monitoring area; forest: green, very low biomass forest: brownish green, non-forest: 
light brown, ALOS K&C © JAXA/METI 
 

 
Figure 17: SAR data (HV/HH/Coherence) and forest map for subset (taken from north-eastern part) of the monitoring area; forest: green, very low biomass forest: 
brownish green, non-forest: light brown, ALOS K&C © JAXA/METI 
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Abstract— This paper presents a preliminary assessment of 
ALOS/PALSAR data from the Kyoto and Carbon Initiative 
program for monitoring changes in forest in terms of biomass 
loss and gain in central Siberia. The  changes in forest area 
occurred during the last ten years were  estimated using 
PALSAR data acquired in 2007 as compared to the forest map in 
1997 using data from ERS1-ERS2 combined with JERS satellites 
(the SIBERIA-I  project). 

The results obtained for the two study regions of Irkutsk and 
Krasnoyark which cover each about 5 millions of hectare indicate 
that the forest areas where biomass is lost ( logging and fires)  in 
10 years are 12.2% of the area in Irkutsk and 16% in 
Krasknoyarsk, whereas the areas with increase in biomass 
account for 3.2 and 4.5% respectively  in these two regions. This 
high rate of net loss ( 9% and 11.5% in 10 year)  , around 1% per 
year, if validated, could be a concern for future development of 
the Siberian forests.  

ALOS PALSAR data proved particularly useful for providing 
information relevant to carbon budget calculation and to the 
assessment of forest states, from logging to regrowth during the 
first decades after disturbances in Siberia. 

Index Terms—ALOS PALSAR, K&C Initiative, forest 
biomass, SIBERIA-I. 

I. INTRODUCTION 

The loss and degradation of forests worldwide has significant 
implications for the Earth system. The burning of forest 
biomass and removal or felling of timber have contributed to 
the additional burden of CO2 in the atmosphere  and the 
associated changes in climate. Clearance, degradation and 
fragmentation of forests have also resulted in significant losses 
of biodiversity and resources of social and economic 
importance. 
Increased awareness of these impacts has led to a number of 
international conventions including the UN Framework 
Convention on Climate Change (UNFCCC), its Kyoto 
Protocol contributing to the preservation, enhancement and 
long-term sustainability of global forest carbon stocks. Large 
areas of forest are also regenerating naturally and these forests 
play a key role in the recovery of the carbon lost.  
For this reason, there is a need to continue the mapping of 
forests on a regular basis and to assess the changes in extent 
and condition (in terms of structure and biomass) so that 
processes and drivers of change can be better quantified. For 
reporting to international agreements, there is also a 
requirement to retrieve specific data relating to the carbon 
budgets associated with these forests. Although considerable 
advances have been made in these areas in recent years, 
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significant obstacles still remain in terms of collecting and 
collating relevant and timely data. 
In this context, the objective of this study is to assess the 
contribution of ALOS PALSAR data to provide better 
estimates of biomass losses and gains associated with the 
clearance and growth of regenerating forests. The focus is put 
on the boreal forests in central Siberia where forest, and which 
retains much less attention of the scientific community as 
compared to tropical and temperate forests.  

The forests of Siberia constitute about 20% of the total 
world forested area and nearly 50% of the total world 
coniferous-forested areas. The Siberian forests have recently 
become an important topic of debate. The first reason of 
interest is that Siberian forests are considered in recent studies 
only as a weak carbon sink, however the studies show large 
uncertainties in the sink estimates. The second reason for this 
interest is concerned with the ongoing exploitation of forest 
resources. When combined with natural hazards, over 
exploitation may cause deterioration of the environment, 
especially when considering the boreal forest low recovery 
rate. 

I. OBJECTIVE 

 
The objective of this study was to quantify the  change in 

forest cover and biomass occurred during the last ten years in  
two selected sites located in central Siberia. This has been 
achieved by comparing ALOS PALSAR data acquired in 2007 
and the biomass/land-cover map obtained in the SIBERIA-I 
(SAR Imaging for Boreal Ecology and Radar Interferometry 
Applications) Project based on data acquired in 1997.  
 

II. DESCRIPTION OF THE PROJECT 

A. Relevance to the K&C drivers 

The use of ALOS data to quantify changes in forest condition, 
is in accordance with the Carbon driver outlined in the K&C 
Science Plan [1]. The ALOS PALSAR is expected to facilitate 
estimation of changes in biomass associated with deforestation 
and degradation (clearing, felling of timber) and to monitor 
regeneration through temporal comparison of SAR backscatter 
data up to the levels of saturation. Relating such changes to 
fluxes of carbon is difficult given uncertainties in the 
processes of decomposition and regeneration and the rates of 
change [2]. For example, Schulze et al. (1999) [3] suggest that 
several decades may pass before the Net Primary Productivity 
(NPP) of regenerating forests on cleared land in Siberia 
exceeds heterotrophic respiration, largely because of the 
decomposition of dead biomass. Nevertheless, by integrating 
models and observations of carbon dynamics with forest cover 
or change information generated using PALSAR data (either 
singularly or in combination with other remote sensing data), 
improved estimates of carbon flux may be obtained [4], [5] . 

B. Work approach 

ALOS PALSAR K&C data have been first assessed for 
mapping of forest cover and biomass classes, using high 
resolution optical data and forest inventory database. In order 
to compare the mapping results with the map provided by 
SIBERIA-I, the biomass class definition is based on the 
SIBERIA-I classification scheme. Detection of changes is 
conducted in the second phase, where areas of biomass loss 
and gain are highlighted.  
 

C. Satellite and ground data 

Site selection was conditioned by the availability of 
PALSAR data and the extent of SIBERIA-I product. The 
SIBERIA-I Project was an international effort to map Siberian 
boreal vegetation using SAR backscatter and interferometric 
data acquired by the ERS-1/2, and JERS satellites [6]. Data 
were classified in four growing stock volume classes (0-20, 20-
50, 50-8- and > 80 m3/ha), a smooth area class and a water 
body class [7]. This SIBERIA map represents a snapshot of the 
forest cover for a 1,000,000 km2 area of Central Siberia (see 
also Fig. 1) for the years 1997-1998. 

Two sites covering about 50.000 km2 each were selected. 
The first is the Irkutsk site situated about 250 km north of 
Bratsk. The second is the Krasnoyarsk site, located westwards 
at about 190 km north of Kansk city. The relief is represented 
mainly by plateaus and hills, almost 90% of the surface lying 
below 500 meters a.s.l. More than 95% of the slopes are below 
80, the whole territory being within the typical boreal forest 
zone. 

PALSAR data used in the study were acquired during 
summer 2007 (cycles 12 and 13) in fine beam dual 
polarization (FBD) mode (polarizations HH and HV).  Data 
from paths 460 to 468 and 473 to 484 were processed and 
geocoded using a Shuttle Radar Topography Mission (SRTM) 
derived digital elevation model (DEM). 

Figure 1 shows the SIBERI-I map and the location of the 
two testregions analysed using PALSAR data. 

Very high resolution optical data (available in Google 
Earth) are used for analysis and qualitative validation, whereas 
forest database provided by IIASA (ref) are used in the 
analysis. 

 

D. Processing and results 

 
PALSAR data were provided as long strips multi-looked 

intensity images in slant range geometry [8]. The processing 
steps described in [9] includes transformation to 
backscattering coefficient and geocoding, strip mosaicking, 
and co registration to SIBERIA-I map.  
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Figure 1: Map of  Central Siberia (Baikal lake in the bottom 
right), where SIBERIA-I and the two PALSAR study regions 
are localized.  

 
 
Efforts have been put to compensate some of the error 

sources in strip mosaicking (i.e. errors related to data 
acquisition - radiometric accuracy, changing weather, and 
errors related to SAR processing - inter-strip co-registration). 

Figure 2 shows the resulting mosaic covering the region of 
Krasknoyarsk.  

E. Classification 

The classification scheme was developed based on the data 
analysis results and the need of matching SIBERIA`s classes. 
A classifier based on HH and HV backscatter and their ratio 
was used. The analysis of the backscatter values was done 
based on sample polygons digitized using very high resolution 
optical satellite imagery (VHR). More than two hundred 
samples, equally distributed between three provisional classes 
(open areas, low biomass forests and high biomass forests) 
were selected for the Irkutsk site. These classes were preferred 
because their visual discrimination was possible on VHR 
optical imagery.  

To fine tune these classes into SIBERIA like classes (i.e. 
forests <50 m3/ha, forests 50-80 m3/ha and forests >80 m3/ha) 
a second backscatter analysis was carried out in 1067 
polygons of Russian forest inventory parcels [10] 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Mosaic of the PALSAR strip images of the 
Krasknoyarsk region.  
 
 

 
 
The classification method based on the data analysis has 

been described in [9] and applied to the two test regions. 
Figure 3  shows a subset of  classification result for the region 
of Krasknoyarsk, where the percentage cover was found to be 
59% of forests > 80 m3/ha, 15% for class 50-80 m3/ha,  19% 
for forests  <50 m3/ha, 5% of smooth area, and 1.5% of water. 
This is interesting to note that only 60% of the pixel area are 
forests of more than 80 m3/ha (or about 50 ton/ha).   

F.  Change detection 

To evaluate the percentage of area with forest biomass loss 
and gain, the classification scheme of both SIBERIA and 
PALSAR data are compared on a pixel basis. Due to the high 
confusion errors for the intermediate forest classes (50-80 
m3/ha) a  reduced number of classes was implemented, where 
classes 50-80 m3/ha and > 80 m3/ha are merged to a class of > 
50 m3/ha. Reducing the number of classes greatly diminishes 
classification uncertainties, assessed using validation data 
even though it reduces the sensibility of the change detection 
algorithm to small biomass changes. In Siberia small changes 
(for the considered time interval) represent mostly growing 
processes. 
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Figure 3: Map of land cover in the region North of Krasknoyarsk, central Siberia, using ALOS PALSAR FBD data acquired in 
2007. The forests are mapped in three classes of growing stock volume (< 50 m3/ha, 50-80 m3/ha and > 80 m3/ha) and smooth 
areas including agriculture and grassland. The map covers an area of 314 km x 163 km, crossed by the large Angara  river in 
the North.  
 

  
 
Due to slow growth ten years are not always sufficient for 

forests to pass from 0 m3/ha to the 50 m3/ha, and thus only 
some of the areas classified as less than 50 m3/ha will be 
recorded by the change detection algorithm as surface with 
biomass gain. Consequently areas presenting biomass gains 
will be to a certain degree underestimated. On the other side 
clear cuts and fires will be certainly recorded since changes  

 

 
from forest to open area take place much faster and there 

are less chances of confusion. Therefore, a certain 
overestimation of the net forest surface loss is unavoidable 
when considering this method. In addition, the values 
registered by area with biomass loss and gain could be 
partially resulted from misclassification especially between 
classes  forest <50 m3/ha and  forests >50 m3

 

Class SIBERIA ! PALSAR FBD Irkutsk (%) Krasnoyarsk (%) 

Biomass loss forest >50 m3/ha ! forest <50 m3/ha 
forest >50 m3/ha ! smooth areas 
forest <50 m3/ha ! smooth areas 

9.6 
1.1         12.2 
1.5 

11.4 
1.2        16.0 
3.4 

Biomass gain smooth areas ! forest <50 m3/ha 
smooth areas ! forest >50 m3/ha 
forest <50 m3/ha ! forest >50 m3/ha 

0.1 
0.02       3.22 
3.1 

0.1 
0.04       4.54 
4.4 

Stable forest forest >50 m3/ha "! forest >50 m3/ha 69.1 58.5 
Stable smooth fields & 
open areas 

smooth areas "! smooth areas 
forest <50 m3/ha "! forest <50 m3/ha 

0.5 
7.9 

2.3 
6.7 

Water water ! water 
not classified ! water 

2.7 
0.3 

1.2 
0.3 

Other changes all other changes 0.4 0.4 

Not classified not classified Siberia or Palsar 3.8 10.1 

Table 1. Change detection - class correspondence SIBERIA"! PALSAR FBD of the two test regions. 

 

> 80 m3/ha

50-80 m3/ha

< 50 m3/ha

smooth area

water

> 80 m3/ha

50-80 m3/ha

< 50 m3/ha

smooth area

water
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Figure 4 shows a part of the map of changes in the 

Krasknoyarsk region. The subset PALSAR image shows 

clearly  areas of forest exploitation of geometrical shape. 

The over all dynamics of biomass loss and gain in the 10 

year interval can be thus materialized.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 

 

 

 

 

 

 

 

Figure 3: Right: map of changes in forest biomass in ten years (1997-2007) in the region North of Irkutsk. The map covers an area 
of about 120 km x 120 km, with the Angara river on the East.  Left: Details of the 1997 and 2007 data and mapping result for the 
40 km x 30 km subset delineated in the right figure. This includes SIBERIA-I forest map in 1997 (top), PALSAR HV image 2007 
(middle) and map of changes in biomass (bottom). Note the large size of logged areas visible on the subset images. 
 

 

III. CONCLUSIONS

This paper illustrates the change in forest areas 
associated to  biomass loss and gain in Siberia as assessed 
using PALSAR data and the SIBERIA-I map. Two sites 
covering around 100.000 km2 (or 10 Million hectares) 
located in the central part of Siberia have been studied.  
During the last decade the percentage of the area where 
biomass is lost are 12.2% in Irkutsk and 16% in 
Krasknoyarsk, whereas the areas with increase in biomass 
account for 3.2 and 4.5% respectively  in these two regions. 
The  rate of net loss is thus 9% and 11.5% in 10 years, or 
about 1% per year.  In addition, forest net loss estimates are 
higher for Krasnoyarsk site (11.5%) than for Irkutsk area 
(9%) suggesting a more active deforestation process in the 
eastern part of central Siberia. The similar forest net loss 

amount on both studied sites indicates comparable 
management practices at the level of the whole central 
Siberia. 
The results and their uncertainties still need further 
assessment. However, the study shows clearly that  area of 
biomass increase is much smaller than area of biomass loss. 
This may suggest unsustainable management policies. 
 

The study needs to be pursued using multi year PALSAR 
data to detect area of forest exploitation and to evaluate the 
rate of exploitation. ALOS K&C Initiative provides the 
opportunity for such assessment during its timelife, and 
hopefully, during the ALOS follow-on mission.  

.   
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Abstract—Interferometric ALOS PALSAR Fine Beam 
Single/Dual, multi-temporal ENVISAT ASAR Alternating 
Polarization, and Landsat-5 TM/-7 ETM+ data are used for the 
generation of land cover and change maps. In synthesis, the 
product generation foresees two main steps: The first one consists 
in a rigorous data pre-processing, including interferometric 
processing (PALSAR), geometric / radiometric calibration 
(PALSAR, ASAR, TM/ETM+), and multi-temporal speckle 
filtering (PALSAR, ASAR); as result, terrain geocoded 
coherence, sigma nought, and top-of-atmosphere reflectance 
products are obtained. The second part is dedicated to data 
classification and fusion. Classification is performed by means of 
a prior knowledge-based approach exploiting interferometric, 
multi-temporal intensity, and spectral signatures. Data fusion 
and change detection are subsequently applied at semantic level. 
Results –  based on acquisitions over Malawi (country-wide) and 
on an area in Brazil – show that the synergetic use of data 
provided by these sensors allows the reliable identification of key 
land cover types (in primis cropped areas, bare soil areas, sparse 
and dense vegetated areas, forest clear cuts and burnt areas, 
water bodies) and their evolution over time, aimed at gathering 
essential information on the land cover status. In addition, it is 
shown that using the same repeat-pass interferometric ALOS 
PALSAR data pair, a Digital Elevation Model (DEM) with 
higher quality than the Shuttle Radar Topographic Mission 
(SRTM) can be generated unless the area is densely vegetated.    

Index Terms—ALOS PALSAR, ENVISAT ASAR, K&C 
Initiative, data calibration, prior knowledge-based classifier, data 
fusion, change detection. 

I. 0BINTRODUCTION 
Spaceborne Remote Sensing is the only reliable system to 

collect systematic data at frequent rates over large areas. 
Therefore, it can be considered as a tool to observe the spatial 
and temporal aspects of land cover changes. Although an 
analysis of current and forthcoming sensors pointed out that 
there is a wide range of information which can be derived 
from SAR (Synthetic Aperture Radar) and optical data – in 
particular high resolution – it remains a fact that its use is still 
limited today. In order to transform this (often) huge amount 
of multi-temporal multi-source data into information, 
automated data understanding techniques are mandatory, as 
ground truth data, required by traditional inductive supervised 
data learning image classification techniques to be trained on a 
scene-by-scene basis, and ancillary (e.g., atmospheric) 
information are typically tedious, expensive, and either 
difficult or impossible to gather at several locations within 
image area at the time of image acquisition. 

Prior to the ALOS mission, JAXA in collaboration with the 
K&C team, performed a careful PALSAR data acquisition 
planning, leading – for the first time – to the acquisition of a 
multi-temporal, multi-scale L-band data set at global level. 
Thanks to the availability of this unique multi-temporal data 
set and to the synergy with other remote sensing spaceborne 
systems, valuable remote sensing based products – country-
wide – can be generated for the mapping and monitoring of 
land use and natural resources of our planet.  
 
The work proposed within this initiative is essentially focused 
on the synergetic use of SAR (ALOS PALSAR and 
ENVISAT ASAR) and optical (Landsat TM/ETM+) data, by 
considering: 

- A rigorous data pre-processing aimed at obtaining terrain 
geocoded coherence, sigma nought and top-of-atmosphere 
reflectance products.  

- A first level prior knowledge classifier requiring, as input, 
data radiometrically calibrated into physical values 
belonging to a common radiometric scale. 

- A second level prior knowledge classifier requiring, as 
input, the semantic layers of the first level classification 
and temporal features derived from SAR intensity time-
series.  

 
 
 

II. 1BMETHOD 
The processing chain, as illustrated in the data flow diagram in 
Figure 1, consists of six modules (yellow boxes). Each module, 
which includes one or a set of functions (grey boxes), provides 
an intermediate (bright purple boxes) or final product (dark 
purple boxes). Remote Sensing input data are highlighted in 
magenta, while Digital Elevation Model (DEM) data are in 
cyan. 
 
Purpose and functionality of each module are: 

1.  First Level Optical Classifier 

The purpose of this module is to generate, based on top-of-
atmosphere calibrated reflectance data, spectral classes. 
Recently, an original fully automatic modular hierarchical top-
down prior spectral knowledge-based classifier capable of 
detecting a set of kernel (i.e. reliable) spectral layers in 
calibrated optical data was proposed by Baraldi et al. [1].  

 



 
           Figure 1.  Data Flow Diagram. 
 

In essence this system uses kernel spectral to mimic well-
known spectral signatures of target land covers. Based on 
prior knowledge exclusively, the proposed classifier requires 
no training and supervision to run, i.e., it is fully automatic. Its 
output map consists of spectral classes provided with a 
symbolic meaning. Each of the identified spectral classes is 
associated with a USGS land cover index, thereby enabling a 
link between spectral and thematic categories. Furthermore, 
the proposed algorithm allows to generate a set of spectral 
features – such as Canopy Chlorophyll Content, Canopy 
Water Content, Greenness Index, and Water Index – 
determining, for each pixel, additional (and complementary) 
quantitative information.  
 

Although this work is based on the use of Landsat TM/ETM+ 
data, the same approach can be applied to other optical sensors, 
as the implemented algorithms fully support data acquired by 
AVNIR-2, SPOT-1,2,4,5, LISS III,IV, AWiFS, and MODIS 
data. 

 

 

2.  Processing of multi-temporal SAR Intensity 
The aim of this module is to generate calibrated (in geometric 
and radiometric terms) and multi-temporal speckle filtered 
SAR intensity data. It is anticipated that the provided 
algorithms [2,3] are sensor independent, hence supporting the 
process of SAR Single Look Complex (SLC) data of all 
existing spaceborne, prior the availability of the necessary 
processing and platform parameters. 

 
 

 

Within this initiative, three data types are considered, i.e. 
ALOS PALSAR Fine Beam Single / Dual polarization and 
ENVISAT ASAR Alternating Polarization data.   

For what concerns the SAR filtering method, conventional 
single-date and multi-temporal approaches which are based on 
probability density functions, perform well under strictly 
controlled conditions, but they are often limited with respect to 
sensor synergy and to the temporal aspect, where complex joint 
probability density functions must be considered. The 
drawback of existing speckle filters is that they are strongly 
sensor and acquisition mode dependant, because based on the 
scene statistic. Moreover, if features masks are used, an 
accuracy loss is introduced when regarding particular shape 
preservation. This is mainly due to the lack of a priori 
information about size and type of the features existent in the 
image. By taking advantage of the redundant information 
available in multi-temporal series, while being fully 
independent regarding the data source, a multi-temporal 
anisotropic diffusion scheme is proposed [4].   

 

3.  Interferometric Processing  
The purpose of this module is to generate terrain geocoded 
coherence data. As in the previous module, the provided 
algorithms are sensor independent. Within this initiative ALOS 
PALSAR Fine Beam Single and Dual polarization 
interferometric data are exploited. Due to the temporal 
decorrelation at C-band, ENVISAT ASAR could not be used. 

 



Concerning coherence estimation, usually it is estimated by 
setting a moving window with fix dimensions. The drawback 
of this method is that, due to the fix window size, coherence 
values are not optimally estimated (in particular when the 
window is too small), because the filter is not spatially 
adaptive. For this reason an alternative approach is proposed, 
which takes advantage from an anisotropic non linear diffusion 
method. 

 

4.  First Level Interferometric Classifier 

An interferometric data pair enables the estimation of 
coherence, which is a measure of the phase noise of the 
interferogram, and it depends upon sensor parameters, 
parameters related to the imaging geometry, and object 
parameters. A general rule of thumb is that high coherence 
values correspond to small changes (coherent changes) or no 
temporal variations – meaning that the objects are stable – 
while volume scattering and temporal changes (incoherent 
changes) are related to low coherence values. In this latter 
cases, where the coherence values tend to approach the noise 
level, the backscattering coefficient of both acquisitions – in 
primis in terms of average and difference – provides useful 
information to determine the main land cover types and their 
changes.  

The proposed algorithm has been developed based on the 
characteristics of interferometric Fine Beam Single and Dual 
polarization data. It is worth mentioning  that the use of these 
images for interferometric applications have been extensively 
demonstrated within the ESA project Prototype Processor for 
ALOS PALSAR Data and Polarimetric Interferometric 
Products Generation [5]. The adopted algorithm’s strategy has 
been derived from [1]: obviously, in this case, kernel spectral 
rules are not designed to mimic well-known spectral signatures 
of land covers, but to the object’s single- and multi-date 
backscattering properties at L-HH and/or L-HV polarization 
and to the corresponding coherence signature. The 
classification therefore, intrinsically, does not include only 
main classes related to the object, but also classes linked to the 
object’s temporal changes. It has to be pointed out that the 
rules have been derived from the literature, in particular from 
[6], and through the analysis of PALSAR interferometric 
scenes acquired over different agro-ecological zones, 
geographic areas and time periods. Finally, the class names, 
indicate general land cover categories (for instance dense 
vegetation) rather than thematic classes (for instance forest).      

 

5.  Temporal Features 

The purpose of this module is to generate key temporal features 
based on multi-temporal ENVISAT ASAR Alternating 
Polarization data set. 

 

6.  Second Level Classifier 

The purpose of this module is twofold. The first one is to 
provide a classification based on the synergy of interferometric 
PALSAR Fine Beam Single polarization and multi-temporal 
ENVISAT ASAR Alternating Polarization data. The second 
one is to derive a land cover and change detection map based 

on interferometric PALSAR Fine Beam Dual polarization data 
and optical (Landsat-5 TM in this case). It is anticipated that, in 
both cases, a prior knowledge-based approach underpins the 
inference of land cover classes and changes. In the first case, 
the primal sketch interferometric classification (outcome 
module 4) drives the use of temporal features derived from 
SAR intensity time-series (outcome module 5). In the second 
one, primal sketch classifications (outcome module 1 and 4) 
are inputted into the classifier.  
 
The fundamental idea, in both cases, is based on the fact that 
thematic information and/or changes can be retrieved in a 
semantic way (since a common denominator between the 
different data sources has been established) rather than at signal 
level, as conventionally done. In fact, knowing the symbolic 
(spectral, interferometric, multi-temporal or pseudo-thematic) 
name of two input classes, the output class can be assigned by 
means of logic relationships. For instance, if in the first 
acquisition date, the identified pseudo-thematic class is snow, 
and, in the second date, the pixel is classified as clear water, the 
resulting class will be melted snow.  
 

III. 2BDATA SETS 
Two different data sets are used: Malawi – country-wide, 

i.e. around 100,000 sqkm area coverage – and Brazil – the area 
covered by an ALOS PALSAR standard frame.  

Malawi – The following data are used: 
 

- ALOS PALSAR Fine Beam Single polarization SLC 
data acquired on: 
- 20 November 2007 
- 05 January 2008 
- 20 February 2008  

- ENVISAT ASAR Alternating Polarization Mode SLC 
data acquired on: 
- 23 July 2007 
- 27 August 2007 
- 01 October 2007 
- 05 November 2007 
- 18 November 2007 
- 10 December 2007 
- 14 January 2008 
- 18 February 2008 
- 02 March 2008 

- Shuttle Radar Topographic Mapping Digital Elevation 
Model. 

 

All products are referenced to the UTM zone 36, Northern 
hemisphere, WGS-84 system, grid size of 15m. 
 
Brazil – The following data are used: 

- Landsat-5 TM data acquired on September 1986; 
- ALOS PALSAR Fine Beam Dual polarization SLC 

data acquired on 20 June and 5 August 2007;  
- Shuttle Radar Topographic Mapping Digital Elevation 

Model. 
 

All products are referenced to UTM zone 22, Southern 
hemisphere, WGS-84 system, grid size of 15m (PALSAR) and 
30m (Landsat-5 TM).   

 



IV. 3BRESULTS AND SUMMARY 
The results based on the two data sets – and illustrated in 

Figure 2, 3, and 4 – are generated according to: 

- Malawi: modules 2,3,4,5,6;  
- Brazil: modules 1,2,3,4,6. 

Note that all data processing are performed using SARscape® a 
sarmap proprietary software. 
 
The results obtained so far indicate that the synergetic use of 
interferometric PALSAR Fine Beam Single and Dual 
polarization data with multi-temporal ASAR Alternating 
Polarization or single-date Landsat TM/ETM+ data enables the 
reliable identification of main land cover types and their 
evolution over time. Furthermore, the proposed approach 
provides, additionally and in an automated way, the location 
(where) and the type (what) of the change.  

Concerning product’s reliability, the obtained accuracy is in the 
order of 80% for Malawi [7], and significantly higher than 90% 
for Brazil [8]. It is worth mentioning that, in both cases, the 
products have been validated using in situ data: 1,213 points in 
76 clusters for Malawi, 30 points for Brazil. The main reason 
of the lower accuracy reported in Malawi, with respect to the 
Brazil, is primarily due to the fact that some features (for 
instance cropped areas), in general, are heterogeneous and of 
limited dimension (i.e. less than 1 ha).  

In these specific cases, due to the mixed nature of the pixels, 
classification inaccuracies are observed. A higher spatial 
resolution, which will be available with ALOS PALSAR-2, 
would strongly reduces the presence of mixed pixels, hence 
significantly contributing to improve the overall accuracy. 

Furthermore, given the spatial resolution of ALOS AVNIR-2 
data (10 meters) and the radiometric high quality of these data, 
it is planned, in the next phase (2009-2011), to additionally 
exploit images acquired from this sensor. Moreover, very high 
resolution stripmap SAR data (3 meters), acquired by the 
COSMO-SkyMed satellite constellation [9], will be integrated 
in the current processing chain. Based on this new data 
scenario, it is thereby planned to extend the second level 
classifier to support the use of textural features and geometric 
descriptors.    

Finally,  given the availability of suitable interferometric 
ALOS PALSAR data pair, the capability of, and the limitation 
to, the generation of a Digital Elevation Model in the two 
areas is additionally analyzed. In synthesis: in Brazil – due to 
the presence of very dense forest – the quality of the resulting 
DEM is very poor. In Malawi, on the other hand, the obtained 
quality is doubtless higher than the SRTM DEM, particularly 
with respect to the spatial details resulting from the better 
spatial resolution (10 meter of PALSAR Fine Beam Single 
polarization against the 90 meter interpolated SRTM DEM).      

Figure 2.  The color composite on the left illustrates a multi-temporal data set based on 120 ENVISAT ASAR AP images and 70 ALOS PALSAR FBS scenes 
(“© JAXA/METI) data covering the whole Malawi (100,000 sqkm, 15m resolution). The image on the right shows an interferometric color composite 
based on ALOS PALSAR FBS data (70 image pairs). The enlargements highlight the extensive information included in this type of multi-temporal 
multi-source data set, which allows the generation of products such as crop map, main land cover/change classes, and digital elevation model. All 
processing has been performed starting from SLC data. ALOS K&C © JAXA/METI. 

 



  
      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.  Landsat-5 TM color composite acquired on 1986 (top left) and corresponding classification (top right). ALOS 
PALSAR interferometric color composite acquired on 2007 (bottom left) and corresponding classification (bottom 
right).  

ULegend OpticalU (main classes):  Green tones: Forest and sparse vegetation; Brown tones: barren land and built-up 
areas; Blue tones: water types; White tones: clouds. 

ULegend SARU (main classes):  Green tones: Thick and sparse forest; Brown tones: Bare soil; Yellow tones: short 
vegetation and short dry vegetation; Blue tones: water types; Red: 
rocks/settlements.ALOS K&C © JAXA/METI. 
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Abstract — Polarimetric Synthetic Aperture Radar (SAR) 
Interferometry (Pol-InSAR) is a radar remote sensing technique, 
based on the coherent combination of radar polarimetry (Pol-
SAR) and SAR interferometry (InSAR) which is substantially 
more sensitive to structural parameters of forest volume 
scatterers (e.g. forest) than conventional interferometry or 
polarimetry alone. However, temporal decorrelation is probably 
the most critical factor towards a successful implementation of 
Pol-InSAR parameter inversion techniques in terms of repeat-
pass InSAR scenarios.  This report focuses on the quantification 
of the effect of temporal decorrelation at L-band as a function of 
temporal baseline based on multi-temporal airborne 
experimental data acquired in the frame of dedicated air-borne 
experiments. Conclusions on the suitability of ALOS/PalSAR for 
Pol-InSAR applications are drawn and recommendations for 
mission characteristics of a potential follow on mission are 
addressed. 

Index Terms—ALOS PALSAR, K&C Initiative, Forest 
Theme, Polarimetric SAR Interferometry (Pol-InSAR), Forest 
Height Estimation, Temporal Decorrelation. 

I.  INTRODUCTION  
Towards a continuous quantitative forest monitoring, 

information about horizontal and vertical structure and/or 
about integrative forest parameters such as forest biomass is 
essential. In contrast to qualitative applications, quantitative 
approaches by means of SAR are less developed especially in 
tropical environments due to the limited data availability and 
the complexity of such environments. Most of the quantitative 
approaches are developed on temperate and/or boreal test sites 
where reference and validation data are easier to collect. The 
very different structure of tropical forests makes an offhand 
generalization not possible and requires dedicated experiments 
for development and validation. Pioneering work based on 
early airborne SAR experiments addressed tropical forest 
biomass classification and estimation hence demonstrating the 
potential of low frequency polarimetric SAR (PolSAR) 
measurements [3][4]. However, the complexity of radar 
scattering in forest environments makes the interpretation and 
inversion of individual SAR and PolSAR observables on the 

Table 1: ALOS Quad-Pol Mode Parameters. 

 
basis of empirical, semi-empirical or theoretical models 
difficult. The establishment of interferometric SAR (InSAR) 
techniques for forest monitoring in the late nineties triggered 
first InSAR experiments in the tropics that indicated the 
potential of interferometric observables at low frequencies for 
the estimation of vertical structure parameters [5][6][7][8][9]. 

In the last years, the coherent combination of both, 
interferometric and polarimetric observations by means of 
Polarimetric SAR Interferometry (Pol-InSAR) was the key for 
an essential break through in quantitative forest parameter 
estimation [10][11]. Indeed, quantitative model based 
estimation of forest parameters - based on a single frequency, 
fully polarimetric, single baseline configuration - has been 
successfully demonstrated at L- and P-band and more recently 
even at X-band. Several experiments demonstrated the 
potential of Pol-InSAR techniques to estimate with high 
accuracy key forest parameters like forest height over a variety 
of natural and commercial; temperate, boreal and tropical test 
sites characterized by different stand and terrain conditions. 

RF-centre frequency 1.270 GHz  (L-band) 

System bandwidth 14 MHz 

Sampling Frequency 16 MHz 

PRF 1500-2500Hz 

Transmit Peak Power 2 kW 

Incidence Angle 21.5º (selective on 18.5 º) 

NE Sigma Zero < - 31dB 

Observation Swath 30.6 Km (@ 21.5º ) 

Range Resolution 31.2m (ground range @ 21.5º) 

Azimuth Resolution 20m (4 looks) 

A/D Convertion 5bit 

Data Rate 249 Mbps 

Repeat-Pass Time 46 Days 



Validated results for boreal forests at X- and L-band are 
shown by [12] [11][13][14][15].  

The launch of JAXA�’s ALOS in January 2006 provided - for 
the fist time since the SIR-C/X-SAR mission�’s in the 80�’s - 
the opportunity to acquire Pol-InSAR data from space. Indeed, 
PalSAR (i.e. the SAR instrument onboard of ALOS) is able to 
operate in a Quad-pol mode - declared by JAXA as an 
�“Experimental Mode�” - that allows the acquisition of Pol-
InSAR data in a repeat-pass mode. The main characteristics of 
the PalSAR Quad-pol mode are summarized in Table 1. In this 
sense, ALOS-PalSAR allows the application, validation and 
development of Pol-InSAR inversion techniques on a much 
wider range of sites distributed world-wide and accessible to a 
much wider scientific user community than possible with 
airborne sensors. 

A. Importance of Forest Height  
An estimation of the 3-D forest structure allows retrieving 
quantitative forest parameters. One parameter providing 
information about the 3- D structure of forests is forest height, 
a key parameter for a wide range of applications in forest 
management and forest conservation, such as biomass 
estimation, illegal logging, stand delineation and disaster 
management.  

Especially information about forest biomass and the detection 
of changes in forests on a global scale are highly valuable 
information. Forest height is correlated with biomass; this 
means by using allometric equations dependent on the 
ecosystem (boreal or tropical) biomass can be easily derived 
from forest height. Biomass is a parameter going directly into 
climatic modelling or carbon balancing and is therefore in a 
globally changing environment of high interest. In the frame 
of a changing climate, but also for the conservation of 
ecosystems and biodiversity a documentation of changes in 
forest ecosystems is essential. This includes the detection of 
forest clearings but also the detection of changes in the 3-D 
structure of forests for which height is an important parameter.  
Full area forest height maps resolve the horizontal forest 
canopy structure allowing a classification and evaluation of 
forest ecosystem. In contrary to this wood industry and forest 
management require quantitative forest information to 
guarantee a sustainable forest management and wood supply 
also here forest height is a basic parameter for the planning of 
logging activities.  

Until now, quantitative information about forests is mainly 
based on the sampling of ground measurements. Their 
accuracy and reliability depend on the used grid and the 
uniformity of the forest. For remote forest types such as boreal 
or tropical forests, the available information becomes 
particularly poor due to a lack of measurements. Ground 
measurements are generally expensive and staff intensive. 
Therefore they are normally conducted only once every 10 
years or more. 3-D remote sensing techniques could provide 
complete information in short time periods.  

II. PROJECT DESCRIPTION & OVERVIEW  

ALOS provided, for the first time, the possibility to 
demonstrate quantitative Pol-InSAR techniques from 
space. This demonstration in terms of forest height estimation 
was the core objective of the original project. Based on 
repeat-pass fully polarimetric interferometric SAR data 
acquired by the ALOS/PalSAR sensor - during its early CAL-
VAL phase - model based estimation of forest height was 
proposed. Towards higher estimation accuracy, the 
observation vector was planned to be extended including the 
two dual-pol single-baseline data sets acquired on the latter 
ALOS/PalSAR operation phase. There where three tasks 
foreseen: 

Task 1: Inversion methodology development adapted / 
optimised to the actual ALOS/PalSAR acquisition scenario: 
I.e., a limited number of Quad-Polarimetric (Quad-pol), 
repeat-pass interferometric acquisitions with a temporal 
baseline of about 46 days. Assessment of the impact of 
temporal decorrelation on Pol-InSAR inversion techniques. 

This task has been successfully completed. Using L-band 
airborne Pol-InSAR data acquired by DLR�’s E-SAR system in 
a repeat-pass mode an optimised methodology for the 
inversion of Pol-InSAR data affected by moderate levels of 
temporal decorrelation, has been developed. The performance 
of the developed methodology was validated in the frame of 
dedicated experiments/campaigns against ground-
measurements, and Lidar data.  Unfortunately the 46 days 
temporal baseline of ALOS lead to severe temporal 
decorrelation that restricts dramatically the application of 
Pol-InSAR techniques. The emphasis was then moved 
towards the assessment of temporal decorrelation levels at 
different  temporal baselines ranging from days to weeks and 
the evaluation of its impact on forest height estimation 
techniques. The analysis, the results and the conclusions are 
reported in Section 3 & 4.  

Task 2: ALOS/PalSAR data inversion and validation of the 
obtained forest height estimates over a limited number of 
selected test-sites. Evaluation of the performed estimation 
accuracy and feasibility assessment for global scale 
application. Evaluation of the option for the collection of a 
global data set for forest height mapping.  

This task has been completed. Based on repeat-pass quad-pol 
interferometric SAR data acquired by the ALOS/PALSAR 
sensor during its early calibration/validation phase it was 
possible to demonstrate model based Pol-InSAR inversion 
over single isolated stands (see Figure 1). However, the high 
temporal decorrelation levels induced by the 46-day repeat-
pass cycle reduce the estimation performance of forest 
structure parameters significantly and prevent the 
demonstration of Pol-InSAR inversion on a large scale.  

The decorrelation levels are similar to the ones obtained in 
airborne experiments (see Task 1) for similar temporal 
baselines, a fact that can be seen as a validation of the ALOS-
PalSAR sensor and data quality. 



Figure 1:  Forest height estimation for a mixed forest stands located within the Oberpfaffenhofen test site obtained from the inversion of dual-baseline Quad-Pol-
InSAR ALOS-PalSAR data  �“© JAXA/METI�”. 

 
 
Task 3: Inversion methodology development adapted to 
the Dual-pol ALOS/PalSAR global coverage acquisition 
scenario for an optimised forest height estimation 
performance on a global scale. The proposed methodology 
was proposed to be tested against ground measurements 
over selected test-sites worldwide in order to state about 
estimation accuracy and potential limitations. 

This task has been not-completed because of the high 
temporal decorrelation levels that make quantitative Pol-
InSAR inversion not meaningful. The very low coherence 
levels over forest areas degrade the value of interferometric 
information and make a successful performance of this task 
not possible. 

III. POL-INSAR FOREST HEIGHT INVERSION  

The key observable used in Pol-InSAR applications is the 
complex interferometric coherence ~  (including both, the 
interferometric correlation coefficient and interferometric 
phase) measured/estimated at different polarizations 
(indicated by the unitary vector w  [10][11]). ~  is given 
by the normalized cross-correlation of the two SAR images 
obtained from the interferometric acquisition 1s and 2s  
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The coherence depends on instrument and acquisition 
parameters as well as on dielectric and structural parameters 
of the scatterer. A detailed discussion of system induced 
coherence errors can be found in [18]. After calibration of 
system induced decorrelation contributions and 
compensation of spectral decorrelation in azimuth and range 
the estimated interferometric coherence can be decomposed 
into three main decorrelation processes [19]: 

VolSNRTemp
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-- Temporal decorrelation Temp
~  can be real (i.e. 

effecting the absolute value of ~  only) or complex (i.e. 
biasing the phase of ~ ). It depends on the structure and the 
temporal stability of the scatterer, the temporal baseline of 
the interferometric acquisition and the dynamic 
environmental processes occurring in the time between the 
acquisitions. 

-- Noise decorrelation SNR  introduced by the additive 
white noise contribution on the received signal [20][21]. It 
affects primarily scatterers with low (back-) scattering and 
is in general of secondary importance when looking on 
forest at conventional frequencies. 

-- Volume decorrelation Vol
~  is the decorrelation caused 

by the different projection of the vertical component of the 

 

Stand 1  Stand 2 

Estimated Height:    ~34m    ~37m  

Reference Forest Height: ~20-25m  ~20-25m 

Temporal Decorrelation:               ~0.65-0.75  



scatterer into the two images )w(s1 and )w(s2 . Vol
~  is 

directly linked to the vertical distribution of scatterers F(z) 
through a (normalized) Fourier transformation relationship 
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where hv is the height of the volume and z  the effective 
vertical (interferometric) wavenumber that depends on the 
imaging geometry and the radar wavelength  
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and  is the incidence angle difference between the two 
interferometric images induced by the baseline. z0 is a 
reference height and 0z0 z  the corresponding 
interferometric phase. For monostatic acquisitions, as flown 
in the case of ALOS PalSAR, m:=2, while for bistatic 
acquisitions m:=1. Accordingly, Vol

~  contains the 
information about the vertical structure of the scatterer and 
is therefore the key observable for quantitative forest 
parameter estimation [10][11]. 

The estimation of vertical forest structure parameters from 
interferometric measurements can be addressed as a two 
step process: In the first step (modelling) F(z) is 
parameterized in terms of a limited set of physical forest 
parameters that are related through (3) to the interferometric 
coherence. In the second step (inversion), the volume 
contribution of the measured interferometric coherence is 
then used to estimate F(z) and to derive the corresponding 
parameters. A widely and successfully used model for F(z) 
is the so called Random Volume over Ground (RVoG), a 
two layer model consisting of a volume and a ground layer 
[22], which can be described as 
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where mV and mG are the ground and volume scattering 
amplitudes and  a mean extinction coefficient. Equation (5) 
leads to 
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The phase 0z0 z  is related to the ground topography z0 
and m the effective ground-to-volume amplitude ratio 
accounting for the attenuation through the volume 

)Im/(mm 0VG . 0V
~  is the volume decorrelation caused 

by the vegetation layer only, given by 
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Neglecting temporal decorrelation and assuming a sufficient 
calibration/compensation of system (e.g. SNR) and 
geometry (range/azimuth spectral shift) induced 
decorrelation contributions (6) can be inverted in terms of a 
Quad-pol single baseline acquisition [11],[13],[23],[24]. 
Assuming no response from the ground in one polarization 
channel (i.e. 0m3 ) the inversion problem has a unique 
solution and is balanced with five real unknowns 
( 021V ,m,,h ) and three measured complex coherences 
[ )w(~)w(~)w(~

321 ] each for any independent 
polarization channel [23] 
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Equation (8) is used to invert data sets at L-band using m3=0 
for regularisation. Note that the assumption for no ground 
response is not necessarily linked to the HV channel.  

IV. THE EFFECT OF TEMPORAL DECORRELATION 

Equation (6) accounts only for the volume decorrelation 
contribution of the interferometric coherence while other 
decorrelation effects are ignored. Such decorrelation 
contributions reduce the interferometric coherence, and 
increase the variation of the interferometric phase. The 
impact of such non-volumetric decorrelation effects is 
evaluated in the following. One has to distinguish between 
real and complex decorrelation contributions: Both of them 
bias (reduce) the absolute value of the interferometric 
coherence and increase variance of the interferometric phase. 
But, while complex decorrelation biases the expectation 
value of the (interferometric) phase, the expectation value 
remains the same in the case of real decorrelation.  

A.  Temporal Decorrelation 

One of the most prominent decorrelation contributions in the 
case of non-simultaneous acquisition is temporal 
decorrelation caused by dynamic changes within the scene 
occurring in the time between the two acquisitions. Such 
changes can effect the location and/or the (scattering) 
properties of the scatterers within the scene inducing in the 
most general case a complex decorrelation.  

Temporal changes within the scene occur, in general, in a 
stochastic manner and cannot be modeled accurately even 



when detailed information about the environmental 
conditions in the time between the two observations are 
available. The fact that everything within the scene may 
change and affect all or some of the polarimetric and/or 
interferometric observables in different ways make a general 
model-based consideration of temporal effects, if not 
impossible, very difficult.   

Hence, temporal decorrelation effects - in the absence of 
detailed knowledge about the occurring dynamic process - 
can be incorporated in scattering models in a rather abstract 
way. Regarding Equation (6) model, temporal decorrelation 
may affect both, the volume component that represents the 
vegetation layer and the underlying ground layer  
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TV denotes the correlation coefficient describing the 
temporal decorrelation of the volume scatterer and TG the 
correlation coefficient describing the temporal decorrelation 
of the underlying surface scatterer. As indicated, both 
coefficients may be polarisation dependent and complex: For 
example, changes in the dielectric properties of the canopy 
layer (due to changes in moisture content) or even more 
changes in its structural characteristics (caused by the annual 
phenological cycle or fire events) lead to different amount of 
change at different polarisations in the volume scatterer. 
Furthermore, a change in the dielectric properties of the 
ground scatterer - as for example due to a change in soil 
moisture - effects the scattering properties in each 
polarisation in a different way and leads to a polarisation 
dependent temporal decorrelation of the ground scatterer. 

An important, and missing today, information is the behavior 
of TV and TG as a function of time. The decorrelation 
processes within the volume layer occur at different - in 
general much smaller - time scales than the decorrelation 
process on the ground (that includes both surface and 
dihedral scattering). While the vegetation layer starts already 
to decorrelate at temporal baselines on the order of seconds 
to minutes and is completely decorrelated for temporal 
baselines on the order of  1-2 months, the ground scattering  
remains partially coherent for even for baselines on the order 
of a half year. Especially dihedral scattering mechanisms - 
related in forest environments to the ground-trunk interaction 
- appears to be very stable in time and remain coherent even 
over the period of several months. However, the individual 
values and temporal characteristics of TV and TG are, of 
course, frequency dependent but depend also on the 
tree/stand canopy and architecture characteristics. The 
overall temporal decorrelation is then depending �– according 
to Equation (9) �– on the ground to volume ration m that 
defines the ratio of more to less temporal stable components. 
In other words, stands with a higher ground contribution are 
obviously expected to have a higher temporal coherence than 
stands characterized by a weak �‘visible�’ ground scattering 
component.    

From the parameter inversion point of view now, the RVoG 
model with general temporal decorrelation �– as addressed in 
Equation (9) - cannot be solved under any (repeat-pass) 
observation configuration, as any additional measurement �– 
at a different polarisation and/or baseline �– introduces always 
two new unknowns, TV and TG. However, even if the 
general temporal decorrelation scenario leads to an under-
determined problem, special temporal decorrelation cases 
may be accounted under certain assumptions, as it will be 
discussed in the next section.   

B. Wind Induced Temporal Decorrelation 

The most common temporal decorrelation effect over 
forested terrain is wind-induced movement of scatterers 
within the canopy layer as for example leaves and/or 
branches etc. In terms of the RVoG model, this corresponds 
to a change of the position of the scattering particles within 
the volume. However, in this case the scattering amplitudes 
as well as the propagation properties of the volume remain 
the same. Assuming further that the scattering properties of 
the ground do not change the RVoG model with temporal 
decorrelation in the volume component becomes [37][23] 
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The inversion of Pol-InSAR coherences contaminated by 
temporal decorrelation using Equation (6) by means of 
Equation (10) leads to overestimated forest height estimates: 
The lower coherence values (due to the temporal 
decorrelation) are interpreted by Equation (6) as to be 
caused by higher forest heights. Figure 2 shows the height 
error obtained by inverting Equation (10) for different levels 
of temporal decorrelation ( Temp=0.90 to 0.75) using 
Equation (6) as a function of forest height. 

 

 
Figure 2: Height error induced by different levels of temporal decorrelation 
as a function of forest heights assuming as a vertical wavenumber of z=0.1 
rad/m. 

 



A vertical wavenumber of z=0.1rad/m has been assumed 
that corresponds to an 1100m horizontal spatial baseline for 
the ALOS Quad-pol mode. Clearly, one can see that the 
estimation errors induced by a constant level of temporal 
decorrelation are significantly higher for short than for high 
heights and that the errors increase with increasing temporal 
decorrelation. Note that even for low temporal decorrelation 
levels (on the order of 0.9) the height error is critical for low 
forest heights.  

Figure 2 makes clear that for achieving acceptable height 
estimates temporal decorrelation has to be suppressed or 
compensated. Unfortunately, as already discussed, temporal 
decorrelation occurs in a stochastic manner within the scene 
[39] and can be only difficult accounted/modeled on the 
basis of detailed information about the environmental 
conditions over the time between the two observations. The 
first best option to reduce the impact of non-volumetric 
decorrelation contributions on the forest height estimation is 
to increase the volume decorrelation contribution with 
respect to the non-volumetric decorrelation by increasing the 
spatial baseline of the acquisitions. Figure 3 shows the height 
error obtained by inverting Equation (11) for different levels 
of temporal decorrelation ( Temp=0.90 to 0.75) using Equation 
(6) as a function of vertical wavenumber (and horizontal 
spatial baseline referred to the ALOS Quad-pol mode), 
assuming a constant forest height of 20m. Even for low 
temporal decorrelation levels (on the order of 0.9) the height 
error is critical at small baselines (60% for z=0.05) but 
degreases with increasing baseline: for the same level of 
temporal decorrelation the height error degreases to 20% for 
a vertical wavenumber of 0.1. This makes clear that larger 
spatial baselines are advantageous in the presence of weak to 
moderate temporal decorrelation as they minimise the 
introduced bias by increasing the temporal baseline. The 
price to be paid is a lower overall coherence level - due to the 
increased volume decorrelation contribution - that caused an 
increased phase variance. This can be compensated by 
multilooking on the expense of spatial resolution. For small 
bandwidth systems additionally the low of common 
bandwidth due to the increased baseline may be an issue. 
However, the realisation of large baselines is, in the case of 
ALOS PalSAR, limited by the acquisition scenario that 
foresees small spatial baselines optimized for deformation 
applications.  On the other side, the 46 days repeat-pass time 
of ALOS PalSAR lead to temporal coherence levels that are 
by far to low to be compensated by spatial baseline 
optimisation.  

In the next sections the quantification of temporal 
decorrelation and its impact on forest height inversion for 
different repeat-pass intervals is discussed. 

 
Figure 3: Height error induced by different levels of temporal decorrelation 
as a function of vertical wavenumber (and horizontal spatial baseline 
referred to the ALOS Quad-pol mode), assuming a constant forest height of 
20m. 

V. AIRBORNE EXPERIMENTS & TEST SITES 

In order to asses the effect of temporal decorrelation at L- 
band, temporal baselines smaller than the ones obtained by 
ALOS-PalSAR, i.e. 46 days, two main airborne experiments 
have been conducted and data from an experiment in 2003 
have been evaluated. 

The BioSAR-I campaign was performed over the 
Remningstrop test site located in Sweden in 2007. DLR�’s 
experimental airborne SAR system (E-SAR) flew over the 
Remningstrop forest at three different times: 09 March, 31 
March, 02 May 2007. During the three data acquisitions, L- 
band Quad-polarimetric data have been acquired in a repeat-
pass interferometric mode. The configurations flown and the 
available L-band data sets are summarized in Table 2 The 
experiment allows to investigate temporal baselines on the 
order of 32 days and 54 days. 

The TreeSAR campaign was conducted in October 2003 
over the Traunstein test site. This was an early experiment 
to investigate the temporal behavior of forests for a temporal 
baseline in the order of weeks. L-band data have been 
acquired by DLR�’s E-SAR system in a fully polarimetric 
mode. Data base for this campaign is summarized in Table 2. 

The TempoSAR campaign was performed in June 2008 
DLR�’s E-SAR system collected fully polarimetric and 
interferometric SAR data at L-band over the Traunstein test 
site located in Germany six times within 13 days. The 
experiment was designed to investigate temporal baselines 
on the order of days up to two weeks. The configurations 
flown within the frame of TempoSAR and the available L-
band data sets are summarized in Table 2. 



Table 2 Campaigns and Data base 

Campaign Acquisition 
Date 

Temporal 
baseline 

Spatial 
baselines 

TempoSAR 

2008/06/07 
2008/06/08 
2008/06/10 
2008/06/12 
2008/06/19 
2008/06/20 

1 �– 13 days 15, 10, 5, 
&  0m 

TreeSAR 2003/10/11 
2003/10/26 15 days 0, 5, & 

10m 

BioSAR-I 
2007/03/09 
2007/03/31 
2007/05/02 

32 & 54 days 0, 8, 16, & 
24m 

A. The Remningstrop test site 

Remningstrop test site (see Figure 4 left) is located in 
southern Sweden (58°28�’ north, 13°38�’east). The forest is 
part of the southern ridge of the boreal forest zone in 
transition to the temperate forest zone. Topography is fairly 
flat with some small hills and ranges between 120m and 
145m amsl. It is a managed forest, divided into several 
stands with similar forest structure. Prevailing tree species 
are Norway spruce (Piceaabies), Scots pine (Pinus 
sylvestris) and birch (Betula spp.). Forest height ranges from 
5m to 35m, with biomass levels from 50t/ha to 300t/ha. For 
this test site a large area lidar data set is available for 
validation. Lidar systems are an established technique to 
measure forest height. In this case the lidar data are used to 
validate the radar measurements.  

B. The Traunstein test site 

The Test Site Traunstein (see Figure 4 right) is situated in the 
southeast of Germany (47°52�’ north, 12°39�’ east), next to 
the city Traunstein to the east. Geologically, the test site is 
placed in the pre- alpine- moraine landscape of southern 
Germany. Topography varies from 530 �– 650m amsl, with 
only few steep slopes. The climatic conditions with a mean 
annual temperature of 7.8°C and precipitation of more than 
1600 mm/a favor mixed mountainous forests, dominated by 
Norway spruce (Picea abies), beech (Fagus sylvatica) and 
fir (Abies alba). On a global scale this forest type is part of 
the temperate forest zone. It is a managed forest composed 
of even-aged stands which cover forest heights from 10m to 
40m. Mean biomass level is on the order of 210t/ha while 
some old forest stands can reach Biomass levels up to 
500t/ha. Compared to other managed forests in this 
ecological zone (mean biomass of 121 t/ha) the biomass 
values at Traunstein test site are significantly higher. 
Validation is based on forest inventory, which was done by 
means of a plot system on a 100m by 100m grid.  

 

 

 
Figure 4: Remningstrop test site: left, Traunstein test site: right. Radar 
image Pauli decomposition, red: double bounce scattering, blue: surface 
scattering, green: volume scattering. 

 

VI.  ASSESSMENT OF TEMPORAL DECORRELATION 

A. Pol-InSAR Inversion Height and Validation 
Forest height was estimated and validated against ground 
measurements for Traunstein test site as well as for Pol-
InSAR inversion results (left side figure 5) and forest height 
estimates from lidar measurements (right side figure 5) for 
Remningstrop test site (April flights) are shown. Figure 7 
right shows the Pol-InSAR forest height map for Traunstein 
test site (left side) and an amplitude image containing all 
ground plots for validation. All height images are scaled 
from 0m to 50m. 

The Traunstein test site was validated against forest 
inventory data. A forest stand map was provided and forest 
heights origin from ground measurements based on a 100m 
x 100m grid (see Figure 7 right, colors represent H100). All 
together, 224 inventory points are located within the test 
site. However, in heterogeneous forests even a small 
misregistration between inventory coordinates and radar 
image may deteriorate the results. Also, the certainty of the 
estimated parameters increases for larger sampling areas. 
For these reasons it was tried to select large forest areas 
which were as homogeneous as possible in terms of species, 
height, biomass and stadium. In total, 20 validation stands 
covering 123 ha and including 133 inventory points were 
selected. A comparison of Pol-InSAR forest height against 
H100 of inventory data is shown in Figure 8: with an R² of 
0.90 and RMSE of 3.16 m, over a height range from 10 to 
35m. 



 
 
Figure 5 Forest height map Remningstrop forest; scaled from 0m to 50 m; 
Left: Pol-InSAR inversion height, Right: L-band amplitude image overlaid 
with lidar height (H100).  

 

 
Figure 6: Validation Plot Remningstrop test site: LIDAR H100 versus Pol-
InSAR height estimates. 

 
The results of both campaigns demonstrate in an impressive 
way that Pol-InSAR forest height inversion provides 
consistent forest height maps at different type of forests if 
there is low temporal decorrelation. 

B. The Impact of Temporal Decorrelation 

After demonstrating the potential of Pol-InSAR inversion 
with data not affected by temporal effects, in this part data 
quality and inversion results for repeat pass acquisitions 
with temporal baselines from 0 day to 54 days are presented. 

 
Figure 7: Forest height map Traunstein; scaled from 0m to 50 m; Left: Pol-
InSAR inversion height, Right: L-band amplitude image overlaid with 
inventory points.  

 

 
Figure 8: Validation Plot Traunstein test site: Inventory H100 versus Pol-
InSAR height estimates. 

 
During the BioSAR-I campaign data with temporal 
baselines of 0 days, 32 days and 54 days have been acquired. 
Effects of temporal decorrelation are shown in Figure 9. 
Coherence histograms in HH, VV, and HV polarizations 
over the whole scene for three temporal baselines (all 
acquired with 0m nominal spatial baseline) are plotted. 

As expected, temporal decorrelation decreases with time 
independent from polarizations. Even in the 0 day scenario 
some decorrelation effects can be observed. Also here the 
data are acquired in a repeat pass mode with temporal 

0              50m  0              50m 

       R² = 0.91 
      RMSE= 2.04m 

       R² = 0.90 
      RMSE=3.16m 



baselines in the order of one hour. As seen in Figure 9 
temporal decorrelation reduces coherence level to 0.65 (32 
days) and 0.30 (54 days). Coherence with 54 days temporal 
baseline is too low to apply valuable Pol-InSAR application. 
Pol-InSAR height estimates were calculated for a 32 days 
temporal baseline, results are shown in Figure 10. In this case 
Inversion forest height all over the image is fairly 
overestimated originated by temporal decorrelation effects. 

 

 
Figure 9: Coherence histograms for 0days (top), 30days (middle) and 54 
days (bottom) temporal baseline; HH= red, HV= green, VV= blue. 

 
Figure 10 Forest height maps for Remningstorp forest, scaled 0 to 50m. 
Left: Inversion height map with one month temporal baseline, Right: 
Different height map between left image and the left image of Figure 5. 

The level of temporal decorrelation with one month repeat-
pass cycle of L-band makes a height inversion still feasible, 
but introduces a large height bias. 

During the TempoSAR campaign data have been acquired 
on six days within a 13 days period. This enables to 
generate several temporal baselines ranging from 1 day to 
13 days. Pol-InSAR forest heights for 6 temporal baselines 
are shown in Figure 13. As expected, overestimation tends to 
increase in time (comparing the results with Figure 7 left).  
Height errors induced by temporal decorrelation were 
estimated and plotted in Figure 11. There is a tendency that 
height errors increase with decreasing forest height, caused 
by the Pol-InSAR model. Low forests are more affected by 
uncompensated decorrelation contributions than high forests 
(see Figure 2). Even 1 day of temporal decorrelation can lead, 
dependent on forest height, to 20-100% overestimation of 
forest height. Usually L-band height estimates are affected 
by rather stochastic temporal effects due to the variable 
wind induced motions see also [39]. 

Temporal decorrelation yields always in an overestimation 
of forest height as indicated by Equation (10). Using the 
behavior of the height error in time (see Figure 11), enables 
us to correct forest height and volume coherence can be 
estimated by corrected forest height and Equation (7) under 
the assumption that extinction is constant in time. Under this 
assumption temporal decorrelation can be decomposed from 
volume decorrelation see Equation (2). 

Estimated temporal decorrelation coefficients for different 
temporal baselines are shown in Figure 14. From this two 
main points become obvious. First: TV  decreases with 

0 day 

32 days 

54 days 



increasing temporal baseline. Second: TV  is not constant 
in time, it depends on forest height and additionally on the 
random behavior of wind induced motion of forests [39]. 
Figure 12 shows the estimated TV against temporal 
baselines. If there is no temporal decorrelation, as we can 
find in single pass systems, TV  should be 1. TV  tends to 
decrease with increasing temporal baseline. Looking on 
temporal baselines in the order of days a rapid drop of 
coherence can be observed (see Figure 12), but coherence 
values are still greater than 0.3 which allows a Pol-InSAR 
inversion. Temporal effects for temporal baselines on day 
level are caused by wind-induced movements of unstable 
scatterers within the canopy layer like leaves, branches or 
birds.  

 
Figure 11: Height error (%) with temporal baselines (1 - 13 days). 

 

 

Figure 12: Temporal decorrelation ( TV ) against temporal baselines. 

Color mean forest height (red: 20m, green: 16m, blue: 12m). 

Going to temporal baselines in the order of weeks or month 
(as it is the case for ALOS �–PalSAR) coherence is more 
decorrelated, there are not only the wind induced motions 
but also other events, for example precipitations (rainfall, 
snow), changes in soil moisture, breaking branches, fall of 
leaves, etc. Taking everything into consideration coherence 
level becomes too low (<0.3) to perform any kind of 
quantitative evaluation and/or analysis of the data. 

VII. RESULTS AND SUMMARY 

With respect to quantitative Pol-InSAR applications there are 
several �“sub-optimum�” aspects on the ALOS system, 
mission and operation design that constrain - more or less - a 
large scale demonstration: 

- Coverage: The Quad-pol mode does not provide global 
coverage for the defined ALOS orbit. The 30Km wide swath 
has on the equator - and therefore on the sensible tropical 
region - gaps on the order of 30Km and covers therefore only 
approx. 50%.   

 - Repeat-Pass Time: The repeat-pass interval of 46 days 
- required in order to ensure global coverage of the optical 
PRISM and AVNIR2 instruments -  is to large to limit the 
impact of temporal decorrelation on the interferometric 
coherence. 

- Observation scenario: The fact that the Quad-pol mode 
is declared as an experimental mode reflects on the 
observation scenario for ALOS-PalSAR: Only two 
consecutive Quad-pol observations (cycles) every year are 
foreseen allowing the formation of a single Quad-pol 
baseline.  This, combined with the fact that the Dual-pol 
modes are operated at a different incidence angle - limits 
drastically the formation of an adequate Pol-InSAR 
observation space. 

- Orbit Control: The ALOS orbit control allows the 
realisation of orbital tubes of about 500m leading to a zero 
mean distribution of baselines up to 1Km. Having in mind 
that for compensating temporal decorrelation effects large 
baselines are of advantage, the expected small baselines are 
sub-optimal. 
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Figure 13 Forest height maps Temposar campaign with temporal baselines, from 1 to 13 days; scaled from 0m to 50m; color table in Figure 7. 

 

 
Figure 14 Temporal decorrelation TempoSAR campaign from 1 to 13 days, scaled from 0 (black) to 1 (white). 
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Abstract— This short paper details the current work for utilizing 

repeat-pass ALOS/PALSAR observations for characterizing 

vegetation in the Harvard Forest of Western Massachusetts.  A 

significant number of repeat-pass measurements in both 

polarimetric and single/dual-polarization mode were made by 

PALSAR in the three years since its launch.  To date, our team 

has been analyzing the co-polarized horizontal channel of the 

quad-pol mode over this region, and compared it to full 

waveform lidar data collected by the LVIS instrument in 2003.  

From these analyses, it has been possible to derive a lidar based 

estimates of biomass over a large geographic region, and to 

create relationships between the radar backscatter and the lidar 

derived biomass.  Further, it is also possible to test the ability of 

the radar to estimate biomass directly, as well as to explore 

alternate observing scenarios, such as polarimetric 

interferometry and single-pol interferometry for estimating 

vegetation characteristics.  This short paper summarizes these 

studies, and reinforces the well known association of backscatter 

power in the cross-pol L-band channel with biomass as well as 

showing the degree of temporal decorrelation over the PALSAR 

46 day repeat cycle is sufficiently large to preclude the use of this 

observing mode for estimating height, or other structural 

characteristics, of vegetation. 

Index Terms—ALOS PALSAR, K&C Initiative, Forest 

Theme, above-ground biomass, etc. etc. 

I.  INTRODUCTION 

Among the areas necessary for continued scientific 

development identified by United Nations Framework 

Convention on Climate Change via the Kyoto Protocol and 

REDD (Reducing Emissions and Deforestation and 

Degredation) is the need for quantifying carbon stores held in 

the world’s vegetation and characterization of species habitats 

through the measure of vegetation structure, both horizontal 

(on a hectare-to-hectare scale) and vertical (to a meter-level 

accuracy).  The spaceborne instrument, ALOS/PALSAR [1,2], 

an L-band Synthetic Aperture Radar, and the Japanese 

Aerospace Agency’s (JAXA) Kyoto and Carbon Cycle 

Initiative [3], provides unprecedented access to detailed, 

expansive and continued coverage of the world’s forests in the 

form of data that can be used to characterize the current state 

of the vegetation and its change (both seasonal and long-term) 

over time. 

In one study conducted by the University of 

Massachusetts, NASA’s Jet Propulsion Laboratory, and the 

Japanese Aerospace Agency, scientists are using data from 

ALOS/PALSAR and an Airborne lidar (LVIS; from NASA’s 

Goddard Space Flight Center) to image the vegetation 

structure over the Harvard Forest located in Western 

Massachusetts.  The Harvard Forest [4] is a mixed hardwood, 

transitional forest that has been the subject of many studies, 

both large and small, for the purposes of characterizing the 

environment and the many species that benefit from the 

presence of the forest (Figure 1). 

 
Figure 1.  Image of the forest cover type near the Quabbin reservoir in the 

ALOS/PALSAR image swath.  This image gives an indication of the 

vegetation and landcover type for the region. 

The series of repeat ALOS observations made available 

from the Japanese Space Agency since the launch of the 

platform in 2006 has provided a rich and consistent data set 

which provides an opportunity to explore relationships 

between the SAR, InSAR and lidar data, to better understand 

methods of combining these fundamental data sources for 

studying the ecosystems, carbon balance and vegetation three-



dimensional structure in the Harvard region and to extrapolate 

the results as they would apply to similar observations 

worldwide. 

II. PROJECT DESCRIPTION 

A. Relevance to the K&C drivers 

One of the drivers of the JAXA’s Carbon Cycle Program is 

for the quantification of carbon of the world’s forested regions.  

In order to attain this far reaching goal, it is necessary to carry 

out focused studies on localized regions, so as to develop a 

better understanding of the types of accuracies and error 

sources involved in estimating carbon using a satellite based 

system. 

To this end, this detailed study of the Harvard Forest 

provides a cornerstone for conducting further studies, as well 

as providing an important set of conclusions in its own right.  

Among the scientific findings that have been made as a result 

of this work are: 

i.) we have derived a lidar based biomass map of the 

Harvard Forest region.  This biomass is available to 

other scientists in JAXA’s K&C program by request 

ii.) a relationship of L-band cross-polarized backscatter to 

above ground biomass has been derived.  This 

relationship is consistent with similar relationships 

published by other researchers in the field 

iii.) it is demonstrated that the degree of temporal 

decorrelation over a 46 day repeat period makes it 

difficult to perform quantitative estimates of 3D 

vegetation structural characteristics based on the 

interferometric observations alone. 

B. The Harvard Forest Region 

Located near the Quabbin reservoir in Western 

Massachusetts, the Harvard Forest is a temperate zone mixed 

phase forest consisting of a variety of transition hardwood 

regrowth resulting from widespread disturbances that took 

place over 100 years ago.  One of the nine NASA funded 

Bigfoot sites for connecting remote sensing measurements to 

ground process observations of carbon flux and net primary 

production, the Harvard Forest has been a resource for a wide 

variety of ecological studies on spatial scales extending from 

the microscopic to macroscopic.  Typical characteristics of the 

region that are relevant to this study are an upper limit to 

carbon content range between 100 and 120 Mg/ha, an average 

tree height of 24m, a mean basal area of 40 m2/ha, and on the 

order of 1000 trees/ha [5]. 

In July of 2003, the Laser Vegetation Imaging Sensor 

(LVIS) overflew the Harvard region, collecting full waveform 

lidar data for determining the true ground elevation and the 

vertical extent of the canopy over a 30 kha area (9 km x 30 

km).  These data are used for comparison to the PALSAR 

backscatter and INSAR data (Figure 2).   

 
Figure 2.  Location of the Harvard Forest (balloon-H) in relation to Amherst 

(yellow push-pin), the LVIS swath (yellow rectangle representing tree heights), 

the ALOS swath (white region). ALOS K&C © JAXA/METI. 

C. ALOS/PALSAR Observations 

Since its launch in early 2006, ALOS has made multiple 

observations of western Massachusetts using various observing 

modes, among them, fully polarimetric, single- and dual-pol, 

and wide beam scansar.  The initial focus of this work has been 

on the processing of the fully polarimetric data.  To date, only 

the co-polarized horizontal polarization has been processed.  A 

summary of the fully polarimetric (PLR) observations (cycle 

number, date and season) are given in Table 1.  Note that not 

all cycles included observations (letters monikers indicate the 

observations), yet some nine data collections have already been 

made.  Each observation offers a new scene that can be 

interfered with the others, thus creating a matrix of possible 

interferograms.  Table 2 provides details of the interferometric 

baselines between all possible pairings of these nine 

observations.  The critical baseline being 4.5 km for this 

observing mode. 

The sum total of all ALOS observations covers multiple years 

and multiple seasons.  Many are in adjacent observing periods 

(46 days long).  Hence the rich data set, especially over the 

Harvard Forest region, is ideal for exploring a variety of 

relationships relating to phenology of different target types, and 

repeatability of measurements over multiyear periods.  All 

important characteristics for maximizing the utility of the 

existing dataset as well as for planning future ones. 

Table 1. Summary of available fully polarimetric PALSAR scenes over the 

Harvard Forest.  A letter code is given for easy reference to the different scenes. 

 
 



Table 2.  Interferometric perpendicular baselines (m) over the Harvard region 

(see table 1 for observation dates).  The critical baseline for this observing mode 

is 4.5 km.  Highlighted are those baselines of interest.  Dark highlights indicate 

those that have baselines that are likely too large for their intended purpose. 

 
 

 
Figure 3.  Optical image (from Google Earth) of a small region covered by 

both LVIS and PALSAR observations.  Note a variety of landcover types, 

ranging from open fields, open water and mixed (coniferous and deciduous 

hardwood) vegetation types.  The size of the above image is 3 km by 5 km. 

D. Work approach 

The approach for performing the study has taken place in 

three basic steps.  These are:  i.) processing of the full 

waveform lidar data into estimates of above ground biomass 

based on available ground validation measurements over 43 

sites within the region, ii.) processing of the ALOS data from 

level 1.0 into ground referenced data suitable for PolInSAR 

processing as well as radiometrically calibrated backscatter 

measurements, and iii.) investigation of relationships between 

the lidar derived parameters of height and biomass, and those 

observed with ALOS/PALSAR.  First however, it is important 

to consider the region being studied. 

Lidar data and Processing 

Full waveform data from the LVIS instrument is available 

over a 10 by 30 km region over the Harvard Forest (see Figure 

1).  In addition, some 43 ground validation sites have been 

established [5] for studying biomass and vegetation structural 

characteristics.  Full waveforms, like those shown in Figure 4, 

provide measures such as the height of mean energy (or 

HOME) which can be used for forming empirical relationships 

between vegetation characteristics of interest and the lidar 

measures.  Several such relationships are shown in Figure 5, 

which relates lidar derived biomass to the biomass measured 

at the ground validation sites.  Note that in determining the 

biomass relationships that make up the plot of Figure 5, the 

ground validation data is used two times, first to fit the data, 

and second, to demonstrate the quality of the fit.  Given the 

very small sample size (43 plots, 30m in diameter), this is an 

acceptable approach. 

Further, Figure 5 also demonstrates the goodness of fit for 

two different types of polynomials.  One, a linear fit to the 

lidar measure of HOME (equivalently rh50) and the other, 

proportional to HOME, the square of HOME, and the variance 

of the HOME measure.  In all, the improvement attained by 

the more complicated model is only 5 Mg/ha for the root mean 

square error, or RMSE.  Because of the minor improvement, it 

is generally preferred to rely on the simpler model, to avoid 

overfitting of the ground validation data. 

A last step of preprocessing for the lidar data was 

necessary.  This involved in examining the lidar waveforms 

over the ground validation sites in a 3-dimensional framework 

to assure that the lidar waveforms were correctly aligned with 

respect to the true ground surface.  That is, it was found that a 

significant number of waveforms were mis-registered in the 

vertical direction and had to be corrected so as not to provide 

false signatures related to the vegetation height.  An example 

of a successful set of lidar waveforms over the 85th Harvard 

Forest Site is shown in Figure 6. 

 
Figure 4. An LVIS waveform plot over a 700 m2 Bigfoot test plot (#85) 

located at the Harvard Forest.  The biomass for this area was measured to be 

92 ± 10 Mg/ha.  Shown are five waveforms (thin lines) and the average 

waveform (thick black line) and the radar metrics of rh25, rh50, rh75 and 

rh100, which can be used for forming empirical relationships between height 

and vegetation structural characteristics or biomass. 

 

 
Figure 5. Results from forming a polynomial fit between full waveform 

derived lidar moments and measured biomass.  There is a preference for the 

least complicated model, shown in blue, which gives a mean error of 33 

Mg/hectare. ALOS K&C © JAXA/METI. 



 
Figure 6. A 3-dimensional plot of lidar waveforms associated with the site 

#85 of the Harvard Forest ground validation data.   Shown at center are 15m 

and 25m radii around the area where data were taken on the ground.  Ten lidar 

waveforms closest to the site (shown in different colors), are plotted with 

different aspect angles due to the changing position of the lidar platform, and 

the power as a function of height, shown as a vertical cylinder with varying 

radius, for each lidar return.  It was determined that individual lidar 

waveforms had to be adjusted to assure that all were correctly registered to the 

true ground surface for the region. 
 

 
Figure 7. A close-up optical image of site #85 at the Harvard Forest.  Images 

such as these were used to interpret the observed lidar returns for each site. 

 

 
Figure 8. Image of the lidar-derived biomass map of the Harvard Forest region 

overlain with the nadir track of the LVIS lidar.  The part of the track 

highlighted in red was used to extract a plot of biomass which could be 

compared to radar observations of backscatter power and interferometric 

correlation.  The lower plot shows the resulting biomass estimates calculated 

along the highlighted LVIS nadir track. 

Once the relationship between lidar and ground validation 

data (shown in Figure 7) was established, a full biomass map 

based on the observed LVIS lidar data set was derived.  This is 

shown in Figure 8 and Figure 10.  In Figure 8, this biomass 

map is overlain with the nadir track of the LVIS sensor.  The 

nadir track tends to be more accurate because of the simpler 

viewing geometry and better ground return for the lidar in the 

nadir direction. 

Data from this nadir track was extracted and used for 

comparison against radar derived measures of correlation and 

backscatter, thus providing a pathway for determining how 

well the radar can estimate the vegetation structural 

characteristics across the lidar swath and over wider regions 

where lidar data might not be available.  The biomass as a 

function of position along one of the LVIS nadir tracks is 

shown in the lower half of Figure 8.  The full biomass map, 

expanded in size to show greater detail, is shown in Figure 10. 

SAR and InSAR data and Processing 

SAR and repeat-pass InSAR data were collected over the 

Harvard Forest using multiple observing modes of the 

ALOS/PALSAR instrument.  For the work described in this 

paper, we show only those results relating to the polarimetric 

observing mode known as PLR 21.5. 

Data was requested from JAXA in level 1.0 format so that 

all scenes could be processed by gamma remote sensing 

software to the same Doppler centroid (necessary for 

interferometric processing).  Further, data were coregistered to 

the SRTM DEM, using a simulated backscatter image derived 

from the DEM.  This process allows easy exchange between 

radar data coordinates and map coordinates, as well as the 

extraction of the known DEM (C-band) from the 

interferometric data. 

Because the processed SAR data is effectively co-registered 

to the SRTM DEM map-level data to the sub-pixel level, both 

in radar and map coordinates, the task of making comparisons 

between the lidar (in map coordinates) and radar data sets is a 

straight-forward task.  An illustration of this relationship is 

shown in Figure 9. 

 
Figure 9.  A relationship between ALOS measured backscatter cross-pol 

power (21.5 degree look angle) and lidar derived biomass.  The black curve 

shows the equation for above ground biomass (ABS) and the backscatter 

power. ALOS K&C © JAXA/METI. 



Processing for interferometry and polarimetric 

interferometry is a bit more involved (see Figure 11).  It 

requires careful calibration of the data and processing all 

polarizations for the two (or more) passes of the instrument to a 

common Doppler centroid, nominally zero, or in the broadside 

direction to the flight path.  After processing scenes, they are 

coregistered (if not already) and the coherence matrix is 

formed from the multiple polarizations.  Based on the 

observing geometry and the SRTM DEM, the interferometric 

phase due to topography is removed, thus leaving only that 

phase that is associated with the difference in topography seen 

between the SRTM C-band observations and those from 

ALOS/PALSAR’s L-band SAR.   

The resulting interferogram for any one combination of two 

polarizations is a complex number.  The phase, relating to the 

differential topography discussed in the previous paragraph, 

and the amplitude, which is relate to the standard deviation of 

the phase.  For volume scatterers, this standard deviation is 

proportional to the vertical depth of the volume, and thus can 

provide a method for estimating the vegetation height.   

There are other signals that affect both the volume and 

phase of the interferometric signature however.  Related to the 

phase, things like a differential path length through the 

atmosphere (due to weather etc.) can distort the phase across 

the observed swath.  For the correlation magnitude, the primary 

error source for repeat-pass systems is related to a changing 

electromagnetic signature of the target in the time period 

between observations.  This signature can be altered by simple 

things such as active weather (wind and rain [6]), as well as 

long term effects related to seasonal differences in the target.  

Because of the 46 day repeat period of ALOS, it would be 

expected that this might be a dominant error source, and indeed 

it is.  While correlation magnitudes are large enough to provide 

sufficient signature for estimating phase, they are large enough 

to preclude the use of the instrument for using the correlation 

magnitude signature to perform vegetation height estimation. 

III. RESULTS AND SUMMARY 

In all, the detailed work has yielded a lidar-derived biomass 
map of the Harvard Forest region.  This map was used to 
develop and test relationships between the L-band SAR 
backscatter and interferometric signature against the biomass 
or other forest structural characteristics.  In all, it was shown 
that a basic signature exists between backscatter and biomass, 
but that the variation is a bit large (Figure 9).  This would make 
inverting the model prone to large uncertainty.  Further, 
interferometric correlation magnitude was studied with the 
intent that it might be useful for vegetation height extraction.  
Temporal decorrelation however proved to be a dominant error 
source, and hence for the PLR 21.5 observing mode over the 
Harvard Forest at least, it is unlikely that the correlation 
magnitude can be used for quantitative estimation of vegetation 

height or other physical characteristics. 

Future work will entail the investigation of other ALOS 
observing modes (such as the dual-pol FBD 34.3) for 
estimation of vegetation characteristics.  The dual-pol 
observing mode will have a larger cross-track swath (and thus 
better for mapping) as well as a larger incidence angle, which 

will likely amplify the polarimetric signature of the vegetation.  
Figure 12 provides an illustration of the breadth and depth 
available from these other observing modes.  Shown are the 
LVIS observing swath, a SRTM derived DEM corigistered to 
PALSAR polarimetric data (FBS 21.5) and PALSAR FBD 

differential interferometry data. 
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Figure 10.  A biomass map of the Harvard Forest region using Goddard Space-Flight Center’s LVIS (Laser Vegetation Imaging Sensor).  Black dots near the 

center of the image indicate the locations of the 700m2 plots were biomass and other vegetation physical characteristics were measured on the ground.  Horizontal 

and vertical (inverted) scales are in units of meters with respect to the SoutH-East corner.  A depiction of the location of the LVIS swath with respect to larger 

geographic features and other data sets is shown in Figure ZZZ.  Biomass units are in kilotons per hectare. 

 

 
    (a)             (b)   (c)       (d)             (e)               (f) 

Figure 11.  Illustration of the various steps along the SAR processing chain.  Shown is (a) the backscatter image, (b) interferometric correlation and fringes, (c) 

the SRTM DEM, (d) the differential interferogram, (e) the interferometric correlation magnitude and (f) a map of the national land cover data base (NLCD) from 

2006. 

 

 



 
Figure 12.  Image of the PALSAR coverage area over the Harvard Forest.  Shown are the FBD differential interferogram, the Quad-pol, terrain corrected 

backscatter, a sample of the DEM derived from SRTM, and the tree height data derived from full-waveform lidar (LVIS). ALOS K&C © JAXA/METI 
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Abstract—The Brazilian Pantanal is a large tropical 
wetland with an abundance of biodiversity and varied 
habitats. It is defined by a seasonal inundation pattern that 
varies both temporally and spatially. This study uses L-
band ALOS PALSAR and C-band Radarsat-2 multi-
temporal SAR data to map the seasonal ecosystems and the 
first spatial-temporal maps of the flood dynamics of the 
Pantanal. First, an understanding of the backscattering 
characteristics of flooded and non-flooded habitats was 
developed. Second, maps of habitats and flooding 
dynamics were generated using an object based 
classification method. A level 1 classification defining five 
cover types was achieved with accuracy results of 
approximately 77%. A level 2 classification separating 
flooded from non-flooded regions for five temporal periods 
over one year was also accomplished, showing large 
interannual variability between subregions in the 
Pantanal. Cross-sensor, multi-temporal SAR data was 
found to be useful in mapping both land cover and flood 
patterns in wetland areas. The generated maps will be a 
valuable asset for defining habitats required to sustain the 
Pantanal biodiversity and the impacts of human development in 
this region. 

Index Terms—ALOS PALSAR, K&C Initiative, Wetlands 
Theme, Pantanal, Conventions, Conservation, Flooding 
dynamics. 

I.  INTRODUCTION 
The Pantanal (Figure 1), the largest tropical wetland in the 

world, is roughly located in the center of South America, 
between Brazil, Bolivia, and Paraguay. In many ways, it is a 
unique landscape characterized by salt and freshwater lakes, 
abundant aquatic vegetation, and open and dense savanna 
(Pott, 2000, 1989; Abdon et al., 1998; Costa and Telmer, 
2006). It is fed by the upper Paraguay River and its tributaries 
(Figure 2) and these promote a strong annual flood. The 
degree of flooding and its duration and amplitude vary both 
yearly and spatially. The complicated flood dynamics makes 
the delimitation of the total area of the Pantanal extremely 
difficult (Por, 1995). Estimates suggest that the Brazilian 
Pantanal occupies an area that ranges from 138,000 km2 
during maximum flood (Silva and Abdon, 1998) to 11,000 
km2 during the dry season (Hamilton et al., 1996), a difference 

of approximately 90%. The entire watershed of the Pantanal 
occupies an area of approximately 362,000 km2. 
 
Within the Pantanal, the occurrence of different habitats such 
as river corridors, gallery forests, perennial wetlands, and 
lakes (fresh and brackish lakes), seasonally flooded grass 
lands, and terrestrial forest is related to the dynamics of the 
flood cycle and its spatial variations. During the rising and 
maximum water stand, the dominant habitats are the large 
areas of floating and rooted aquatic vegetation, open water, 
and flooded forest. The flooded forest is mostly comprised of 
shrub-like trees and tall, densely foliated riparian trees (Silva 
and Abdon 1998). The aquatic vegetation is dominantly 
floating and rooted species that grow quickly during the 
maximum flood and die during the dry period. This dynamics 
of this wetland is the foundation for the many species of plants 
and animals – salviniaceaes, cyperaceaes, iguanas, tortoises, 
crocodiles, primates, and multitudes of fish, birds, and insects. 
However, it is the delicate interplay between the dynamic 
distribution of vegetation, the high biological productivity of 
the aquatic plants, the climate, and the hydrological cycle, that 
nourishes and sustains the incredible diversity of plants and 
animals. Unfortunately this interplay is poorly understood and 
is threatened by human development. 
 
A series of human initiatives such as modification of the 
natural hydrological cycles of rivers, mining, agriculture, and 
chemical industry, construction initiatives (hydroelectric 
dams, dikes, Hydrovia, GASBOL – Bolivia-Brazil Gas 
pipeline), clearing of land and extensive burning, and 
commerce of wild animals are threatening this wetland 
ecosystem in an irreversible manner (Hamilton 1999; da Silva 
and Girard 2004). Some of the resultant effects are loss of 
habitat and biodiversity, water pollution (mostly mining 
byproducts and agrochemicals), and erosion and sedimentation 
of waterways (Gottgens et al. 1998). For example, the five 
governments of the La Plata basin, Brazil, Bolivia, Paraguay, 
Argentina, and Uruguay, have jointly developed plans to 
deepen the Paraguay River, canalize many meanders, and 
regulate inflows along its course from Cáceres, Brazil, to 
Porto de Nueva Palmira, Uruguay – an astounding 3400 km, 
the called Hydrovia (Paraguay-Parana Waterway Project). 
This project was designed aiming the cheaper transport of soy 
beans, oil, corn, cotton, manganese, and iron ore, at the 



expenses of one of the largest environmental disasters ever 
planned, the canalization and regulation of the Pantanal major 
rivers. This project as it was initially idealized was waned 
(recently it has been re-evaluated); however, various smaller 
hydrological initiatives remain of interest, which are accurate 
described by Gottens et al., 1998 as the “tyranny of small 
decisions”. 
 
The state of this initiative is currently unclear, however, the 
Brazilian government has planned the construction of a series 
of small projects that when treated individually are considered 
too small-scale to warrant impact assessments, but that 
together represent potentially large scale change for the 
Pantanal (Gottgens 1998; da Silva and Girard 2004). The 
suspected consequences of these projects have been voiced by 
many critics – loss of wetlands, changes in water quality, 
reduction in the diversity of flora and fauna, and negative 
impacts on the livelihoods of local and indigenous people in 
the region. It is our hope to add to this debate and to do so 
provide a better understanding of the flooding dynamics of the 
Pantanal ecosystem. This document reports mostly the use of 
ScanSAR imagery for mapping the flooding dynamics; the use 
of fine resolution imagery requires more work on lakes 
classification (in progress). Also, fine resolution mosaics are 
not used in this report; at this time, we do not have access to 
these mosaics. 
  

II. THE PANTANAL PROJECT 

A. Objectives and Relevance to the K&C drivers 
As stated in the introduction, there is a lack of information 

on the spatial-temporal inundation pattern on the Pantanal. This 
is important information for understanding the biogeochemical 
cycles, the habitats required to sustain the Pantanal 
biodiversity, and the impacts of human development in the 
region. With this in mind, the objectives of this project were 
(1) to map the seasonal ecosystems and flood dynamics of the 
Pantanal and (2) to detail characterize lake types in the 
Pantanal. To attend the first objective, ScanSAR ALOS/Palsar 
and Radarsat 2 imagery were used to map variations in 
vegetation and monthly inundation extent during the year. To 
attend the second objective, ALOS/Palsar fine resolution 
imagery of a pilot area were used and fine resolution mosaics 
will be used when available. 
 
Our objectives are clearly related to the Thematic drivers: 
Conventions, Carbon and Conservation, with a stronger 
focuses on the first and third, as we aim to map the flood 
dynamics that sustain the Pantanal wetland ecosystems. 

 

B. Field data 
Field data were acquired for 209 sites in the Brazilian 

Pantanal in July of 2008. Preliminary analysis of 2007 
ALOS/PALSAR imagery, Landsat (provided in Google Earth 
Pro), and field data acquired in 2001 provided the approximate 
location of regions to be visited for this campaign. Three 

regions within the study area were chosen as pilot areas, 
comprised of the Nhecolandia, Aquidauana and Miranda 
subregions. Ground cover, as well as vegetation characteristics 
such as species and distribution were determined from direct 
observation, then recorded and photographed for each 
location; also 75 water samples for determining lakes 
geochemistry were sampled. 

 

 
 

Figure 1.  The Brazilian Pantanal displayed in grey. (GEF 2004). 
 

C. Satellite data 
The satellite dataset was acquired from two Synthetic 

Aperture Radar (SAR) systems: the Advanced Land 
Observing Satellite (ALOS) and RADARSAT-2. ALOS was 
launched in January 2006 by the Japanese Aerospace 
Exploration Agency, and carries onboard the variable-
resolution and polarimetric Phased Array L-band Synthetic 
Aperture Radar (PALSAR) with a variety of spatial 
resolutions (Rosenqvist et al 2007). The PALSAR ScanSAR 
observation mode, used for this report, allows coverage of 
large areas of land. Radiometric accuracy of PALSAR 
products is reported as 1dB per scene (JAXA 2009). 
RADARSAT-2 was launched on December 2007 by the 
Canadian Space Agency, and also offers a variety of spatial 
resolutions and selective polarization.  
 



Monthly River Discharge for Major Tributaries in the Pantanal

 
 

Figure 2.  Monthly mean annual discharge for major tributaries in the Brazilian 
Pantanal. (Source: GEF 2004) 

 
The acquired data set includes a temporal series of 
ALOS/PALSAR ScanSAR images from 2007, covering 
January, February, May, July, and November, and Radarsat-2 
ScanSAR Narrow imagery from August of 2008. Each time 
period consists of a series of four contiguous images to be 
mosaicked together to provide complete coverage of the study 
area. The specific months of acquisition for the ALOS data 
were chosen due to the timing of the flood-pulse in the study 
region: January represents rising water; February high water; 
May receding; July nearly dry; and November fully dry (refer 
to Figure 2). The Radarsat-2 imagery was chosen as 
complementary information, corresponding to the timing of 
field data acquisition. 
 

D. Imagery processing 
 
Step 1: Raw data 
ALOS raw image files were processed through the Alaskan 
SAR Facility’s Map Ready software, using provided 
geometric and radiometric data. ALOS images were already 
calibrated for the antenna pattern and so were not subject to a 

Look-Up Table (LUT) scaling process. Radarsat-2 raw images 
were processed and orthorectified using PCI Orthoengine, 
using a SAR specific satellite orbiting model and 121 ground 
control points provided from MDA (MacDonald, Dettwiler 
and Associates Ltd.), the primary suppliers of Radarsat-2 
imagery. The RADARSAT images were converted to original 
32-bit format using a sigma-nought LUT (provided). 
 
Step 2: Mosaicking 
Each set of four images for each of the temporal periods was 
mosaicked together to form cohesive coverage of the entire 
Pantanal. Cutlines (the seams between individual images in a 
mosaic) were collected automatically based on minimum 
difference parameters with a blend width of three pixels. A 
vector file of the Pantanal floodplain provided by the Brazilian 
Agricultural Research Corporation (EMBRAPA) was then 
utilized to clip the study area from the mosaics. 
 
Step 3: Geometry 
To minimize possible geometric distortions a geometric 
correction approach based on ground control points collected 
in the images and a first order polynomial was applied. An 
RMS error of smaller than 1 pixel was deemed sufficient for 
this study. All of the images were examined visually for 
geometric inaccuracies: ALOS-ALOS same temporal period; 
ALOS-ALOS cross-temporal; RSAT-RSAT; and ALOS-
RSAT. All images were projected to UTM coordinates (zone 
21, row K) using the WSG84 reference ellipsoid. 
 
There were no apparent geometric errors between ALOS 
images within the same time period. However, the February 
ALOS images displayed a slight shift in geometry compared 
to the other months, so a second order polynomial correction 
was performed using nine ground control points obtained from 
the January images. The RMS error for this correction was 
0.31 for the x-axis and 0.51 for the y-axis. A comparison of 
the ALOS mosaics to the RSAT mosaics showed no 
significant geometric inconsistencies. However, when 
comparing Radarsat-2 images from 2 different satellite paths, 
there was a slight shift of 2 pixels in the x-axis between the 
western path and the eastern path. Because the error was 
consistent along the entire path, a simple shift of the west path 
to match the east executed the required correction. 
 
Step 4: Preliminary Visual Interpretation 
The series of mosaics was integrated into a single multi-
layered dataset and visually examined for general patterns of 
ground cover. Colour composites using different temporal and 
cross-sensor combinations were created to aid in visual 
analysis and primary interpretation of the data (see example in 
Figure 3).  
 
Step 5: Regions of Interest (ROI) Collection 
ROI’s were collected from the multi-layered mosaic, and were 
based on ground truth data, a priori knowledge of SAR 
backscattering characteristics, secondary information gathered 
from local inhabitants of the area, and examination of high 



spatial resolution optical imagery (IKONOS and ANVIR-2).  
Table 1 outlines ROI categories, number of ROI per categories, 
and total number of pixels per category. Histograms for 
training sites were computed and the minimum, maximum, 
mean, and standard deviation for each was extracted. 
 

Table 1. ROI categories. 

 
Step 6: Backscattering Analysis 
In order to understand the scattering processes of microwave 
radiation interaction with ground cover, as well as change in 
these scattering processes due to inundation, the 
backscattering values collected from the ROI were compared. 
For this comparison, the backscattering signal, minimum, 
maximum, and mean values of amplitude were then converted 
to normalized backscattering coefficients (σ0) expressed in 
terms of dB. The conversion process from amplitude (DN) to 
backscattering in dB (σ0) for ALOS/PALSAR is as follows: 
 
σ0 = 10*log10(DN2)+CF 
 
where CF is the calibration coefficient for PALSAR standard 
products, and equals –83 for the time of imagery acquisition 
and processing. (Rosenqvist et al, 2007). 
 
Conversion of DN to σ0 for Radarsat-2 ScanSAR images 
require a Look-up Table (LUT) which is included with the 
product, and the equation is as follows: 
 
C = (DN2 + B) / A 
 
where C is the calibrated value; B is the offset (supplied in the 
LUT); and A is the range dependant gain (supplied in the 
LUT) (MDA, 2008). This step was performed during initial 
raw image processing in Orthoengine (PCI Geomatics). The 
calibrated values were then expressed in dB via the following 
calculation (Wessels, 2008 – personal communication): 
 
dB = 10*log(C) 
 
Converted dB values were then examined visually to 
determine seasonal trends among classes, and any confusion 
between classes. After conversion of ALOS and RSAT 
minimum, maximum, and mean values from amplitude to dB 

backscattering, the values were analyzed for class specific and 
temporal changes.  
  
Step 7: Speckle Filtering 
For this study, three common adaptive filters were tested:  
Frost, Gamma and Kuan. Several tests were performed 
employing these three adaptive filters with a 3x3 and a 5x5 
window, and using one, two and three interactions. Visual 
analysis of the resultant filtered images was performed to 
determine the best preservation of edge features and 
discrimination of different textured areas. After visually ruling 
out the 5x5 window, and the two and three interaction images, 
the remaining images were tested for mean backscattering 
preservation and decrease of standard deviation. Four samples 
(98, 183, 303 and 342 pixels) of a homogenous target (open 
water) were selected and the mean and standard deviation of 
each sample was calculated before and after filtering. The goal 
was to determine the method that best preserves the mean 
values, while decreasing the standard deviation (Oliver & 
Quegan 2004). 

Once all of the mosaics were filtered, they were scaled to 8-bit 
images to reduce processing time during classification. 
 
Step 8: Classification: Definiens Processing and Analysis 
The classification scheme was organized in two levels aiming 
to capture different land cover types (Level 1) and seasonally 
flooded and non-flooded areas (Level 2). 
 
Level 1 – Cover Classification 
All 8-bit and amplitude ALOS image mosaics (January, 
February, May, July and November) as well as both 8-bit and 
amplitude Radarsat-2 images (August, HH and HV 
polarizations) were imported into Definiens. The 8-bit data 
was used for the segmentation processing, and the amplitude 
for defining the backscattering (dB) of the generated objects. 
The follow steps were performed: 
 
A: Several combinations of the three multi-resolution 
segmentation parameters were tested in order to determine the 
optimal combination for this data. A scale factor of 20 resulted 
in object polygons that were refined enough to capture small 
objects such as the lakes as individual entities, without being 
so small as to confuse fuzzy borders. An emphasis on 
radiometry as opposed to shape was deemed important, 
therefore a factor of 0.3 was chosen as the best compromise, 
and the portion allotted to shape was divided evenly between 
smoothness and compactness as both were considered of equal 
importance. Only the February, the July, and the RSAT HV 
image were given weight for this segmentation as they were 
the layers deemed to have the most seasonal and spectral 
contrast (February being high water, July low water, and 
RSAT representing additional information from C-band). 
 



 
 

Figure 3: February (R), July (G), Radarsat HV(B) (Note: the lack of blue in 
the Nabileque subregion is due to the lack of C-band coverage for this area) © 

JAXA/METI. 
 
B: The resulting objects from step A were then subjected to 
spectral difference segmentation with a factor of 10. This 
essentially merged any contiguous objects with a spectral 
difference of <=10 in all 3 layers, thereby reducing the overall 
number of objects while losing the minimal amount of spectral 
information. Backscattering values were recorded for the 
resulting objects over areas of known cover based on ground 
truth, a priori knowledge of SAR backscattering 
characteristics, secondary information regarding landscape 
and flood extent gathered from local inhabitants of area, and 
examination of high spatial resolution optical imagery 
(IKONOS and ANVIR-2). These backscattering values were 
then compared to those gathered from the previously defined 
ROI (Steps 5 and 6), and rules based on radiometric ranges for 
classes were formed.  
 
The Level 1 classification encompassed five categories, 
examples of which can be seen in Figure 4:  

 

- Gallery forest/savanna forest: includes riparian forests on 
high banks of major rivers, all forests subject to seasonal 
flooding, and non-floodable forest (cordilheiras and capoes) 

- Dense savanna/open savanna: includes areas that are 
comprised of any combination of shrubs, short trees, 
herbaceous fields, fields with sparse density trees; may or may 
not be subject to flooding  

- Grasslands/pasture – includes natural grasslands, pastures, 
agriculture, cultivated fields and farmland; may or may not be 
subject to flooding. Due to the relative inseparability of the 
grasslands and pasture classes they were grouped together in 
one class to avoid confusion 

- Herbaceous savanna – includes areas of sandy soils, alluvial 
fans, floating emergent aquatic vegetation, herbaceous 
vegetation, waterways, vazantes; subject to seasonal or 
permanent flooding  

- Open water – includes all permanent lakes and rivers 

In addition, object area parameters were utilized to separate 
small freshwater lakes from spectrally similar herbaceous 
savanna.  
 
Level 2 - Defining Seasonal Change Classification 
Numerous studies utilize temporal change in backscattering 
characteristics of cover types to determine inundation 
(Martinez & Le Toan 2007; Hamilton et al 2004; Costa 2004; 
Hess et al 1995; Wang et al 1995). Essentially, areas subject to 
inundation show seasonal change in backscattering values; 
areas with no temporal change do not flood and therefore 
minimum backscattering change was observed. In light of this, 
algorithms designed to exploit the temporal variability in 
backscattering were applied to the images (Silva 2009). The 
first was a cumulative mean distribution algorithm designed to 
show areas of cumulative change over the entire year: 

50 km 

 

[(a-b)2 + (a-c)2 + (a-d)2 + (a-e)2 + (b-c)2 + (b-d)2 + (b-e)2 + (c-
d)2 + (c-e)2 + (d-e)2]0.5

Where, 

a = January ALOS image 

b = February ALOS image 

c = May ALOS image 

d = July ALOS image 

e = November ALOS image 

 



 
 
Figure 4 – Examples of Level 1 classification cover types and how they 
appear in the SAR colour composite Feb-red; Jul-green, Nov-blue. 
 
Individual calculations were performed to show change 
between each time period.  

[(a-b)2]0.5; [(b-c)2]0.5; [(c-d)2]0.5; [(d-e)2]0.5; [(e-a)2]0.5 

 
Applying these algorithms resulted in outputs maps that clearly 
showed the areas of the most change in backscattering values 
within these temporal periods. Then, rules based on 
backscattering were applied to Level 1 Savanna Forest/Gallery 
Forest and Grasslands/Pasture classes to separate flooded from 
non-flooded areas. 
 

III. RESULTS AND SUMMARY 
 

A. Backscattering Analysis 
Sites used for the backscattering analysis (Figure 5) were 

taken from the Nhecolandia, Aquidauana and Miranda 
subregions, where field data was gathered. Therefore, any 
analysis regarding the seasonality of flood patterns is mostly 
applicable to these areas as other regions in the Pantanal have 

different flood patterns. However, it is expected that the 
backscattering signal behaves similarly for the other regions.  
 

 
 
Figure 5 – Cross-temporal, multi-sensor comparison of mean backscattering 
values from training site classes. 
 
(i)  Forest (Figure 4a) 
Forested areas exhibited the highest backscattering values of 
all the classes in L-band, for all seasons. Mean values during 
maximum flood in February ranged from –3.9dB for floodable 
forest to –8.1dB for non-floodable forest, and mean values 
during the dry season in July ranged from –6.0 for floodable 
forest to –7.1 for non-floodable forest. This is the result of 
multiple scattering mechanisms and interactions with the 
various components present in forested regions as suggested 
by Wang et al (1995):  
 

σ°t  = σ°s + σ°c + σ°m + σ°d 
where, 

σ°s  = backscattering from the canopy surface directly 
back to the sensor

 σ°c  = volume scattering within the canopy 

 σ°m  = multiple interactions of the canopy and the 
ground 

 σ°d = double-bounce scattering 
 
At the long wavelength of L-band, the leaves of the canopy 
are quasi-transparent, thus the radiation penetrates through to 
interact with branches, trunks and the underlying surface. The 
combination of all of these components results in a higher 
backscattering return than other cover types. However, 
forested backscattering values are lower in C-band than in L-
band as σ°t   is almost exclusively made up of σ°c , particularly 
with cross-polarized (HV) C-band as suggested in Wang et al, 
(1995). Townsend (2002) found that C-band HH polarized 
radiation may penetrate the canopy structure allowing 
detection of inundation in forested areas; however in non-
flooded conditions total C-band HH backscatter is 
predominantly due to volume scattering (Wang et al 1995; 
Townsend 2002). Our C-band data was acquired in August 
during the dry season, even if some of the radiation did 



penetrate the canopy there was no water available to cause 
double-bounce, therefore, C-band HH and HV exhibited only 
marginal differences for the two forest classes. 
 
Overall mean backscattering values (-5.7dB to –8.1dB for 
non-floodable forest, and –3.9dB to –6.4dB for floodable 
forest) were within the expected range for that cover type 
(Hess et al 1995; Wang et al 1995; Costa 2004; Martinez & le 
Toan 2007). There was very little variability between ROI 
values within both of the forest classes (Figure 13). This is 
likely because large homogenous areas of forest were clearly 
visible in the data, thus there was less chance of accidentally 
including pixels that were not representative of the class. 
  
Temporally, L-band signal from non-floodable forest and 
floodable forest showed little variation between them for May, 
July, November and January, but a great difference in 
February. This is because high water occurs in the 
Nhecolandia region (where the majority of the forest ROI’s 
were located) in February, thus there was increased 
backscattering for floodable forest attributable to the σ°d 
component not present in the non-floodable forest class. 
Floodable forest exhibited slightly higher mean values in L-
band than non-floodable forest (0.9dB, 4.9dB, 1.1dB, 0.6dB 
for Jan, Feb, Jul, and Nov, respectively) for all months except 
for May, where non-floodable forest was slightly higher than 
floodable forest (-5.7dB compared to –6.1dB). Although the 
variation was slight, they could be attributable to differences 
in tree species. Hess et al (1990) suggested that the 
relationship between hydrology and tree species must be kept 
in mind to ensure that observed backscattering differences are 
the result of flooded/non-flooded conditions and not due to 
differences in vegetation species. 
  
(ii) Dense/Open Savanna (Figure 4b) 

This class covered a wide range of landscapes from 
open grassy savanna with sparse trees and areas of bare soil to 
relatively dense areas of herbaceous vegetation, shrubs, and 
small trees. This diversity of the land cover resulted in the 
high degree of backscattering variability between sites. Also, 
the heterogeneous nature of mixed savanna and the relatively 
low spatial resolution of the data hindered the selection of 
pure training sites. As such, areas of open grassy savannas 
exhibit backscattering characteristics closer to grasslands, 
while dense savannas are more similar to forest.  

 
Generally, floodable dense/open savanna exhibited 
consistently higher backscattering values than non-floodable 
dense/open savanna, regardless of the season. Furthermore, 
values for floodable areas did not change significantly, nor did 
values for non-floodable areas, regardless of season. The 
explanation for the differences between the two classes is 
likely due to different tree and vegetation species inhabiting 
floodable and non-floodable areas, however, the lack of 
temporal change is not as easy to clarify. The only possibility 
speculated upon lies in the nature of the backscattering 
characteristics of the components present in a savanna 

landscape; during flooded conditions, the presence of water 
would cause much of the signal to be specularly reflected 
away from the sensor, but, the presence of trees and shrubs 
would add an enhanced double-bounce signal. In a pixel 
representing 100m2 of savanna terrain, these two components 
could cancel each other out, thereby showing no discernable 
change between flooded and non-flooded conditions. 
However, this theory is speculative given the lack of literature 
pertaining to SAR analysis of areas of mixed terrain such as 
this in relation to flood detection.  
 
Mean C-band HH and HV backscattering values both fall 
somewhere in between grasslands/pasture and forest classes (-
8.7dB and –14.6dB for HH and HV Dense/Open Savanna, and 
–7.8dB and –14.6dB for HH and HV Floodable Dense/Open 
Savanna). This is again to be expected due to the mixed nature 
of the class. 

 
(iii) Grasslands/Pasture (Figure 4c) 

Due to the relative inseparability of the grasslands 
and pasture classes, these classes are considered together in 
this analysis. This class represents a variety of herbaceous, 
grass-like vegetation including: very short grass found around 
the vazantes; croplands of various species; cultivated fields of 
Brachiaria sp. (a hardy introduced plant species used for cattle 
pasture); and the very tall (~2m) wild grass found on the 
campos. 
   
Overall, the backscattering values for grasslands and pasture, 
floodable and non-floodable, fell within expected values (Hess 
et al 1995; Hill et al 1999). The grasslands/pasture class, 
whether floodable or not, were found to exhibit consistently 
higher values at C-band HH (mean value of –10.7dB) than at 
L-band (11.8dB for May, the highest backscattering of the L-
band imagery) due to volume scattering interactions with the 
vegetation. This type of vegetation is usually partially 
transparent to L-band, however can occasionally exhibit 
higher values depending on the height and density present. For 
example, Hill et al (1999) found that thick, lush, ungrazed 
herbaceous pastures had a backscattering value of –8.8dB in 
L-band (which is almost comparable to non-floodable forest, 
and not typical for grasslands). Of the 15 classes of grass 
tested by Hill et al (1999), the backscattering values exhibited 
wide divergence from –8.8dB to –23.1 dB in L-band, –5.9dB 
to –14.5dB for C-band HH, and –6.2dB to –13.5dB for C-band 
HV; this helps to explain the high variability between 
grasslands training sites for all our images. 
  
Floodable grasslands and pasture showed lower mean values 
in January (-15.2dB) and May (-12.5dB), and far lowers 
values in February (-19.6) than non-floodable areas (-12.8dB, 
-11.1dB and –13.9dB, respectively). This is consistent with 
expected results as maximum flood in the region occurs in 
February, with rising water occurring in January and falling 
water in May. Low values for this class during inundation are 
due to increased specular reflection away from the sensor 
caused by the water surface. Land submergence in the 



Pantanal is typically 0.5-1.5m, while the pasture and 
grasslands training sites covered areas from very short grass 
(< 0.05m) to very tall (~ 2.0 m). Therefore, flooded areas 
would show differing degrees of backscattering depending on 
whether the vegetation (grass) was fully submerged or only 
slightly flooded. Fully submerged areas would demonstrate a 
very low backscattering return, as most of the incident 
radiation would be specularly reflected away from the sensor. 
However, areas of very tall and/or very dense grass, only 
slightly flooded (maybe only a few centimetres) would not 
show as great a degree of difference between flooded and non-
flooded as less of the signal would be reflected away, and 
more would be volumetrically scattered within the vegetation. 
There was a noticeable difference between C-band floodable 
and non-floodable pasture, for both HH (-13.0dB for floodable 
and –8.0dB for non-floodable) and HV (-20.2dB for floodable 
and –14.9dB for non-floodable) polarizations, which could 
only be explained by different vegetation species inhabiting 
the two cover types. The C-band data was acquired in August 
during the dry season, therefore no difference in 
backscattering could be attributable to actual flood conditions.  
Another phenomenon found in the data was the seemingly 
inconsistent pattern of backscattering present in the non-
floodable area: high values in May and November but low in 
July. One possible explanation for this may be the changing 
dielectric properties of the vegetation (Dobson et al 1996). 
Although these are not floodable areas they are still 
susceptible to climate. July is in the middle of the dry season 
and the lack of precipitation, along with senescence of the 
vegetation, results in a lowering of the moisture content, and 
hence the backscattering value. May is at the end of the rainy 
season and November at the beginning, therefore the 
vegetation would like contain a greater moisture content than 
in July. 
   
(iv) Herbaceous Savanna (Figure 4d) 
 This class encompasses herbaceous 
aquatic/amphibious vegetation occurring on alluvial fans, 
vazantes and waterways. The lowest L-band values for this 
class occurred in February (-21.2dB), during maximum flood 
in this region. At this time, any vegetation present is likely to 
be fully submerged, or of the small free-floating broadleaf 
variety (3-30cm in height). Therefore, the majority of L-band 
radiation would be specularly reflected away from the sensor, 
resulting in the low backscattering return. The highest L-band 
values were found in July (-9.8dB), during low water. At this 
time, a possible new group of herbaceous vegetation adapted 
to the drier conditions would be present, thereby increasing 
the backscattering return. For example, rooted forms of broad-
leafed aquatic vegetation would have more ability to take hold 
and thrive in less turbulent low waters than in the relatively 
faster moving, deeper waters occurring during maximum 
flood. Also, more Aquatic Terrestrial Transition Zone (ATTZ) 
amphibious vegetation becomes exposed with receding waters 
further increasing the backscattering signal. This further 
explains the high variability in January and May as differing 

degrees of water level would be present depending on 
localized flood conditions.  
  
C-band HH values were high (-8.6dB) compared to L-band for 
this class, as less of the vegetation is interacting with L-band 
due to the longer wavelength. The C-band imagery was 
acquired in August, therefore more vegetation would be 
exposed, increasing the degree of volume scattering and 
decreasing the degree of specular reflection. The 
backscattering of aquatic vegetation at C-band is primarily 
through volume scattering, although double-bounce scattering 
has been observed with dense, tall (~1m) aquatic vegetation 
(Hess et al 1995; Costa 2004, Martinez & le Toan 2007). 
  
(v) Open Water (Figure 4e) 
 The open water class was expected to show 
consistently low values in both C-band and L-band (-18.3dB, -
20.6dB, -16.9dB, -20.1dB, -20.2dB, -20.0dB and –26.3dB for 
L-band Jan, Feb, May, Jul, Nov, and C-band HH and HV, 
respectively), as the majority of the incident radiation would 
be specularly reflected away from the sensor. For example, 
Martinez & le Toan (2007) reported open water in the 
Amazon floodplain to have values of –17.0 dB with a 
negligible variation of +/-0.3dB in L-band. However, the open 
water training sites for this study showed slightly elevated 
values in May and February for L-band, and fairly high 
variability between training site values. One possible 
explanation for the variability is the presence of migrating 
floating camalotes of aquatic vegetation, which, if tall enough, 
and dense enough, could cause some volumetric scattering 
increasing the signal to the sensor from individual training 
sites. Another explanation could be an increase in water 
surface roughness caused by wind (Oliver & Quegan 2004). 
 
B. Separability between classes 
 The best separability between flooded and non-
flooded classes occurred in February (Figure 6). This is to be 
expected, as February is the high water season for the area, and 
would thus show the most variability between flooded and non-
flooded areas. The overlap in backscattering values between 
forest classes, savanna classes and grasslands/pasture classes 
was anticipated due to the fuzzy borders between them. 
Dense/open savanna is a class that bridges forest and 
grasslands, and therefore contains varying degrees of both 
cover types. Although herbaceous savanna and open water 
were virtually indistinguishable in February during maximum 
inundation, they were easily separated in July. This is because 
lowering water levels resulted in the exposure of more 
vegetation cover for herbaceous savanna, thereby increasing 
the backscattering signal, especially in C-band, while 
backscattering for open water remained fairly low. The high 
degree of overlap between floodable and non-floodable 
grasslands and pastures is due to the similar nature of the two 
classes. They both represent areas of low vegetation devoid of 
trees, however height and density of both classes is variable, so 
they are easily confused. 



 
Figure 6 – Variability between classes: Savanna Forest, Forest 
Floodable/Gallery, Grasslands, Floodable Grasslands, Pasture, Floodable 
Pasture, Dense/Open Savanna, Floodable Dense/Open Savanna, Herbaceous 
Savanna, Open Water. 
 
C. Level 1 Classification 

The Level 1 classification map is shown in Figure 7. A 
classification accuracy assessment was performed on the 
Level 1 classification using the ROI’s defined in Step 5. The 
confusion matrix (Table 2) shows that open water and 
herbaceous savanna were 100% correctly classified in 
Definiens. For forest, 76% were correctly classified, while 
14% were misclassified as dense/open savanna. As predicted 
by the backscattering analysis in the previous section, there 
was a high degree of uncertainty between grasslands/pasture 
and herbaceous savanna; only 58% of grasslands/pasture was 
correctly classified, while 38% was classified as herbaceous 
vegetation and 3 % as dense/open savanna. Also as predicted, 
there was a considerable overlap between forest, dense/open 
savanna and grasslands/pasture; 50% were correctly classified 
while 25% were misclassified as forest and 25% were 
misclassified as grasslands pasture.  

 
Large areas of aquatic macrophytes (herbaceous savanna) 
were observed in the data when examining the optical images. 

These areas were not included in the original backscattering 
analysis, as there was no ground truth to validate them. 
However, a high degree of confusion was present between 
forest and these large areas of herbaceous vegetation. Rules 
were created to separate the two classes and a visual 
comparison of the entire image with the optical data showed 
an improvement. Confusion between aquatic macrophytes and 
forest classes in L-band has been reported in several cases 
(Hess et al 1990; Hess et al 1995; Pope et al 1997). Our data 
exhibited high backscattering values for large areas of aquatic 
macrophytes similar to values found in the forest classes. Pope 
et al (1997) reported that L-band double-bounce interactions 
were possible for herbaceous aquatic vegetation at relatively 
steep incidence angles (25° at swath center for their study). 
Therefore, this could explain the high values for our study as 
the L-band imagery was acquired at a relatively steep 
incidence angle of 27.1°. Hess et al suggested that forest and 
macrophytes were best separated at L-band HV polarization 
(1995), or with a range of different incidence angles (1990). 
After a great degree of manual comparison of values for areas 
of aquatic macrophytes and forest, the greatest degree of 
separability between the two was found to be between the 
November L-band and the C-band HH imagery; thus a rule 
exploiting this difference was created to separate the two in 
the Level 1 classification. Also, areas of upland hills were 
misclassified due to increased elevation and shadow effects; 
these areas were corrected manually. 
 
Overall, the confusion found between classes in the Definiens 
classification were consistent with the results established in 
the backscattering analysis. However, the ROI’s, and resultant 
accuracy assessment, are only representative of the field study 
subregions of Nhecolandia, Aquidauana/Negro and Miranda. 
Due to the variable nature of the Pantanal floodplain as a 
whole, the same level of confidence cannot be transferred to 
the entire study area; however we intend to improve the 
accuracy of the classification during the Phase 2 of this 
project, where other areas of the Pantanal will be visited. 
 
D. Level 2 Classification 
The temporal series of mosaic images representing the 
separation between flooded forest and non-flooded forest can 
be seen in Figure 8. For the most part, areas representing 
flooded forest for the majority of the time follow riparian 
corridors, except for the large northern area spanning parts of 
the Piquiri/Sao Lourenco, Cuiaba and north Paraguay 
subregions mentioned previously. Areas of forest that never 
flood are present in all subregions, but are particularly 
apparent in the Nhecolandia, Taquiri Fan, and Corixo Grande 
subregions. The mapped flood timing is consistent with that 
reported in Hamilton et al (1996) and the hydrological data 
shown in Figure 2. For example, rising water in January and 
maximum flood in February have been reported for the 
Piquiri/Sao Lourenco, Nhecolandia, and Aquidauana/Negro 
subregions, and this can be seen by the darker green, 
representing flooded forest, along the riparian areas of these 
three subregions for the January and February images. 



 

 Figure 7 – Level 1 Classification output. ALOS K&C © JAXA/METI. 
 

Table 2. Level 1 confusion matrix. 
 
The greatest degree of misclassification occurs between 
grasslands/pasture and herbaceous savanna. Although it is not 
shown in the confusion matrix, 90% of grasslands/pasture 
validation sites, erroneously classified as herbaceous savanna, 
came from the floodable grasslands category. These particular 
field data sites were located in floodable campos in the Taquiri 
Fan subregion, thus, confusion between flooded grasslands 
and flooded grass-like, aquatic vegetation is to be expected.  
 
 
However, the dark green begins to recede and is replaced by 
the light green, representing non-flooded forest, in May, and 
particularly in July and November for these regions. 
Conversely, the lower Paraguay River shows more dark green 
(flooded forest) in July than in February, which is consistent 
with the timing of maximum flood found in that subregion. 

We speculate that some areas of flooded forest not in 
agreement with the reported flooding regime for each of the 
subregions may be a result of the confusion between aquatic 
macrophytes and forest reported previously; the methods 
employed for separating the two classes were experimental, 
and therefore may not have done an adequate job. The 
Nabileque subregion shows flooded forest in all months 
except for July, contrary to GEF (2004), which reports 
localized flooding only along the Paraguay River itself, and to 
Hamilton et al (1996) who report the greatest degree of 
flooding in this region in July. Therefore we suggest that 
perhaps the species of forest in this region show higher 
backscattering values than other forest regions and thus fell 
within the range designated for flooded forest and was 
erroneously classified. The Nhecolandia region shows very 
little flooding with the forest class throughout the year 
indicating a high degree of savanna forest made up of capoes 
and cordilheiras, which is consistent with what was observed 
in the area during the field campaign. 
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igure 8 – Level 2 Classification output. Flooded Forest vs. Non-Flooded 
rest for: a) January; b) February; c) May; d) July; e) November . ALOS 
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 temporal series of mosaic images representing the 
aration between flooded and non-flooded grasslands/pasture 
 be seen in Figure 9. Overall, the areas representing flooded 
sslands are very low compared to non-flooded, however 



there are some notable results. The January image shows small 
areas of flooding in the Nhecolandia and Taquiri Fan 
subregions, greatly increasing in the February image. Both 
January and February show small areas of flooding in localized 
patches of the northern Paraguay and northern Nabileque 
subregions as well. The area of the greatest observable flooding 
occurs in the Nhecolandia region in February, and in the 
southern Paraguay River subregion in July, consistent with 
observed results in Hamilton et al (1996) and the maximum 
river discharge timing seen in Figure 2. May shows very little 
flooding anywhere except for the Corixo Grande subregion, 
and localized portions of the Paraguay. Flooded areas are 
apparent in the southern Paraguay/northern Nabileque 
subregions for July, as well localized areas in the east of the 
entire mosaic. November shows no flooded areas anywhere 
except for small areas in the southeast Taquiri Fan and east 
Nhecolandia.  
 

V. CONCLUSIONS 
Examination of the SAR ALOAS/PALSAR and 

RADARSAT-2 data used for this study, coupled with data 
gathered in the field, provided an understanding of the 
interactions between incident microwave radiation at L and C 
bands and ground cover, and how they change temporally with 
the seasonal flood in the Brazilian Pantanal. In general, the 
Definiens object-based Level 1 classification using both bands 
yield an average accuracy of 77%, in which the most 
confusion was between grassland/pasture and herbaceous and 
open savanna classes. This was expected given (1) the nature 
of these landscape covers, i.e., mostly grass-like vegetation 
and (2) the 100 m course resolution of the ScanSAR imagery. 
Nonetheless, our work provided the most detail classification 
of landscape cover available for the entire Brazilian Pantanal. 
 
The generated flooded/non-flooded maps provided consistent       
separation of flooded from non-flooded forest. However, as 
expected due to similar backscattering values at this spatial 
resolution, L-band HH was not ideal for separating flooded 
from non-flooded grasslands/pasture, or flooded from non-
flooded dense/open savanna. Nonetheless, much of the 
temporal pattern of inundation defined the classified maps was 
consistent with that found in Hamilton et al (1996), with some 
areas of disagreement. However, Hamilton et al (1996) used 
passive microwave data and did not provide an accuracy 
assessment or temporal output maps to validate their study. As 
such, we can not truly compare our spatial maps with their 
results.  
 
Generally, two main factors contributed to confusion and 
erroneous classification in the Definiens software. First, low 
spatial resolution (100m), further degraded by the SAR 
speckle filtering process, may have led to a high degree of 
mixing of cover types with segmented image objects. The 
Pantanal is a highly heterogenous landscape where a single 
pixel representing 10000m2 often contains forest, grasslands, 
and lake elements within the same pixel. 

 Figure 9 – Level 2 Classification output. Flooded Grasslands/Pasture vs. Non-
Flooded Grasslands/Pasture for: a) January; b) February; c) May; d) July; e) 
November. ALOS K&C © JAXA/METI. 

 
Second, varying seasonal flood regimes for the many different 
subregions in the Pantanal increased the difficulty in selecting 
rules for determining separation between classes. Interpolating 
what we knew to be true in the area where we had conducted 
field work to the rest of this complex wetland system was 
problematic because the timing of the flood was different for 
different subregions, and there were areas where ground cover 
information was not available. 
 
Improvements on both land-cover and temporal flooding 
classifications will come by (1) splitting the Pantanal mosaic 
into hydrological subregions based on peak river discharge, 
and conducting separate classifications for each area. (2) The 
addition of a temporal series of C-band data corresponding to 
a time series of L-band, and (3) field data acquired in the wet 
season. Further improvement will come from the analysis of 
12.5 m fine resolution mosaics of the second phase of this 
project and planned field work in the northern and central 
Pantanal. 
 
In conclusion, utilizing multi-temporal, multi-band SAR data 
for defining land cover and inundation patterns in the Pantanal 
was accomplished. The delineation of the landcover will be 
used as input spatial data in future studies involving land use or 
habitat monitoring (part of our collaboration with EMBRAPA-



Brazil in the phase 2 project). Although there have been several 
previous habitat studies at a local scale in the Pantanal (Tomas 
et al, 2001), only a few have covered the entire Pantanal at a 
regional scale (Hamilton et al, 1996; but does not provide 
spatial maps), as the size and relative inaccessibility of the 
region hinders traditional methods of data collection. 

Ultimately, the generated data from phase 1 and 2 will aid in 
further understanding the spatial and temporal pattern of the 
flood-pulse regime in the Pantanal, and will provide seasonal 
habitat suitable for threatened species, and define corridors and 
connectivity for defining conservation areas.  
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Abstract  - Inland wetlands occur extensively across Sub-
Saharan Africa.  These ecosystems typically play a vital role in 
supporting rural populations and their sustainable 
management is thus critical.  In order to prevent depletion of 
resources and ecosystem services provided by these wetlands, a 
balance is required between ecological and socio-economic 
factors.  The sustainable management of wetlands requires 
information describing these ecosystems at multiple spatial and 
temporal scales.  However, many southern and eastern African 
countries lack regional baseline information on the temporal 
extent, distribution and characteristics of wetlands.  PALSAR 
data provides invaluable information related to the flooding 
patterns and vegetation characteristics of these wetlands, and 
is being used to document and characterise specific sites within 
the region which have been identified due to their vulnerability 
to both climatic variability and agricultural activities.  The 
information derived from the PALSAR data is needed to assist 
managers in making decisions about future land uses in 
wetlands that are intensively used for agriculture and fisheries, 
and which are an important natural resource for local 
communities. 
 

Index Terms—ALOS PALSAR, K&C Initiative, Wetland 
Theme, Africa, flooding patterns, vegetation. 

 

I. INTRODUCTION 
 

Throughout Sub-Saharan Africa, floodplains and 
wetlands are extensive [1]. These ecosystems depend on 
frequent flooding. They also make critical contributions to 
the livelihoods of many people.  Many hydrological 
interventions (i.e. dams and irrigation schemes) either 
already exist within these basins, or are being planned to 
increase economic benefits and food security. However, 
these interventions will not be without consequences and 
both the costs and benefits need to be carefully evaluated. 
One likely consequence of increased flow regulation is 
reduced downstream flooding.  Annual time series of 
PALSAR data are an invaluable dataset for identifying 
seasonal patterns of inundation, and are used here to 
determine flooding patterns and to map the temporal 
dynamics of inundation within selected sites in southern and 

eastern Africa.  The data are also used to provide detailed 
maps of the vegetation for specific wetland sites. 

 

II. DESCRIPTION OF  THE PROJECT 

A. Relevance to the K&C drivers 
The project aims to generate knowledge to assist in the 

sustainable management of wetlands which are utilised for 
agriculture and fisheries activities, and to assist the countries 
concerned to put in place or enhance mechanisms that 
minimize degradation of the wetlands, in order to optimize 
the ecosystem and livelihood benefits.  Project objectives 
also include the provision of baseline wetland information 
from remote sensing and GIS data, and the generation of 
generic guidelines, tools and methodologies for wetland 
mapping and characterisation. 

The Wetlands Theme of the K&C Initiative focuses on 
the provision of remote sensing datasets that can be used to 
assist the global mapping and monitoring of wetlands and 
identifying and quantifying the threats to which these are 
exposed. Specifically, it aims to develop a suite of products 
which may be used to improve the understanding of carbon 
cycle science, assist the implementation of conservation and 
management strategies and support national and international 
obligations to multi-national conventions [2].  The work 
reported here is of relevance to all three of the thematic 
drivers: Carbon, Conservation, and Conventions i.e. the 
three C’s.  The draining and transformation of wetlands for 
agricultural (as well as for other) uses is likely contributing 
to the carbon imbalance in the atmosphere [3].  Wetlands 
contain and cycle a significant amount of carbon and play a 
key role in the global carbon cycle, not least because of the 
large turnover of methane within these systems; it is 
estimated that natural wetland sources emit about 20% of the 
methane entering the atmosphere each year [4] and they are 
responsible for a significant proportion of biogeochemical 
fluxes between the land surface, the atmosphere, and 
hydrologic systems [5].  A basic requirement for modelling 
regional to global methane or carbon dioxide emissions from 
wetlands is information on their type and distribution. 



In Africa where wetlands are utilised extensively for 
agriculture and fisheries activities, the loss of these 
ecosystems will also have a more direct effect on local 
populations.  Long-term preservation and sustainable use of 
these resources is therefore critical for the economic and 
social well being of current and future generations. Key 
requirements include the establishment of regional and 
temporal datasets of wetland extent and condition which 
incorporate an understanding of the inundation dynamics of 
an area and spatially quantifiable measures of both 
anthropogenic and natural pressures and threats to wetland 
communities [2].    

The Ramsar Convention on wetlands of International 
Importance promotes the conservation and wise use of all 
wetlands through local, regional and national actions and 
international cooperation, as a contribution towards 
achieving sustainable development throughout the world 
(Ramsar COP8, 2002).  The Convention aims to halt and 
reverse the global trends of wetland degradation and 
destruction through the dissemination of information, 
involvement of local communities and establishment of 
sustainable management plans.  While Contracting Parties to 
the Convention have been encouraged to undertake better 
and more efficient wetland inventory, and to establish and 
maintain national inventories, many African countries lack 
the resources to achieve this.  Remote sensing technologies 
are essential in providing up-to-date spatial and temporal 
information about wetlands and their catchment basins, and 
should be seen as a fundamental component in the 
development of wetland management plans for conservation 
and sustainable utilisation.  While mapping of wetlands has 
proved difficult in many areas because of the lack of 
temporally and spatially consistent datasets, the systematic 
data acquisition strategy of ALOS PALSAR seeks to redress 
this [3]. 

 

B. Site description 
The analyses have been conducted at two inland wetland 

sites located in Malawi and Mozambique (Figure 1).  Both 
sites have been nominated by the countries as priority sites 
for analysis, as they are vulnerable to both climatic 
variability and agricultural activities.  Population pressure 
and increased exploitation of resources within these wetlands 
and the surrounding catchments are leading to serious 
degradation and loss of biodiversity and inter-connected 
ecosystem services.  Lake Chilwa is a transboundary wetland 
located in a tectonic depression in south-eastern Malawi and 
western Mozambique.  The catchment covers a total area of 
8349km2, 97% of which is located in Malawi and 3% in 
Mozambique.  The wetland (an area of approximately 
2250km2) is a Ramsar site, and a UNESCO Biosphere 
Reserve.  While the Lake is fed by 7 streams, it is an 
endorheic system with no outflow.  As the lake is shallow 
with an average depth of 1-2m (Figure 2), its size varies 
considerably depending on precipitation levels in the 
catchment with small increases in water level resulting in  

 
 

Figure 1.  Site locations © JAXA/METI and acquisition date (here: Jan 15, 
2009) 

 
large increases in spatial extent.  The wetland has a history 
of cyclic drying and filling; in the last century alone it has 
dried and filled eight times, with the last recession occurring 
in 1996/97.  The hydrology of the lake is an important 
control on the ecology of the wetland, determining not only 
the water chemistry and physical properties, but also the 
composition of the vegetation and soil characteristics [7].  
The only available information relating to the vegetation 
within the wetland complex was produced from a ground 
survey conducted in the 1970’s [8], and no digital data on 
spatial patterns of inundation is available.  

 

 
 

Figure 2.  Bathymetric map of Lake Chilwa (source: UNESCO, 2004). 
 

Lake Urema and the surrounding wetlands are located in 
Gorongosa National Park in central Mozambique.  An 
understanding of the ecology and hydrology of the lake and 
wetlands is essential for the conservation of the floodplain 
habitats which are critical for maintaining the biodiversity 
of the Park. There are concerns that the hydrology and 
ecology of the lake have changed in recent years, possibly 
dues to climatic variability and land use changes, as well as 
tectonic activity [9].  The analyses conducted here aim to 
provide baseline data on the vegetation composition, spatial 



extent, and seasonal variations in the wetlands around Lake 
Urema, in order to improve understanding of their 
vulnerability to changes in the hydrological regime. 

 

C. Materials and methods 
The analyses were performed on multitemporal datasets 

of ALOS PALSAR fine beam data.  Where available, optical 
images and topographic data were also incorporated.  For 
both sites extensive field campaigns were conducted 
according to the following methods.  Latitude and longitude 
grids were overlaid on maps of the sites, and depending on 
access, field sites were selected at one second intervals.   

 

 
 

Figure 3.  Air photo (yellow circles) and field site (red crosses) locations, 
Lake Chilwa, Malawi.  Base image: Landsat TM real colour composite 
 

 

 
 
Figure 4.  Air photo (red circles) and field site (blue circles) locations, Lake 

Urema, Mozambique.  Base image: ALOS PALSAR HH, Feb 2007 © 
JAXA/METI 

  

An area of 20x20m was demarcated at each site, and various 
data recorded including vegetation species, ranked biomass, 
species dominance, land use and hydrology.  Where cloud 
(and smoke) free optical datasets were available, these were 
incorporated into the analysis.  The remote sensing datasets 
for each site are described in Table 1.  In addition 
georeferenced low altitude aerial photos were acquired at 
both sites (for Lake Chilwa courtesy of the Danish Hunters 
Association, DANIDA).  The locations of field sites and 
aerial photos are illustrated in Figures 3 and 4.  Data were 
collected at 90 field sites (92 aerial photos) around Lake 
Chilwa, in October 2006 (a PALSAR FBS image was also 
acquired this month) and at 120 sites (250 aerial photos) 
 
 

Site Sensor Wavebands/ 
mode 

Acquisition 
date 

Landsat TM VNIR, TIR 18th Nov 2005 
ASTER VNIR, SWIR, 

TIR 
21st May 2006 

FBD 17th May 2006 
FBS 2nd Oct 2006 

 
 
Lake 
Chilwa  

PALSAR 
 FBS Feb 2007 

Dec 2006 FBS 
Feb 2007 

FBD Jun 2007 
POL Jun 2007 

Aug 2007 FBD 
Sep 2007 

 
 
 
Lake 
Urema 

 
 
 
PALSAR 

FBS Feb 2008 
 

Table 1.  Remote sensing datasets used in the analysis 
 
 

 
PALSAR, FBD 10/2006, FBS 

02/2007 

 
Figure 5.  15m DEM derived from ASTER, PALSAR composite image (R: 

HH, G: HV, B: HH ) © JAXA/METI 
 
 



 
around Lake Urema in July 2007 (PALSAR POL and FBD 
images were acquired in June and August 2007 respectively).  
A 15m DEM was derived using the two visible bands of the 
ASTER image.  This and the PALSAR data are shown in 
Figure 5.   

For Lake Chilwa, the classification of the remote sensing 
data into dominant wetland types was performed using a 
Decision Tree (DT) classifier, based on a series of binary 
decision rules.  DT classifiers allow multistage 
classifications to be performed, recursively partitioning the 
input dataset into increasingly homogenous subsets.  A 
particular advantage of this approach is that datasets with 
different spatial resolutions, as well as ancillary datasets can 
be used together during the classification process. Image 
segmentation was performed at each node based on 
histogram analysis in order to separate the data into two 
mutually exclusive classes.  The vegetation within the 
“wetland vegetation” class was subsequently  

 

 
 

Figure 7.  Principal Components Analysis of 7 ALOS PALSAR FBS, FBD 
and POL scenes (RGB: PCA 1, PCA 2, PCA 3), ALOS K&C © JAXA/METI 

 
classified into species dominance based on a subset of the 
field sample sites (50% of the sites were randomly selected) 
and the aerial photograph locations.   
 Over central Mozambique cloud cover in the wet season, 
and smoke from burning during the dry season presents a 
problem in the acquisition of suitable optical datasets.  All 
PALSAR images available (Figure 6) over a 14 month 
period (Dec 2006 – Feb 2008) were therefore used in the 
analysis, in an attempt to characterize the seasonal variations 
in the Lake and surrounding wetlands.  The PALSAR images 
(with a pixel size of 12.5m) were smoothed using a 5x5 pixel 
median filter, to reduce the influence of speckle.  This filter 
was chosen as it preserves edges, while smoothing the data.  
For wetland areas the boundaries of the wetlands are thus 
preserved while a more homogenous within-wetland pixel 
value is achieved [10]. The variations observed in the 
PALSAR images between the various dates (Figure 6) are 
predominantly due to changes in the flood condition and soil 
moisture.   
 In order to quantify the temporal variance in the data, a 
Principal Components Analysis (PCA) of the filtered 
temporal sequence of PALSAR images (Figure 6, Table 1) 
was performed on the filtered images, thereby providing 
information on the duration of the flood conditions.  Figure 7 
shows the results for the multitemporal PCA analysis.  Areas 
with minimal changes across all dates exhibit very low 
variance (low values in each PCA band), and are represented 
by the black areas in Figure 7.  This corresponds to the 
permanently flooded areas (between Dec 2006 and Feb 
2008) of Lake Urema.  Variations in the hydrologic regime 
over the time period of the study for the wetland areas 
surrounding the Lake are clearly evident from a visual 
analysis of Figure 7.  A supervised classification was 
performed using the first three PCAs as input in addition to 
the individual PALSAR images, in order to identify classes 
within the wetland based on frequency of flooding and their  

 
a) 21st Dec 2006 b) 05th May 2007 c) 23rd Jun 2007 

 
d) 8th Aug 2007 e) 23rd Sep 2007 f) Feb 2008 

 
Figure 6.  ALOS PALSAR scenes, Level 1.5, 12.5 pixel spacing © JAXA/MET



hydrologic condition over the 14 month period.  Visual 
analysis of the PCA results, the aerial photos and the field 
data collected suggested a high correlation between the 
dominant vegetation species and the time/duration of 
flooding.   Training sites for the classification were selected 
based on dominant vegetation species, as identified during 
the field campaign.  50% of the 120 sites were selected at 
random for this purpose, along with 125 of the aerial photo 
locations.  Thus based on the field data the flooding patterns 
have been linked to the different vegetation communities. 
 
 

III. RESULTS AND SUMMARY 
 
Two products have been created for the Lake Chilwa 

wetland; i)a map depicting the spatial zoning of broad 
wetland classes derived from the annual flood dynamics, 
and ii)a map illustrating the spatial distribution of the 

wetland vegetation.  These are shown in Figure 8.  In 
addition to the open water, the wetland consists of a band of 
dense reed swamps and marshes, and a seasonally inundated 
grassland floodplain.  The distribution and dynamics of the 
wetland flora and fauna are dependent on the seasonal and 
annual fluctuations in water levels.  An accuracy assessment 
of the classification results (Figure 8b) based on an 
independent sample (the 45 field sites not used in the 
training phase) indicated a classification accuracy of 89%. 
The identification of wetland classes for Lake Urema and 
the surrounding wetlands has been determined based on 
flooding regime.  These results are displayed in Figure 9.  
Accuracy assessment of the results is currently underway. 
 The ALOS PALSAR datasets have been used in this 
project to detect spatial and temporal changes in hydrologic 
conditions of inland wetland ecosystems in Africa.  The 
images have been used to provide baseline data for two 
biodiversity hotspots; Lake Chilwa, a Ramsar wetland site of 

 

  

 
 

a) Broad wetland classes derived from annual flood dynamics b) Distribution of wetland vegetation 
 
Figure 8.  Principal Components Analysis of 7 ALOS PALSAR FBS, FBD and POL scenes (RGB: PCA 1, PCA 2, PCA 3), ALOS K&C © JAXA/METI 



 

International Importance, and a UNESCO Biosphere 
Reserve in Malawi, and Lake Urema, a key component of 
the Gorongosa National Park in Mozambique.  The analysis 
has provided information on the vegetation composition and 
seasonal variations in the wetland extent, thereby increasing 
understanding of the ecology and hydrology of these 
ecosystems and providing information crucial for their 
sustainable management and conservation.  ALOS PALSAR 
proved to be an essential data source for these analyses due 
to i) frequent cloud cover over the areas of interest thereby 
preventing the use of optical data, ii) a systematic 
observation strategy [11] and frequent image acquisition 
allowing for characterisation of the flood dynamics at a high 
temporal resolution, iii) FBD in addition to FBS coverage of 
the wetlands during the summer months enabling 
discrimination of different vegetation structural types.  

 Building on the work reported here, future work will 
attempt to scale out to larger areas.   
 

 

 
 

 
Figure 9. Lake Urema, Mozambique: Identification of wetland classes 

based on flooding regime. ALOS K&C © JAXA/METI 
 
Annual time series of PALSAR (ScanSAR) data are an 
invaluable dataset for identifying seasonal patterns of 
inundation, and will be used to determine flooding patterns 
and to map the temporal dynamics of inundation across 
selected regions of the White Nile and the Zambezi. 
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Abstract— It is well documented that 24cm wavelength JERS-1 

and ALOS PALSAR L-band radar data are well suited to map 

and monitor the structural assemblage of dense vegetation cover 

comprising shrublands and forests.  In addition, the penetration 

capability of L-band enables accurate detection and mapping of 

flooding below forest canopy.  In this on-going study, ALOS-

PALSAR and archival JERS-1 SAR imagery are used in 

conjunction with complementary datasets and field-data to 

develop a baseline inventory for showing the extent of flooding in 

the Lower-Mekong Basin in South East Asia and to analyse flood 

patterns in the Macquarie Marshes located in the Murray-

Darling Basin in eastern Australia.  These baselines will then be 

used to monitor subsequent seasonal changes in the extent and 

duration of flooding.  Attention is also paid to mapping and 

monitoring changes in the status and condition of wetland 

vegetation types in these two river basins. 

 

Index Terms—ALOS-PALSAR, JERS-1 SAR, K&C 

Initiative, wetlands, Lower Mekong Basin, Murray-

Darling Basin 
 

I. INTRODUCTION 

 

The Project focuses on two contrasting wetland environments: 

the wet-tropical Lower Mekong Basin in Southeast Asia, and 

the semi-arid Macquarie Marshes in the Murray-Darling 

Basin.  Both regions are under threat from anthropogenic 

disturbances and from the impacts of projected climate 

change. Foremost among these influences are landscape 

degradation and declining water availability. 

 

In this on-going project, ALOS-PALSAR and archival JERS-1 

SAR imagery are used in conjunction with complementary 

datasets and field-data to develop a baseline inventory for 

showing the extent of flooding in the two study sites against 

which subsequent seasonal changes in the extent and duration 

of flood events can be mapped and assessed.  Attention has 

also been paid to mapping and monitoring the changes in 

wetland vegetation types.  

 

Within the Lower Mekong Basin (LMB), future significant 

changes in river flow and total discharge can expected to 

occur as a result of dam building in the upper reaches of the 

Basin.  Land use and environmental planning will therefore be 

intimately linked and to a large extent controlled by changing 

river flow regimes which are likely to seriously alter the 

seasonal passage of discharge through the LMB. 

 

Within the Murray Darling Basin (MDB) there are a number 

of freshwater Ramsar-listed wetland sites including the 

Macquarie Marshes, the Gwydir wetlands and the 

Murrumbidgee wetlands [1].  These, along with other riverine 

wetlands in eastern Australia, have experienced significant 

long-term declines in stream flow as a result of river 

regulation and water storage diversions to support irrigated 

agriculture.   

 

II. STUDY AREAS 
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Figure 1.  SRTM DEM showing location of study sites within Lower Mekong 

Basin 

 

 

 

 

A. Lower Mekong Basin 

 

Within the LMB analyses of PALSAR and JERS radar 

datasets have focused on 4 sites: Siphandon in Lao PDR, 

Stoeng Treng and Tonle Sap in Cambodia, and Tram Chim in 

the Mekong Delta of Vietnam.  Wetland sites along the 

Songkram River floodplain, Thailand, and within Attepeu 

Province, Lao PDR, are yet to be included in the analysis.  

Siphandon and Stoeng Treng are sites along the Mekong River 

under threat from the development of hydro-electric dams and 

modification to the extent of flooded forests and disruption to 

the fish habitats proximal to the river channels. 

  

Tonle Sap is the most important wetland in Southeast Asia in 

terms of productivity and biodiversity [2] and [3].  In addition 

to impacts of illegal forest logging, it too is threatened by the 

future availability of floodwaters which are likely to be 

insufficient to support Cambodia’s demand for irrigated rice 

growing and for the supply of fish stocks.  

 

Tram Chim National Park is a remnant wetland, representative 

of the ecosystem that formerly occupied the vast Plain-of-

Reeds.  Threats to its sensitive biodiversity include 

modification of the water regime in the Mekong Delta, 

inappropriate fire-control measures, fires, chemical pollution 

from agriculture development, acidification of water bodies by 

digging and exposure of acid-sulphate soils, and illegal 

logging of the natural Melaleuca spp. forests. 
  

Figure 2.  Target areas in the Macquarie Marshes overlain on SPOT-5 

imagery (bands Red:NIR:Green in R:G:B): Area 1 (red) in the northern 

reserve; Area 2 (green) in the southern reserve; and Area 3 (blue) to the south 

of the marshes.  The boundary of the Macquarie Marshes Nature Reserve is 

shown in magenta. 

B. Macquarie Marshes 

The Macquarie Marshes constitute an inland semi-permanent 

wetland located in the Macquarie River Catchment in central-

western NSW. The wetlands have formed within an alluvial 

fan system which is characterised by a series of anastomosing 

channels running through the marshes [4]. The streams 

eventually drain into the Darling River (Figure 2).  The 

Marshes depend on the inflow of water coming from up-river 

and outside the immediate area for their maintenance and 

ecological survival. In this respect they differ markedly from 

the Mekong wetlands which receive seasonal rainfall and an 

annual inflow of floodwaters in the monsoon season. 

 

In the case of the Macquarie Marshes, 40-50% of the wetlands 

have already been lost and overall <10% of the original 

wetlands are considered healthy. Together with the impact of 

continued drought and water being diverted for irrigation, 

water availability to the marshes and inflow into this river 

Area #1 

Area #2 

Area #3 
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system in general is limited to the release of controlled 

environmental flows from upstream. 

 

III. PROJECT DESCRIPTION 

 

A. Lower Mekong Basin 

 

Objective: To detect changes in the magnitude and frequency 

of flood events, and identify land cover changes over selected 

wetland sites in the Lower Mekong Basin using a time-series 

of JERS-1 and PALSAR datasets.   

 

Specific aims include: 

i. Examine relative contributions of HH and VV 

polarizations to discriminate between wetland types; 

ii. Examine data for details of wetlands, generate site 

specific maps of wetland type and land cover change; 

iii. Create hydro-pattern maps based on individual 

scenes to show extent of flooding and relative water 

heights; 

iv. Merge multiple datasets and look at spatial variations 

in backscatter signatures over the temporal domain.; 

v. Determine disturbance  parameters in the selected 

wetland ecosystems through land development, land 

clearing for rice paddies, road constructions and  

water diversion; 

vi. Analyse for changes in wetland type and extent and 

impacts of disturbance. 

vii. Undertake field validation of image-map products 

with a revisit to nominated field sites and spot-checks 

of additional sites of interest identified in the 

imagery. 

Complex seasonal cycling involved in the change from wet-to-

dry conditions is not captured in a single date image.  This 

problem is resolved using multi-date imagery resulting in the 

likelihood of a much improved classification and monitoring 

scheme.  

Products to be derived from this K&C Initiative include 

image-maps of wetland cover and of annual changes in 

wetland cover, along with flood maps showing flood extent 

and seasonal floodwater recession patterns.  

 

B. Macquarie Marshes, Australian Murray-Darling Basin 

 

Objective: To undertake a multi-scene stack analysis of 20+ 

scenes of PALSAR data to identify hydrologic and vegetation 

response to changed flood and in-channel discharge conditions 

in a semi-arid environment. 

 

Specific aims include: 

i. Process a registered and calibrated time-series 

PALSAR dataset of both FBS and FBD imagery 

acquired over a 3-5 year time period. 

ii. Apply suitable image processing routines to enable 

class discrimination to be established between open 

water, saturated soil areas, bare ground and seasonal 

grasslands. 

iii. Apply suitable image processing routines to enable 

class separation between different wetland vegetation 

types, assess vegetation condition over time. 

iv. Relate class separation to periodicity and magnitude 

of flood events occurring over the same period. 

 

This study is assessing PALSAR FBS data for detecting 

surface water beneath tree canopies and for monitoring the 

impact of environmental flow on soil moisture and vegetation 

response and condition in these marshes [5] and [6]. 

 

Ultimately, the Project aims to demonstrate the benefits of 

incorporating SAR into an operational system for monitoring 

flooding, wetland and landuse dynamics, and assessing the 

impacts of climate change in this semi-arid environment.  This 

will be accomplished when a longer time-series of imagery 

becomes available. 

 

IV. METHODOLOGY 

 

The principal datasets for both investigations include JERS-1 

L-band wavelength, HH-polarization for the period 1992-98, 

and Fine-Beam PALSAR L-band wavelength, HH- and HV-

polarization collected for period 2006-2009.  ScanSAR strip 

data at 50m resolution is now available but has not yet been 

processed.  An important aspect of the Macquarie Marshes 

study is an evaluation of X-band (Terra-SAR) and C-band 

(Radarsat-1) datasets with PALSAR acquired for near 

corresponding dates.  HyMap hyperspectral data and field 

observations complement the Macquarie Marshes radar data. 

 

In the LMB SRTM height data and time-series radar data was 

used for hydrological and wetland dynamic studies, 

complemented with high-resolution optical imagery and 

stream-gauging information for flood assessment.  

 

PALSAR and JERS image intensity data were provided by 

JAXA as calibrated datasets.  Each was subsequently adjusted 

to dB values using the documented techniques allowing direct 

comparison between processed data of each system. 

 

Initial assessment of the map geometry supplied in the header 

file for each JERS and PALSAR scene showed the coordinates 

to be unreliable.  Therefore considerable time was spent 

geolocating each scene to UTM map projection using ground-

control points selected from a reference optical scene.  Final 

registration accuracy was <1 pixel.  Multi-date scenes of JERS 

and PALSAR were assembled for each study site into a stack 

of registered scenes suitable for time-series analysis. 

 

Image enhancement and information extraction  procedures 

used  include; single-date grey-tone images, ratio greytone 

images, RGB colour-composite images of multiple dates and 
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polarizations, data transforms, change detection, multivariate 

analysis, segmentation and classification. 

 

Advanced processing techniques were applied to quantify the 

land-cover and determine how the cover classes alter over 

time in response to variations in local topography, climatic 

change and anthropogenic impacts such as forest and wetland 

clearing, flooding, reduced water availability and urbanization.  

 

V. RESULTS 

 

A. Lower Mekong Basin 

 

The capacity to map and monitor the incidence of seasonal 

flooding in the LMB as well as observe the larger regional 

responses to seasonal change are shown in Figure 3.  These 

ScanSAR images (50 metre resolution) for 5th November, 

2006, which marks the end of the wet season, records the 

extent of flooding in the Tonle Sap Lake.  The inflow of water 

comes from the flooded Mekong River.  Tonle Sap occupies 

the bottom of a shallow basin with water levels peaking at 

around 6-8 metres above sea level at peak flood height when 

the capacity of the lake increases fourfold. 

 

 
Figure 3.  ScanSAR images of Tonle Sap Great Lake in Cambodia showing 

seasonal flood extent, wetlands and permanent surface water.  Comparison 

indicates the extent of flooding during the wet season and open surface water 

bodies in the dry season.  © JAXA/METI  

The dry season image for 23March 2007 in contrast shows a 

shrunken lake area as the floodwater drains back into the main 

channel of the Mekong River.  This annual reversal of flow 

dominates the ecological and human response to the prevailing 

environmental conditions.  The expanded dark areas in the 

March image away from the lake and adjoining wetlands are a 

backscatter response from dry rice paddies and bare fields. 

 

Figure 4 shows in more detail the impact of flooding and the 

effect of falling lake levels along the western end of the Tonle 

Sap Lake.  Extensive areas of wetland forest are covered by 

water in the wet season but have ‘emerged’ as the water level 

in the lake falls to its lowest in the dry season.  Detailed 

mapping and classification of this wetland is given in [2]. 

 

 
Figure 4.  Northern end of Tonle Sap Great Lake - ScanSAR images acquired 

during the wet (November) and dry (March) seasons show clearly the 

seasonal differences in the level of water in the lake and also highlight 

flooding under tree canopies, especially apparent in the wet season.   

© JAXA/MET  

 

Calibration of JERS-1 and PALSAR into a multi-temporal 

dataset spanning the period 1992-2007 permits the analysis of 

landscape change over a much longer period.  

 

Figure 5 displays a time-series colour-composite image of 

JERS-1 Sept.1992, JERS-1 Sept.1998 and PALSAR 

Sept.2007 as RGB, respectively.  This image shows a 

consistency in the flood pattern of the Mekong River for the 

September time-frame which is the height of the wet monsoon 

season.  The adjacent scene is a difference image from 

calibrated scene backscatter data for Sept 1992 and 2007. 

Increases or decreases in backscatter are shown in db. 

 

 
Figure 5.  Siphandon, Lao PDR:   

Left image: time-series RGB colour-composite image comprising 

JERS (Sept.1992) : JERS (Sept.1998) : PALSAR (Sept.2007), respectively.   

Right image: change detection over a 15 year period, Sept.1992 to Sept.2007.  

Increase in biomass, maturation of rice crops etc. are shown in yellow; a 

general increase in the level of foliage cover as green; water surfaces, rough 

(Sept.1992) and smooth (Sept.07) as cyan-blue, and transport routes as 

blue.  © JAXA/METI 

 

The capacity to use PALSAR data to capture seasonal and 

intra-annual change in landscape dynamics information is 

depicted in Figure 6.  Here a mid-dry season image (January), 

an end of dry season image (March) and an early wet season 
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image (September) from 2007 are combined allowing 

discrimination of more land cover types than is possible with a 

single-date image.  

 

 
Figure 6.  Three-date colour composite image of the Prek-Toal Nature Reserve, 

Cambodia.  The colour and hues are in response to changing backscatter 

conditions that occur as a result of falling water levels and crop phenology.   
© JAXA/METI 

 

Figure 7 shows the relative changes that have occurred over a 

fifteen year period (1992-2007).  While the dataset has not yet 

been classified, an intuitive interpretation of some of the 

probable changes in land cover that have taken place at 

selected locations is noted with the image. 
 

 

Red: JERS HH   15Sep92
Green: JERS HH   24Aug97
Blue: PALSARHH   01Sep07

Within the wetland floodplain:

1. Black: Surface water – incl. 
lake, rivers, recessional rice -
fields

2. White – no change in status of 
vegetation

3. Red – clearing between Sep92 
and Aug97,

4. Pink – Cleared between Sep92 
and Aug97, regeneration 
between Aug97 and Sep07

5. Yellow -orange –clearing between 
Aug97 and Sep07, increased 
recessional rice -fields

6. Blue – open water in Sep92, 
closed canopy of forest, shrub 
and/or grassland in Aug97 and 
Sep07

7. Blue -green – could be driven by 
changing water height below 
canopy and extensive exposure 
of flood water within the 
canopy in Sep92 image.  If this 
is not the driver then the 
density and canopy closure of 
the forest has increased from 
Sep92 to Sep07 – possibly from 
regeneration.

Agricultural land:
1. Black – common flood levels
2. Blue – High flood levels in 

Sep92
3. Green – increased rice, lesser 

surface water in Aug97

3

4

7

5

6

2

1

Time-series RGB image

Figure 7.  Tonle Sap change image resulting from the RGB combination of 

JERS-1 Sept. 92, JERS-1 Aug.97 and PALSAR Sep.07 - possible changes 

identified are described for seven locations.  © JAXA/METI 

 

A more detailed analysis in landscape change in the LMB 

awaits the availability of an extended PALSAR time series 

from the 2009 -2011 period.  

 

B. Murray-Darling Basin 

 

Vegetation cover in the Macquarie Marshes is must less 

luxuriant than that found in the LMB.  Here sedges, shrubs and 

grassland dominate with eucalypt (River Red Gum) forests 

aligning the waterways, with occasional open woodlands on 

the periphery of the forest stands.  

 

Analysis of PALSAR data acquired over the Macquarie 

Marshes in 2006, 2007 and 2008 was centred on the impact of 

a single flood event in January 2008.  From available stream 

discharge records, it is not clear if in fact and to what extent 

overbank flows occurred within the marshes.  In addition to 

identifying flooded forest wetlands, determining the inundation 

pattern, detecting areas of increased surface soil moisture and 

ephemeral vegetation growth on the floodplain, also became 

drivers in this analysis. 

 

Flooded forests are easily recognised in PALSAR data by their 

bright response and enhanced backscatter at L-band HH 

polarisation as a result of penetration of the tree canopy and 

double-bounce interactions between the large branches and 

trunks and the underlying, highly reflective inundated surface.  

Strong returns from single-bounce interactions at HH and HV 

polarisation with large branches and trunks are also observed. 

 

In the single-date image shown in Figure 8, areas of flooded 

forest are bright.  Ponded areas and open water in channels 

(black on image) are scattered throughout the wetlands, 

including water flowing into the River Red Gum forest (purple 

arrow), Loudens lagoon (red arrow), Third Crossing Lagoon 

(orange arrow) and Bora Creek (blue arrow).  The dark 

patches on the western side of the image comprise old river 

channels and scalded bare ground.  Water has accumulated in 

the depressions and flat scalded areas forming a thin film of 

mud that induces a specular response, and so these areas 

appear black.   

 



 6 

 
Figure 8  ALOS-PALSAR L-HH data over Area 1.  The image was acquired 

on 21 January 2008 when the wetlands were at their wettest after a minor 

flood event   © JAXA/METI 

 

In Figure 9 a decorrelation stretch has been applied to 

highlight different surface conditions retrieved from a three-

date multi-temporal dataset. 

 

A decorrelation stretch provides a simple and effective method 

to remove high inter-band correlation and increase the range 

and diversity of colours in a colour composite image.  The 

areas of flooded forest (yellow) have been masked from the 

image.  There is good discrimination between open water 

(purple), edge wetland or marsh (red-magenta), inundated 

floodplain (green), other forest (pink) and surrounding 

wetland (blue). 

 

 
Figure 9.  Decorrelation stretch of PALSAR bands Oct07 HH, Jan08 HH and 

Mar08 HH.  Area 1, Northern Macquarie Marshes Nature Reserve.  

© JAXA/METI 

 

  

A variety of advanced data-processing techniques are 

available to visually enhance and combine multiple dates of 

imagery for improved surface water detection.  When applied 

to L-band PALSAR data, Independent Components Analysis 

(ICA) and Minimum Noise Fraction (MNF) provided good 

separation of flooded forests, open water, saturated soils and 

floodplain wetland.  However, decorrelation stretching of the 

PALSAR dataset enhanced equally the visual detail and 

produced a colourful 3-band composite of the scene.  Areas of 

open water, water with a cover of aquatic vegetation and wet 

soil were better discriminated in the decorrelation stretched 

image than in the ICA and MNF images. 

   

Nevertheless all these techniques are effective in developing 

indices across dates when applied to stable calibrated data.  

Data acquired by ALOS PALSAR meet this criterion.  

 

Multi-temporal PALSAR imagery can be interrogated and 

used to delineate wetlands, locate open water bodies, detect 

flooding beneath forest cover, identify flood extent and in this 

case, the area of the enlarged floodplain that was not flooded 

in January 2008. 

 

The impact of temporary overbank flow from river channels 

and subsequent inundation of the heavily clayed floodplains is 

manifested on SAR imagery in different ways.  Additional 

water leads to an increase in surface soil moisture and may 

also cause the water table to rise close to the surface.  This soil 

moisture response can be observed at any wavelength by the 

increase in brightness or surface roughness caused by an 

increase in the dielectric and a flush in ephemeral vegetation 

growth. A vegetation flush is more easily confirmed in shorter 

wavelength data (e.g., C-band, ~5.3 cm; and X-band, ~2.5 

cm), as a first surface return is received from diffuse scattering 

between small canopy components (leaves and stems).  

 

21Jan08  L-HH 
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End-member analysis using the Spectral Angle Mapper is a 

rapid classification technique that determines the L-band HH-

polarimetric similarity of selected end-member spectra 

(average spectra from regions-of-interest representing selected 

surface types) to spectra of all pixels in the scene.  It is 

essentially a physically based technique that determines the 

spectral similarity between two spectra by calculating the 

angle between them, treating them as vectors in space with 

dimensionality equal to the number of bands (3 dates).  

Smaller angles represent closer matches to the reference 

spectrum.  

 

Areas that satisfy the criterion for 3 cover types, surface water, 

marshlands adjacent to the red-river gums, and floodplains 

subject to inundation, have been classified and are shown in 

Figure 9.  Pixels further away than the specified threshold are 

not classified.  The percentage cover of each class is also 

calculated (surface water 1.3%; marshland 4.3% and 

floodplain 7%).  A median filter has been applied to suppress 

spuriously classified pixels.  Forests and the immediate 

marshlands were flooded, but not part of the surrounding 

floodplain (blue in Figure 9). 

 

 
Figure 9   Spectral Angle Mapper (SAM) images based on PALSAR Oct.HH 

07, Jan.HH 08 and Mar.HH 08 data of the Macquarie Marshes.   

© JAXA/METI 

 

Area 2 of the Macquarie Marshes is largely bare open ground 

covered with sedges and grasses which respond to flooding. 

Scattered trees and taller shrubs mark the watercourses.  This 

effect is seen in Figure 10 where the areas displaying the 

highest component of change (+db) captured in the time-

series, are covered with ephemeral vegetation underlain by 

soils with a high soil moisture content. 

 

  

 
Figure 10.  Area 2, Southern Macquarie Marshes Nature Reserve - colour 

composite and change detection images applied to HH-polarization PALSAR 

data acquired on 21Oct.07 and 21Jan08.   

Top: R:G:B image of Oct07:Jan08:Oct07, respectively; 

Bottom-left: Band difference - Jan08 minus Oct07; and  

Bottom-right: Change detection, Oct07 to Jan08 – classes displayed in 3 dB 

increments for a +/- 9dB range.  © JAXA/METI 

 

The integration of multi-frequency SAR data in the form of 

PALSAR and TerraSAR-X can be shown to improve the 

discrimination of some wetland surfaces.   
 

The TerraSAR-X StripMap data over Area 1 shown in Figure 

11 was acquired on 2March 2008 and the PALSAR FBS data 

on 7March 2008.  The TSX data provides a first return or 

largely a top of the canopy response, hence dark areas on the 

floodplain at X-band reveal areas where the water has flooded 

and overtopped the vegetation.  Elsewhere there is a 
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vegetation response from the sedges and low grasses that 

cover the remainder of the floodplain.  
 

 
 

Figure 11.  Integration of L-band PALSAR and X-band TerraSAR-X data for 

discrimination of wetlands.  Area 1, Northern Macquarie Marshes Nature 

Reserve.  ALOS K&C © JAXA/METI 

 

 

An R:G:B colour composite image using bands 

TSX 2Mar08HH : PALSAR 7Mar08HH : TSX 2Mar08HH 

respectively, provides good discrimination of wetland 

surfaces.  The backscatter over the floodplain wetland is 

dominated by the PALSAR Mar08 response (green on image).  

This is due largely to the L-band response to high soil 

moisture and roughness.   

 

The backscatter over the surrounding floodplain area is 

dominated by the TXS Mar08 response (purple on image).  

The low shrubs and grasses of the floodplain provide many 

opportunities for volume scattering at X-band.  Patches are 

observed in the edge wetland where the response is also 

dominated by the TSX Mar08 image.  These are most likely 

areas of very high backscatter a result of ponded water with 

aquatic vegetation 

 

In the PALSAR data, however, the full extent of the 

floodplain can be determined as flooded or not, since the 

longer wavelengths interact only with the woody component 

and not the shorter grasses. 

 

The integration of near-coincident PALSAR and TerraSAR-X 

data revealed the extent of floodplain inundation and presence 

of aquatic vegetation in ponded areas.  The PALSAR data 

were responsive to areas of high soil moisture and roughness, 

including flooded forest and wet soils.  The dark areas on the 

floodplain at X-band reveal areas where the water had 

overtopped the vegetation in the wetlands.  Scattered bright 

patches indicate high dielectric from soil moisture and or 

roughness from the surface of ponded water or water with 

aquatic vegetation.   

Change detection applied to suitably calibrated SAR data 

reveals areas where a change in brightness has occurred in 

response to changes in wetland condition and provides a 

mechanism for understanding the hydrological and ecological 

changes occurring in an area.  The integration of L-band 

PALSAR data and the shorter wavelength TerraSAR-X or 

Radarsat-1 data provides good opportunities for the further 

characterization of wetland extent and surface composition. 

 

VI. CONCLUSIONS 

 

This study which is ongoing demonstrates the ability of 

PALSAR to map and monitor changes in wetland hydrology 

and to discriminate between different wetland cover types.  

 

In the Lower Mekong Basin flood mapping and determining 

wetland extent are clearly possible with PALSAR data.  

Detecting changes in the landscape response as water levels 

retreat can be deciphered from multi-temporal datasets.  

Registration and analysis of calibrated JERS-1 and PALSAR 

data allow scene changes over a longer period of time. 

 

Following the release of environmental water into the 

Macquarie Marshes, and acquisition of a suitable short period 

time-series of L-band ALOS PALSAR data, the following 

outcomes were realized: 

 

• The presence of and changes in surface water and soil 

moisture content; 

• The generation of spatial map data of inundation extent 

over the period of image acquisition; 

• The monitoring of flood extents and changing wetland 

dynamics over the time-frame of image acquisition; 

• The discrimination of wetland cover classes using time-

series analysis; 

• Monitoring of changes in wetland condition using change 

detection techniques; and   

• The generation of spatial map data of wetland community 

extent. 

 

Additionally, the incorporation of multi-frequency SAR data 

(e.g., ALOS PALSAR and TerraSAR-X) may help achieve 

improved discrimination of wetland cover types based on 

shorter- or longer-wavelength radar response to vegetation 

structure, moisture content and surface roughness.  
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Abstract—Methods for classifying mangrove communities from 

remote sensing data has primarily focused on extent, structure, 

biomass and/or dominant/species or genus.   However, many 

algorithms have been developed on and applied to local regions 

but are not applicable at regional levels.   For the tropical and 

subtropics, data from the Japanese Space Exploration Agency’s 

(JAXA) Advanced Land Observing Satellite (ALOS) Phased 

Arrayed L-band Synthetic Aperture Radar (PALSAR) have been 

acquired routinely since 2006.  As part of the JAXA Kyoto and 

Carbon (K&C) Initiative, regional mosaics of L-band HH and 

HV data have been generated for insular and mainland Southeast 

Asia, northern Australia, Belize and the Amazon-influenced 

coastline of South America.  By using these data in conjunction 

with Shuttle Radar Topography Mission (SRTM)-derived 

estimates of mangrove canopy height, a classification of forest 

structural types was developed which could be applied regionally 

and potentially across the range of mangroves.   Across the 

tropics and subtropics, mangroves are also subject to change in 

response to natural or anthropogenic drivers.  Identifying such 

change requires, in many cases, the establishment of baseline 

datasets of mangrove extent although spatial information on the 

distribution of dominant species and both structure and biomass 

as a function of growth stage is desirable.  For the same regions, 

comparison with existing baseline datasets established areas of 

significant change in French Guiana, Southeast Asia and 

northern Australia, with each attributable to different causes.   

The study highlighted the benefits of ALOS PALSAR for 

detecting change, particularly given the prevalence of cloud-

cover in many regions.  The utility of and requirements for the 

inclusion of PALSAR data within a global mangrove mapping 

and monitoring system are highlighted. 

Index Terms—ALOS PALSAR, K&C Initiative, Forest 

Theme, mangroves, structure, change. 

I.  INTRODUCTION 

A. Characterisation of mangroves 

The mapping of mangrove extent and type in many regions 

has focused largely on the use of optical remote sensing data 

and especially that acquired by Landsat, SPOT and ASTER 

sensors.  A particular advantage of using optical data is that 

mangroves are relatively distinct from non-mangrove areas, 

although confusion with adjoining tropical forests often leads 

to errors in the mapping of mangrove extent. Approaches to 

classification have varied and have included the use of 

standard classification supervised and unsupervised 

classification algorithms.  However, typically only 2-3 

mangrove classes have been mapped with these relating 

primarily to species, structure and/or biomass.  Many of the 

classifications have also been developed and applied to local 

areas of mangroves and often cannot be applied more widely.   

Whilst Synthetic Aperture Radar (SAR) have been used 

for characterising and mapping mangrove extent in some 

regions, most SAR have operated at higher frequency C-band 

(~ 2.6 cm wavelength) microwaves which interact primarily 

with the upper surface of the canopy.   For this reason, 

separation between mangroves and other vegetation types and 

those with different structure and biomass has proved difficult, 



although some success has been obtained using combinations 

of SAR and optical data. 

The launch of the Japanese Space Exploration Agency’s 

(JAXA) Advanced Land Observing Satellite (ALOS) Phased 

Arrayed L-band SAR (PALSAR) in 2006 therefore 

represented a milestone in the global observation, 

characterisation, mapping and monitoring or mangroves, 

largely because these provide more information on the three-

dimensional structure and biomass of woody vegetation and 

the presence and extent of (primarily tidal) inundation. As data 

can be day or night regardless of weather conditions, 

mangroves can be observed more frequently, even in regions 

with prevalent cloud cover.   

 

B. Detection of change 

Mangroves are dynamic ecosystems, responding to 

changes in the coastal environment by colonising areas where 

sediment has accumulated and facilitating further accretion 

[1].  Where changes are adverse (e.g., changes in tidal flow, 

flooding or storm damage), degradation or dieback of 

mangroves may occur with subsequent impacts on the 

distribution and state of the substrate.   In the past, such 

changes have been the consequence of natural processes (e.g., 

sea level fluctuation) or events (e.g., cyclones or tsunamis).  

However, the trajectories of change are being altered by 

human-induced climate change which is manifesting itself as 

increases in the number and intensity of climate-related events 

(e.g., storms), longer term shifts in climate (e.g., temperature) 

and rises in sea level.  Disaggregating the influence of climatic 

change on mangroves distributions and state from that 

associated with natural processes is therefore presenting a 

major challenge. 

The situation is made more complex by the more direct 

impacts of human activity on mangroves.  In many regions, 

extensive areas of mangrove have been cleared to support 

urban development, agriculture (e.g., rice production),  

mariculture (e.g., oyster and mussel fisheries) and pond 

culture (mainly shrimps) [2]. The influence of climate change 

processes on such mangroves is therefore often masked as 

such activities often lead to artificial changes in hydrological 

and tidal flows and recolonisation of mangroves is often 

prevented as the land previously available for expansion is 

otherwise designated for human use.   Many mangroves areas, 

which might have been indicators of a changing climate, have 

been and continue to be cleared despite their importance (e.g., 

as a breeding ground for fish and sustainable source of natural 

materials).  Even so, the role of mangroves in protecting 

coastlines is also becoming increasingly apparent, particularly 

since the 2004 Asian tsunami, and efforts are ongoing to 

ensure their long-term preservation in many regions. 

C. Research objectives 

Focusing on northern Australia, the Amazon-influenced 

coast of South America, central America (Belize) and 

southeast Asia, the research had two main objectives: 

 

a) To establish the potential of the ALOS PALSAR, 

either singularly or in conjunction with other remotely sensed 

data, for consistent regional characterisation of mangroves.  In 

particular, the research sought to provide better information 

for discriminating structural or biomass classes. 

b) To investigate the use of these data for detecting 

changes in mangroves and to establish the causative factors. 

 

These areas were primarily selected as they are supported 

extensive areas of mangrove and were subject to natural and 

human-induced influences, including that associated with 

climate changes.   

II. BACKGROUND 

L-band microwaves (wavelength approximating 25 cm) 

emitted by the ALOS PALSAR penetrate through the foliage 

and interact primarily with the woody components of 

vegetation [3].  Horizontally transmitted waves are either 

depolarised through volume scattering by branches in the 

canopy, with a proportion of vertically polarised microwaves 

returning to the sensor, or penetrate through the canopy and 

interact with the trunks, returning primarily through double 

bounce scattering, as a horizontally polarised wave  However, 

where extensive prop root systems occur, as in the case of 

higher biomass mangroves dominated by Rhizophora and, to a 

certain extent, the sapling stage of Brugeiria and Ceriops 

species [2], multiple scattering results in little energy returning 

to the sensor, particularly in the HH polarisation [3,4]. This 

scattering behaviour is captured in the dual polarised L-band 

HV and HH data respectively. 

Whilst these interactions are well known, the use of L-band 

HH and HV data for mapping and/or characterising 

mangroves is complicated by the following: 

 

a) Similarities in the L-band response of mangroves and 

adjacent forest areas often prevent their discrimination and 

mapping. 

b) Where mangroves with extensive prop root systems 

occur, these often exhibit a low L-band backscatter 

(particularly at HH polarisation), which leads to confusion 

with non-vegetated areas. 

c) L-band backscatter is enhanced when mangroves are 

tidally-inundated. 

 

For these reasons, additional information has to be referenced 

to assist their characterisation.   

For global mapping of mangrove extent, optical remote 

sensing (e.g., Landsat sensor) reflectance data have been 

widely exploited.  Derived products, such as the Landsat-

derived Foliage Projected Cover (FPC; [5]) used for mapping 

the extent of woody and non-woody vegetation in Australia, 

have also shown promise.   However, whilst the use of optical 

remote sensing data can assist the mapping of mangroves, 

these data are often difficult to use in combination with 

regional SAR data as the prevalence of cloud in many areas 

limits opportunities for acquisition.   Nevertheless, many of 

the World’s mangroves have been mapped using these data, 



and often in conjunction with aerial photography.   Such data 

have been collated into regional to global reference datasets 

(e.g., the Global Atlas of Mangroves; [6]) and maintained 

and/or published by national and international organisations, 

such as the United Nations Environment Program (UNEP) 

World Conservation Monitoring Centre (WCMC).   Whilst 

much of these data have come from different sources and been 

generated using a range of methods, they nevertheless provide 

a baseline of current knowledge.   Within the mapped area, 

mangroves can then be characterised using, for example, SAR 

data, and variations from the baseline used to detect and 

describe change.  

The characterisation and mapping of mangroves across 

their range requires consistent and systematically acquired 

global datasets, which necessarily obtained using satellite 

sensors.  The ALOS PALSAR archive represents one of these 

datasets.  Two other datasets are associated with the 

Geoscience Laser Altimeter System (GLAS) carried on the 

ICESat Mission; [7]) and the Shuttle Radar Topography 

Mission (SRTM; [8]). The ICESAT GLAS is a full waveform 

LiDAR that provides height profiles for footprints 70 m in 

dimension and with a post spacing of 14.5 km at the equator.  

These data have been shown to be sensitive to the heights of 

mangroves [9]. The SRTM took place in 2000 during which 

C-band SAR interferometric sensors onboard the Space 

Shuttle Endeavour acquired data that was used subsequently to 

generate a Digital Surface Model (DSM) for the majority of 

the Earth’s surface.  However, the dominant interaction of C-

band microwaves with the leaves and small branches of the 

upper canopy [9] resulted in the overestimation of ground 

surface height for many forested areas.  Whilst the potential 

for direct retrieval of forest height was recognized early on 

(e.g., [10], this required a reliable Digital Terrain Model 

(DTM) which was not always available.  However, as 

mangroves occur at sea level, the height determined by the 

SRTM approximates the average stand height.   The major 

limitation was that the SRTM data were distributed at 90 m 

spatial resolution, although finer (30 m) resolution data were 

or will be released for some regions. Using SRTM data, 

calibrated with both field and ICESat data, [9] reported that 

the crown weighted mean height (HCWM) for mangroves was 

related to the SRTM height (HSRTM) by: 

 

HCWM = 2.1 + 0.94 HSRTM    (Equation 1) 

 

with the margin of error being +/- 1.9 m.  

Individually, data from the ALOS PALSAR, optical 

sensors and the SRTM provide unique information on the 

extent and characteristics of mangrove ecosystems.  However, 

when combined, considerable insight into the extent and 

structure of mangroves can be obtained which can be 

exploited to assist their classification.   As these data are 

globally available, the potential exists for the development of 

a regionally-consistent algorithms for characterization and 

detection of change.  

III. METHODS 

A. Study areas 

The method for characterising mangroves using the 

available datasets was developed initially for mangroves 

occurring in northern Australia, Belize and the Amazon-

influenced coast of South America and is currently being 

applied to areas within southeast Asia.  In all regions, the 

structural diversity of mangroves is similar in that canopy 

heights can 30 m in some areas, a closed canopy is 

commonplace, and the same types of rooting systems are 

evident.  Levels of biomass are also similar although vary 

across the coastal environment as a function of environment 

and growth stage.  

Mangroves in Australia are extensive (1.5 million ha in 

2005; [2]), particularly along the northern and eastern 

coastlines. As with southeast Asia, the species diversity is 

high. Whilst urban expansion has been primarily responsible 

for the loss of mangroves in Australia, the majority remains 

relatively pristine and, as such, are useful barometers of 

environmental change 

The mangroves of French Guiana and Brazil cover 55,000 

and 1.0 million ha respectively (FAO, 2007).  Those occurring 

along the 1600 km stretch of coastline north of the Amazon 

mouth are particularly dynamic because they receive vast 

amounts of sediment from the Amazon River. [10] describe 

this area as being under the influence of the Amazonian 

Dispersal System whereby alternate sequences of substantial 

accretion and erosion occur.  Changes in mangroves are 

therefore associated primarily with these processes, although 

some human-disturbance is evident.   Sediment delivery may 

also be affected by changes in climate within the Amazon 

region and also the amount and nature of deforestation 

activities over time.  This low-lying area is vulnerable to sea 

level rise and also storm and wave damage.  

The Southeast Asia region supports approximately 4.9 

million ha of mangrove, with these distributed primarily in 

Indonesia, Malaysia and Myanmar (Table 1).  Whilst rates of 

change have generally been reported as < 1 % for many 

regions, this translates to significant losses for Indonesia and 

Malaysia in particular with most associated with land use 

change (e.g., for mariculture) and extensive logging [2].   

 

Table 1.  Area of mangroves, Southeast Asia (FAO, 2007) 
Country Area (ha) Year1 Country Area (ha) Year1 

Brunei 

Darussalam 

18418 1996 Philippines 247,362 2003 

Cambodia 

 

72,835 

 

1997 Singapore 500 1990 

Indonesia 

 

3,062,300 2003 Thailand 244,085 2000 

Malaysia 

 

564,971 2005 Vietnam 157,500 2000 

Myanmar 518,646 1999 TOTAL 4,886,617 
1Year for which estimates were current 
 



B. Satellite and ground data 

For Australia, Belize and the Amazon-influenced coasts, 

ALOS PALSAR strip mosaic data (Level 1.0) at a reduced 

spatial resolution of 50 m were provided by JAXA.  Using 

Gamma SAR processing software [12], these data were 

calibrated and orthorectified to standard regional coordinate 

systems. For all areas, orthorectification was undertaken by 

cross correlating a SAR image simulated from SRTM with 

ALOS PALSAR data and using ALOS orbital state vectors and 

ancillary information.  However, for the Australian strips, the 

process was refined through cross-correlation with Landsat 

panchromatic mosaics largely because of the lack of significant 

relief in many northern regions. Cross-track correction and 

mosaicing of the orthorectified strips was undertaken using 

procedures within Gamma and also developed by the European 

Commission’s Joint Research Centre (JRC).  The procedures 

were developed to ensure a high level of geometric accuracy 

(geocoding errors were typically less than one pixel and better 

in northern Australia where the panchromatic data had been 

used in the orthorectification process; Figure 1).  The cross 

track correction and mosaicing procedures allowed the 

provision of relatively seamless regional mosaics for most of 

the study regions and particularly for areas of homogeneous 

cover (e.g., forested areas in South America; Figure 2).  

Difficulties in obtaining seamless mosaics for northern 

Australia were encountered but was not limiting for 

characterising and mapping mangroves. 

 

 
Figure 1.  Extent of mangroves overlain onto orthorectified ALOS PALSAR 

HH mosaic (errors of registration < 50 m) 

 

A number of existing spatial datasets were available to 

support the detection of change from the ALOS PALSAR. For 

all regions, the United Nations Environment Program (UNEP) 

World Conservation Monitoring Centre (WCMC) provided a 

global polygon dataset generated in collaboration with the 

International Society for Mangrove Ecosystems (ISME), 1997. 

A polygon dataset prepared for the forthcoming 2
nd

 edition of 

the World Atlas of mangroves compiled by UNEP WCMC 

[13], and funded by ITTO, was also made available.  Other 

datasets were also available for the study regions.  For 

Australia, existing mangrove coverages provided by the 

Environmental Protection Agency (EPA) Queensland 

Herbarium (QH) were utilised.  These provided a baseline map 

of mangroves, primarily for Queensland.  For Belize, French 

Guiana and regions of Brazil (e.g., the Bragantina), nationally-

generated datasets were available.  

 

 
Figure 2.  ALOS PALSAR mosaic of the Amazon influenced coast 

generated using Gamma SAR processing software (L-band HH, HV and 

HH/HV in RGB). 
In establishing baselines of mangrove extent, information 

from countries in the tropics and subtropical regions was 

necessarily collated.  However, the methods of mapping 

mangroves in each of the contributory countries varied as did 

the time-period over which the mapping was valid.   Updating 

of estimates using, for example, Landsat sensor data was not 

possible because of issues relating to data availability and 

cloud cover [2], although these baselines could be adjusted to a 

common mid 1990s date using Japanese Earth Resources 

Satellite (JERS-1) SAR data (which were available for selected 

regions). 

C. Ancillary datasets 

For all regions, SRTM tiles at 90 m spatial resolution were 

combined to generate regional mosaics.  As the SRTM mosaics 

were used in the orthorectification of the ALOS PALSAR data, 

errors in spatial registration were minimised. For northern 

Australia only, Landsat-derived FPC data were obtained from 

the Queensland Department of Natural Resources and Water 

(QDRNW). 



For sites in northern Australia (Kakadu National Park in the 

Northern Territory and the Daintree River National Park in 

Queensland), a range of airborne data, including that acquired 

by polarimetric multifrequency airborne SAR and 

hyperspectral sensors, was available to support the 

interpretation of the ALOS PALSAR and other data.  Products 

derived from these data included canopy height maps 

(generated from stereo aerial photography and SAR 

interferometry; [4,13,14] and species maps (classified from 

hyperspectral data; [15]).   For Belize and French Guiana, 

interferometric and/or polarimetric SAR data were acquired for 

areas of mangrove along the coast. 

D. Approach to classification 

Based on previous studies using the available airborne 

datasets [3], the following observations were used to develop 

rules that could be used subsequently in the classification of 

mangroves.  In particular: 

a) With increases in the biomass of most mangrove 

communities, the radar backscatter was shown to increase to 

about 100-120 Mg ha
-1

 at which point, saturation of the signal 

was observed such that no further increases with biomass were 

observed.  However, the exception was mangroves with 

extensive prop root systems where the L-band HH and HV 

backscatter was shown to progressively decrease with increases 

in biomass above 100-120 Mg ha
-1

 (Figure 3). 

b) Mangroves with these high levels of biomass 

generally exceeded 10 – 15 m in height, as estimated from 

ground data and stereo aerial photographs.   

c) Comparison of Digital Elevation Models (DEMs) 

determined from Intermap X-band SAR and SRTM C-band 

SAR acquired over mangroves in Belize suggested reliable 

retrieval of height by the SRTM where mangroves were greater 

than 10 m in height and the 90 m pixel was largely occupied by 

the mangrove canopy.  Where the height was < ~10 m and the 

90 m pixel area was only partially occupied by mangroves, 

height retrieval was less reliable.   

Within all regions, mangroves could be mapped using 

ALOS PALSAR data alone when bordered by non-vegetated 

areas.  However, when occurring adjacent to forests on the 

landward margins, discrimination was often difficult (Figure 

4).  For this reason, the extent of mangroves was defined on the 

basis of existing mapping which had primarily been generated 

using optical remote sensing data.   

 

 
Figure 3.  Observed relationships between SAR backscatter and biomass for 

Australian mangroves.   Note the decline in backscatter above 100–120 Mg ha-1 

 

 
 

Figure 4.  ALOS PALSAR image (L-band HH, HV and the ratio of HH and 

HV in RGB) illustrating the difficulty in discriminating mangroves from 

proximal rainforest and other vegetation covers. 
 

Using Definiens Developer software [16], a segmentation 

of the imagery was undertaken whereby objects (one or several 

pixels in size) were generated within the pre-defined area of 

mangrove.  A rule-based classification was then applied in two 

stages to map three forest structural types.   First, mangroves 

<= and > 10 m (as defined using the SRTM-derived HCWM; 

Equation 1) were separated.  Second, and for mangroves > 10 

m in height, an L-band HH backscatter <= or > a specified 

threshold was used to separate higher biomass mangroves (> ~ 

100 – 120 Mg ha
-1

) with prop roots from those without. This 

latter category was associated with species with 

pneumatophores typical to the genera Avicennia, Sonneratia 

and Laguncularia [2]. A refinement to the segmentation was 

undertaken in Australia where mangroves with a mean and 

standard deviation of Landsat-derived FPC above specified 

thresholds were mapped initially with these assumed to support 

a closed canopy and the same rules outlined above were 

applied.  Below this threshold, mangroves were assumed to be 

of limited spatial extent and/or fragmented and a separate class 

was defined, particularly as the height estimates were then 

considered to be less reliable.   An FPC threshold of < 12 % 

was used to define non- or sparsely vegetated areas.    

E. The detection of change 

For the detection of change, differences between the extent 

of mangroves mapped within the existing baseline datasets and 

that observed within 2007 ALOS PALSAR data mosaics was 

mapped.   The change detection procedures were again 

developed within Definiens Developer software and focused 

primarily on the loss of mangroves from the existing baseline 

area and also on expansion of mangroves in the seaward 

direction.  Inland extension of mangroves could be detected 

where expansion occurred into non- or sparsely vegetated areas 

but not into areas occupied previously by other forests or 

previously disturbed (e.g., tree plantations), because of 

similarities in backscatter at both L-band HH and HV 

polarisation.   For several areas (e.g., French Guiana), regional 

mosaics of JERS-1 SAR data, acquired between 1992 and 

1998) were available and could be used to adjust existing 



baselines to a common reference year.  For Queensland, 

Landsat-derived Foliage Projected Cover (FPC) data (range 0 

to 100 %) were available for 2006. Within these data, 

mangroves were particularly evident as their closed canopy led 

to FPC percentages of > 80 %, with lower values associated 

primarily with low and scattered mangroves.  These data were 

used to confirm the extent of mangroves mapped within the 

baseline.   

IV. RESULTS  

A. Examples of mangrove classifications 

The rule-based classification was applied initially to sites 

for which a) ground data and/or airborne data and derived 

products were available or b) extensive tracts of mangrove with 

distinct zonations occurred.  As an example, Figure 5 illustrates 

the distribution of the three main mangrove categories for 

Hinchenbrook Island, Queensland, Australia.   The majority of 

tall mangroves with prop roots (primarily R. stylosa) are 

located on the seaward margins.  

 

 
Figure 5.  The distribution of mangroves < 10 m (green), > 10 m without prop 

roots (olive) and > 10 m with prop roots (red). 

 

B. Comparison with existing mapping 

Comparisons with existing classifications were undertaken, 

noting that the majority of these focused on the classification of 

species type or relative height classes. By contrast, the rule-

based classification is primarily of structural classes although 

these can be associated with a broad species types.  As an 

example, tall (> 10 m) mangroves with prop roots are typically 

dominated by Rhizophora or Brugeira species.   An existing 

mangrove classification of species (Figure 6) is compared with 

the rule-based classification (Figure 7) for a coastal area near 

Aurukun on the Cape York Peninsula, Queensland, Australia.  

A general correspondence is observed between areas mapped 

previously as R. stylosa and those mapped as tall mangroves 

(with prop roots) using the rule-based classification is 

observed.  Some areas dominated by R. stylosa are classified as 

low (< 10 m) mangroves, which is not incorrect but rather 

illustrates the complementary information these provide.   

C. Regional classifications 

For the study regions, the classification was applied to the 

areas mapped as mangrove.  An example classification applied 

over Belize is presented in Figure 8, which illustrates the 

capacity for classifying mangroves at a regional level.  Similar 

classifications were also generated for Australia and are to be 

applied to the Amazon-influenced coast and Southeast Asia.   

 

 
Figure 6.  Classification of mangroves by 

species type [17]. 

 
Figure 7  Distribution of mangrove classes 

mapped using a combination of ALOS 

PALSAR, SRTM and Landsat-derived 

FPC data. 



 

 
Figure 8.  The distribution of mangrove classes, Belize. 

 

Detection of change 

For the north and east of Australia, and focusing primarily 

on Queensland, significant change away from the established 

baseline was not observed with the exception of the southern 

Gulf of Carpentaria.  Here, seaward expansion of mangroves 

was noted along the length of the coastline (Figure 9).  The 

cause of such change is likely to be increased sedimentation on 

the coastal fringe as a result of increases in rainfall and storm 

events.  As an example, Figure 10a and b shows MODIS 

images of the region prior to and during the extensive flooding 

in 2009 [18].  The area of mangrove expansion corresponds 

with that influenced by the flood waters of the Flinders River.   

 

 
Figure 3.  Seaward expansion of mangroves near Burkestown, Gulf of 

Carpentaria, Queensland, Australia. 

 

Changes in the distribution of mangroves along the 

Amazon-influenced coast, as documented by [19], continued to 

be observed using ALOS PALSAR data. The baseline dataset 

of mangrove extent (Figure 11a), when overlain on the JERS-1 

SAR image, revealed discrepancies which were adjusted for 

within Definiens Developer to establish a new baseline for 

1995.  When compared against the ALOS PALSAR data 

acquired in 2007 (Figure 11b), significant losses and gains in 

the area of mangroves relative to the 1995 baseline were 

mapped (Figure 11c).  More stable areas of mangroves were 

observed, as were areas of mudflat, which exhibited a 

noticeably low L-band HH backscatter.   These areas 

represented sites where future colonisation of mangroves might 

occur.    

Within Belize, changes in mangroves from the national 

baseline were difficult to establish because of apparent 

discrepancies in definition and the mapped distribution.  In 

particular, significant areas of mangrove savanna in the north 

of Belize were not mapped previously but were evident within 

the ALOS PALSAR mosaic (Figure 12).   

Within Southeast Asia, comparison of the existing WCMC 

UNEP maps of mangrove extent with ALOS PALSAR mosaics 

(Figure 5a) indicated discrepancies in the mapped extent.  

These were largely associated with: 

 

a) The resolution of the linework and the nature of 

digitising, which is variable between countries. 

b) Registration errors between the two datasets, which 

led to difficulties in adjusting baselines (e.g., relative to the 

JERS-1 SAR mosaics) and mapping change.  

c) Significant losses of mangrove with the mapped area 

with these associated primarily with expansion of urban areas, 

agriculture and fisheries.   

d) Differences in the definition of mangroves. 

 

 

 

 

 

 

 



a)

 
 

b) 

 
Figure 10.  Changes in flooding of the Flinders River as observed from MODIS 

data (2009).  Discharge of sediment into the Gulf of Carpentaria is evident [18]. 

The area corresponding to Figure 9 is shown in red. 

 

As an example of these issues, Figure 12b illustrates the 

mapped extent of mangroves overlain onto the ALOS 

PALSAR data.  The capacity for detecting change through 

comparison of multi-temporal JERS-1 SAR and ALOS 

PALSAR data is illustrated in Figure 13 [20] where the 

dynamics of clearance and regeneration of mangroves in Perak 

State, Malaysia, are evident.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a)  

 
b) 

 
c) 

 
Figure 4.  Mangroves along the coast of French Guiana, near Sinnamary as 

observed using a) JERS-1 SAR and b) ALOS PALSAR data acquired in 1995 

and 2007. By comparing these datasets, areas of stable mangrove, mangrove 

colonisation and loss and mudflats along the French Guiana coast were 

identified. 

 



 
Figure 5.  ALOS PALSAR mosaic of Belize and baseline map of mangrove 

extent (white).  Differences between mangroves and adjoining forests within 

the ALOS PALSAR data but discrepancies in the extent of mangroves are 

evident. 

 

V. DISCUSSION 

A. Relevance of mangrove classification 

The majority of studies focusing on mangroves have 

largely only mapped a few classes, with most of these being 

specific to the area of interest and focusing primarily on 

species or relative height. The classification approach adopted 

in this study provides a more consistent approach that utilises 

globally available datasets (i.e., the ALOS PALSAR and 

SRTM) and which can be applied within and between regions.  

Refinements to the classification can also be made using 

optical data where available.   

B. The detection of change 

The study has highlighted the capacity of using ALOS 

PALSAR data in conjunction with existing mapping to detect 

changes in mangrove extent as a function of both natural and 

anthropogenically-induced change.  However, only changes in 

a seaward direction and losses of mangroves within the known 

areas of mangroves were mapped.  Inland or up-river extension 

of mangroves as a consequence of, for example, sea level rise, 

were not able to be mapped with confidence largely because of 

similarities in the backscatter of the vegetation covers being 

replaced.  Even so, such changes were evident within some 

regions (e.g., northern Australia) and are important to identify, 

particularly given predictions of sea level rise in many regions. 

 

a) 

 
b) 

 
Figure 12. a) JAXA K&C mosaics available for Insular Malaysia and b) UNEP 

WCMC map of mangroves (white line) overlain onto a subset of the mosaic.   

Using these data, the establishment of change is difficult because of variations 

in digitising, registration and the process of change itself. 

 

Whilst the ALOS PALSAR can provide information on 

changes in mangroves, the cause of change can also be better 

understood using these and other datasets.  For example, within 

northern Australia, time-series of ALOS ScanSAR data 

provide unique information on the dynamics of flooding in 

relation to changing rainfall patterns and runoff, factors which 

may explain the longer-term changes in dynamics within the 

Gulf of Carpentaria. 

A number of limitations in the detection of change were 

highlighted which related to the georeferencing, digitising 

resolution and mangrove definitions.   The relative coarse  (50 

m) spatial resolution of the K&C mosaics also resulted in only 

major changes in mangroves being identified whereas many 

may be extensive but associated with only a small change in 

terms of distance from the pre-occurring mangroves.   Longer-

time series, focus on areas of change using finer spatial 

resolution datasets, and better development of consistent 

retrieval algorithms is therefore required. 



 

 
Figure 13.  The Matang Mangrove Forest Reserve in Perak, Malaysia [20]. 

Top: JERS-1 SAR time series from 1992, 1995 and 1998. Areas logged in the 

period appear in blue and green, while areas of regrowth appear in orange. 

Bottom. ALOS PALSAR composite from 2006-2007. Red indicates regrowth 

in areas logged recently prior to the 2006 observation. Blue shows recent 

crearings. Only the HH channel has been used, as the increased double-

bounce scattering from the water surface and remaining tree stumps is the 

key signal for the detection of logged mangroves. 
 

C. Overview of approach 

The primary benefit of using ALOS PALSAR data was the 

provision of cloud-free observations for entire regions over a 

relative short (1 - 4 month) time period during any annual 

cycle.  The consistent provision of data over consecutive years 

also provides opportunities for detecting change, as illustrated 

in Figure 13.  The use of multi-temporal ALOS PALSAR data 

is advocated as errors associated with classification of other 

remote sensing data or digitising are largely overcome.  The 

primary objective should therefore be to establish a consistent 

baseline dataset for a single year (e.g., 2007/2008) against 

which change can be assessed.   

The use of the SRTM data is adequate for retrieving the 

height (within certain error bounds) of extensive areas of 

relatively closed-canopy mangroves, the 90 m spatial 

resolution does limit retrieval.  Therefore, the integration of 

finer spatial resolution DEMs (e.g., 30 m SRTM data or 10 m 

NextMap Intermap is advocated).  The reliability and 

consistency of height retrieval across regions and for a range of 

mangrove structural types therefore needs to be quantified in 

order to give confidence in the approach. 

Whilst maps have been generated for all or part of the study 

regions, the validation of these remains a challenge, 

particularly in relation to the detection of change, the cause of 

which vary considerably between regions.   This needs to be 

achieved by strengthening collaboration with existing mapping 

agencies in the countries involved, at both the national and 

international level.   

 

VI. CONCLUSIONS, RECOMMENDATIONS AND 

FUTURE STUDY 

Using ALOS PALSAR in conjunction with SRTM data, 

extensive areas of mangrove can be categorised into a 

minimum of three broad classes, with these relating to relative 

biomass and structure.   The classification is supported by 

observations using airborne SAR data at sites in Australia and 

Belize.   A particular advantage of the technique is that the 

classification is rule-based and can be applied between regions. 

The detection of change using ALOS PALSAR data 

currently requires reference to existing baselines of mangrove 

extent although it is anticipated that after adjustment to a single 

year, the ALOS PALSAR can form part of an ongoing 

mangrove monitoring system.  The main benefit of the ALOS 

is that cloud-free observations of regions can be guaranteed. 

Within the study region, both human-induced and natural 

change has been observed through comparison of ALOS 

PALSAR data against existing baselines.  Key outcomes from 

the research include: 

a) Detection of ongoing change in mangrove 

colonisation and loss along the Amazon-influenced coast of 

South America. 

b) Significant seaward expansion of mangroves in the 

Gulf of Carpentaria in northern Australia, which is linked to 

increased rainfall and extreme flooding within the catchments. 

c) Loss of mangrove areas in south-east Asia which have 

previously been reported as intact.   
For several study areas, the existing baseline datasets 

appear to not reliablely depict the extent of mangroves, either 
due to issues arising during their generation or because of 
change occurring in the interim periods.   Within Phase 2, 
continued development of the mangrove mapping and change 
detection for the study regions will be undertaken together with 
the development of algorithms that can be applied to other 
regions when regional mosaics become available.   

APPENDUM: WETLANDS CLASSIFICATION, QUEENSLAND 

In addition to establishing the potential of ALOS PALSAR 
for mangrove characterisation and mapping, the role of these 
data for supporting classification of wetlands in Queensland is 
being investigated.  Across the State, regional mapping of 
wetlands has been undertaken previously by the Queensland 
Environmental Protection Agency (EPA) through reference to 
aerial photography and optical (primarily Landsat but also 
SPOT and IKONOS) sensor data supported by ground survey.  
The ALOS PALSAR provides complementary and often new 
information on wetlands, particularly in relation to inundated 
(woody) vegetation (Figure 14) and open water.   These data 
are being integrated within a rule-based classification (e.g,. 
Figure 15; based on Definiens Developer software) with a view 
to refining or advancing the classification of wetlands 
occurring from the coastal margins to the inland semi-arid 
regions of the south-west of the State.  These classifications 
makes use of the Landsat FPC and ALOS PALSAR mosaics 
generated for the State.  These classifications will be 
supplemented using ScanSAR data acquired by the ALOS 
during Phase 2.  



 

Figure 14.   Composite image of Landsat-derived FPC (in red), 
L-band HH (green) and L-band HV (blue) showing areas of 
inundated vegetation (primarily paperbark swamps) in the 
north-west Cape York Bioregion.   Queensland Regional 
Ecosystem mapping is overlain.    

 

 

Figure 15.   Preliminary classification of estuarine (including 
mangroves; orange), and palustrine (red) systems and open 

water (blue), north-east Cape York Bioregion. 
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Abstract- Primary goals of JAXA’s Kyoto and Carbon Initiative 
are to utilize ALOS PALSAR to enhance agricultural monitoring 
systems and improve estimates of Greenhouse Gas (GHG) 
emissions under the “CCC” framework. During Phase 1 of the 
K&C Initiative, a series of technical objectives were executed to 
design and apply optimal algorithms to map rice paddies, crop 
intensity, rice attributes (e.g., biomass), and inundation status. 
Multi-temporal, multi-mode, and multi-scale (FBS/FBD, AUIG 
ScanSAR ORT/GRD WB1, K&C GRD Strips) data were used 
during algorithm development at sites in Poyang Lake, Jiangxi 
Province and Zhejiang Province, China; Java, Indonesia; and the 
Sacramento Valley, California, USA. Field-level validation found 
the fine-beam (FBS, hh, 12.5m) rice paddy- and ScanSAR (hh, 
100m) inundation status- PALSAR products to have very high 
overall accuracies of 95%. These thematic information products 
derived from PALSAR measurements were used as 
parameterization into a biogeochemical model to assess GHG 
emissions and the impacts of different agricultural managements. 
Biogeochemical simulations showed hydroperiod management to 
influence methane and GHG emissions by an order of magnitude 
in terms of metric tons of methane and carbon dioxide 
equivalence per hectare. The optimal algorithms were applied to 
regional orthorectified (ORT) ground-range (GRD), HH-mode 
imagery to create large-area maps of rice in an operational 
context. These operational PALSAR rice products are being used 
to understand human environment interactions and improve 
agricultural monitoring. 

Index Terms- ALOS PALSAR, K&C Initiative, rice mapping, 
agriculture, biogeochemical modelling, wetlands 

I.  INTRODUCTION 

A. Overview 
Rice is an important crop globally that influences regional 

economies and global trade, health and food security, and the 
Earth system. Rice is the predominant food staple in many 
regions with more than 400 million tones (milled basis) in 
production annually with 95% of cultivation in developing 
regions1. Rice land use globally is approximately 13048 
million hectares and cultivation utilizes extensive human and 
natural resources2. Due to the important role of rice in the 
global ecosystem, improved rice monitoring tools are desired 
by a wide range of decision makers.  

In the past decade a number of studies have highlighted the 
advantages of L-band Synthetic Aperture Radar (SAR) for 
wetland assessment. The primary advantage of L-band SAR 
data is its ability to penetrate canopies and its sensitivity to 
vegetation structure, water content, and biomass independent 
of weather conditions. The relationship between backscatter 
and valued ecosystem attributes (i.e., rice biomass) of interest 
can be modeled over large areas independent of weather 
making it extremely useful for rice monitoring and resource 
inventory. L-band rice and wetland applications have included 
biomass and phenology monitoring, assessing flood dynamics, 
and differentiating aquatic ecosystems among others.  

As part of JAXA’s Kyoto and Carbon Initiative (K&CI), 
Applied Geosolutions is developing a comprehensive Rice 

Decision Support System to provide end-users information 
required to make informed decisions. This scientific progress 
report summarizes progress made by Applied Geosolutions 
during the JAXA K&CI Phase 1activities during 2006~2008. 

 

II. KYOTO AND CARBON INITIATIVE PHASE 1 FOCI 

A. Relevance to the K&C drivers 
The overarching themes of the JAXA K&CI are guided by 

the three C’s: Conventions, Carbon and Conservation. Under 
that guiding framework the rice monitoring system provides 
information products to address issues related to land use 
patterns and climate change in the context of improving our 
understanding of human-environment interactions. During 
Phase 1 the activities and rice products have contributed to: 

 Map rice paddies and land use patterns; 
 Assess the impacts of rice management decisions 

on methane and greenhouse gas emissions; 
 Improve LULC datasets for scientists; 
 Map and model rice growth and rice attributes;  
 Monitor crop cycles. 

 

B. Sites 
Phase 1 applications and algorithm development were 

performed at three primary sites. Site one (fig. 1) is the 
Poyang Lake region in Jiangxi Province, China (centered 
~116.10E, 28.50N) and an area in Zhejiang Province, China. 
Poyang Lake is the largest freshwater body in China and has 
significant ecological value with rare migratory waterfowl and 
extensive wetlands making the Ramsar classified-site an 
international recognized ecosystem of value. These factors 
have led to the Poyang Lake region being an international 
field-site with many integrated studies.  

 

 
Figure 1. Algorithm development site 1 is the Poyang Lake 
region in Jiangxi Province, China. Image polygons highlight 
the development regions where PALSAR algorithms were 
created and evaluated using FBS and ScanSAR WB1 
ORT/GRD data from AUIG. 

 



The Poyang Lake (fig. 2) region has extremely dynamic 
hydrology with periodic flooding from central Yangtze River 
basin fluctuations and widespread levee systems altering 
flows. Extensive and scattered rice paddies are dispersed south 
of the lake within a patchy landscape of paddies, aquaculture, 
urban centers, villages, and natural covers. Over the past few 
decades of economic growth in China, many of the wetland 
areas are being converted for rice agriculture3. The site is 
subtropical with average annual precipitation and temperature 
at 170cm and 17degrees C, respectively. 

 

 
Figure 2. The Poyang Lake region, Jiangxi Province, China 
was a primary model development site during Phase 1. Multi-
temporal AUIG ScanSAR ORT/GRD (Red: DOY241, Green: 
DOY149, Blue: DOY103) WB1 (HH: 100m). Bright red 
displays rice paddies and bright white urban land uses.  
 

Site 2. Site two is a large, commercially important rice 
growing region located in the northern Sacramento Valley, 
California, USA (centered ~121.825W, 39.20N). 
Approximately 95% of rice grown in California is grown in 
this region and it generates nearly half a billion dollars 
annually to the state’s economy. The eight counties in site two 
that have substantial rice paddy agriculture include: Butte, 
Colusa, Glenn, Placer, Sacramento, Sutter, Yolo, and Yuba. 
Other dominant LULC classes in the region include sub/urban, 
natural vegetation, deciduous fruits and nuts, and field crops. 
Average temperatures are 45 and 73degrees F in January and 
July, respectively. Annual precipitation in Sacramento 
averages 17.2 inches; whereas, annual precipitation in 
Redding in the northern part of the Sacramento Valley 
averages 40.9 inches. Intensive irrigation and agricultural 
management occurs in the area.  
 
 
 
 

 

 
Figure 2. Development and application site 2 was the northern 
Sacramento Valley, California, USA. PALSAR rice products 
derived from FBS (HH: 12.5m) and ScanSAR WB1 
ORT/GRD (HH: 100m) data were used to parameterize a 
biogeochemical model to assess rice management decisions 
and impacts on greenhouse gas emissions.  
 

Site 3. Site three is the island of Java, Indonesia (centered 
~110W, 7S). The tropical island is approximately 132,000km2 
and is one of the world’s leading rice producers with more 
than 50 million tones annually and 13 million hectares 
cultivated. The region has dramatic topographic changes and 
rice is grown at a variety of altitudes with a range of 
continuous crop cycles. The majority of rice paddies in Java 
are under some mechanism of irrigation control with only 10% 
considered rainfed lowlands. Large urban populations and 
coastal communities tend to cultivate indica subspecies. 
Paddies range from large-area commercial farms to terraced 
rice and isolated communities in the highlands creating a 
challenging rice mapping environments in this tropical 
climate.  



 
Figure 3. Development site 3 is Java, Indonesia. The 
algorithms were developing using FBS and WB1 imagery and 
are being scaled up to the Pan Asian region using K&C strip 
imagery.  

 
C. Approach 
 

A series of technical benchmarks were evaluated in order to 
identify optimal algorithms for rice monitoring. Costume 
python scripts automatically retrieve data from JAXA ftp 
servers. Pre-processing scripts perform multiple tasks that 
include: file format conversions (create geotiffs, Digital 
Number images, backscatter images), re-project (Albers Conic 
Equal Area for K&C strips and UTM for AUIG imagery), 
geometric viewing calculations, and file organization (fig.4). 
The best available Digital Elevation Model was used for each 
development site. International sites used 90m Shuttle Radar 
Topography Mission (SRTM)4 data while USA sites used 30m 
SRTM data for local incident corrections. 

 

 
Figure 4. Secondary pre-processing steps apply a linear, multi-
temporal speckling filter and perform radiometric 
enhancements and terrain geocoding adjustments to correct for 

local incident angles and viewing geometry effects using the 
best available Digital Elevation Model. Once secondary pre-
processing is complete PALSAR imagery is ingested into the 
product generation stream. 
 

Technical objectives were designed to identify optimal 
algorithms to monitor rice using a complementing suite of 
PALSAR resolutions. Initially algorithm development used 
AUIG fine-beam, hh-mode, 12.5m spatial resolution PALSAR. 
Once the algorithms were designed they were scaled up and 
applied to AUIG ScanSAR ORD/GRD WB1 and K&C strip 
imagery. The primary objectives completed during Phase 1 
were to develop algorithms to: 

 map rice paddies 
 map rice cropping systems 
 map inundations status 
 map biophysical characteristics  

Once secondary pre-processing (fig. 4) was complete the 
fully pre-processed PALSAR imagery was ingested into the 
second processing stream. A simple decision-tree framework 
based on thresholding FBS values was first used to identify rice 
paddies by capturing the characteristics of flooded areas and 
dynamic range representing rice phenology and harvest. Next, 
segmentation procedures are performed to create individual 
classified polygons or rice paddies. For each rice paddy, 
informative products were generated based on PALSAR K&C 
Strip measurements or AUIG ScanSAR ORT/GRD WB1 data. 
Multi-temporal PALSAR is used to identify crop cycles, flood 
status, and phenology/biomass changes for each rice paddy. 
Empirical rice growth models and various post processing tools 
are used to refine those products (fig. 5).  

 

 
Figure 5.The product generation stream ingests fully pre-
processed PALSAR imagery to provide spatially-explicit rice 
information products including biomass, crop cycles, and 
hydroperiod.   

 



The generated products for site 2 were used to meet climate 
change assessment objectives and K&I “CCC” overarching 
goals. The primary objectives under the climate change 
assessment context during Phase 1 were to: 

 Parameterize models with PALSAR rice products  
 Simulate impacts of rice managements 
 Assess impacts of rice managements on GHG 

emissions and climate change 
 

D. Satellite data 
 
A range of PALSAR imagery was utilized during Phase 1. 

FBS and ScanSAR WB1 products (level 1.5) were used at sites 
1 and 2. K&C strip ORD/GRD data were utilized at site 3 for 
operational mapping at continental scales. Spatial resolutions 
ranged from 6.25m to 100m pixel spacing. Modes included 
single, dual, and quad pole. Processed levels ranged from 
JAXA level 1.0-1.5 file formats with automated scripts 
transforming data into DN and backscatter values (equation 1) 
and re-projecting to desired coordinate systems. Multiple 
temporal periods for each site were obtained to capture key rice 
phenological attributes.   

 
 σ 0 = 10 * log10(DN2) + CF   (eq. 1) 

 
 

Table 1. AUIG PALSAR imagery used during Phase 1. Orbits 
include both descending and ascending, product levels 1.1 & 

1.5, with ranging incidence angles.  
Mode Res (m) Temporal Scenes

 
FBS 6.25 multi (2006-2008) 58 
FBD 12.50 multi (2006-2008) 55 
WB 100.00 multi (2006-2008) 57 

 
 
Local incident angle corrections utilized the best available 

Digital Elevation Model (DEM) for each development site. 
International sites used 90m Shuttle Radar Topography 
Mission (SRTM)4 data while USA sites used 30m SRTM data. 

For site 3 operational monitoring K&C strip data was 
utilized (Table 2). As part of JAXA’s K&CI, a PALSAR 
acquisition strategy has been developed with a goal of having 
spatially and temporally consistent data at continental scales 
with adequate revisit frequency and timing to enable the 
development of continental-scale products. The wetlands 
science team led the development of the PALSAR acquisition 
strategy that includes ScanSAR data acquisitions every 46 days 
for regional mapping and characterization of wetlands and 
paddy rice in Southeast Asia. Adjacent acquisitions overlap 
50%, so effectively there are 2 acquisitions every 46 days 
continuously from October 2006 to September 2009. 

 
 

E. Field campaign & reference data 
 

An accuracy assessment was carried out and completed 
during Phase 1 at Site 2. FBS (HH mode, 12.5m) rice paddy 
classifications and ScanSAR WB1 (HH mode, 100m) 
inundation status products were assessed for overall accuracy 
and misclassification patterns. A series of error matrices were 
constructed using the field-level data and high resolution color 
photography as reference. For the FBS HH rice products, 
orthorectified National Agriculture Imagery Program (NAIP) 
mosaics were utilized as ground control reference. NAIP data 
collection occurred near Day of Year (DOY) 215 and 253 
which is during the rice growing season at site 2. These true-
color, 1-meter, digital photos are available through the United 
States Department of Agriculture (USDA) Geospatial Data 
Gateway. Data are compressed in MrSid format with a 
horizontal accuracy of less than 3 meters. Mosaics are tiled 
using a 3.75’ x 3.75’ quarter quads formatted to the UTM 
projection system using North American Datum 1983 
(NAD83). Bounding coordinates covered the entire spatial 
domain that PALSAR imagery covered. Additional metadata 
are available via the USDA data gateway. 

For the FBS HH rice products a stratified random sampling 
scheme was utilized to insure statistical sampling rigor 
following well-established accuracy protocol. The validation 
scheme identified the maximum classified proportion to 
generate a specified sample number (475). A stratified random 
distribution with 250 rice points separated with a minimum 
distance of 300m was applied within the PALSAR rice 
product. A second suite of stratified random points were 
distributed among non-rice classes based on the ancillary 
LULC data from the Department of Water Resources (DWR) 
in California. Together these assessment data points provided 
475 unique, statistically rigorous validation points. The 
accuracy points were checked using a variety of techniques. All 
points were compared against DWR LULC data and verified 
against the NAIP imagery.    

For the ScanSAR inundation status products a near-
simultaneous field campaign was performed to assess the 
accuracy of the flood products at site 2. The overpass date was 
January 20, 2009. ScanSAR image scene centers were 40.464N 
x 120.379W and 37.991N x 120.977W. From the binary FBS 
rice maps two large clusters were chosen as focus areas for the 
winter flood assessment. The clusters were approximately 
50km north of the City of Sacramento and 25km west of the 
City of Oroville. Ground truth data were collected using a 
GPS-enabled camera at approximately 1000m equal intervals 
following the road network. “Drive-by” transects were carried 
out and points were systematically collected within the two 
pre-selected clusters. GPS photos were collected perpendicular 
to the road direction using the stratified approach. A total of 
130 points were collected for the second portion of the rice 
product assessment.  

 
 

 
 



 
Table 2. PALSAR K&C Strip imagery used during Phase 1. 

 
 

 
  

F. Biogeochemical modelling 
 

The process-oriented DeNitrification and DeComposition 
(DNDC) model5,6,7 was originally developed to simulate the 
effects of major farming practices (e.g., crop rotation, tillage, 
fertilization, manure amendment, irrigation, flooding, 
weeding, grass cutting and grazing) and climate change 
(temperature and precipitation) on C and N cycles in various 
ecosystems. By tracking rice biomass production and 
decomposition rates, DNDC also simulates long-term soil 
organic carbon (SOC) dynamics, predicts CH4 and N2O 
emissions by tracking the reaction kinetics of nitrification, 
denitrification and fermentation across climatic zones, soil 
types, and management regimes8. PALSAR rice products were 
used as model parameterization for site 2 simulations that 
were completed during Phase 1.  

Further, parameterization used the State Soil Geographic 
(STATSGO) database, which is a digital soil association map 
developed by the National Cooperative Soil Survey and 
distributed by the Natural Resources Conservation Service 
(formerly Soil Conservation Service) of the U.S. Department 
of Agriculture. It consists of a broad based inventory of soils 
and nonsoil areas that occur in a repeatable pattern on the 
landscape and that can be cartographically shown at the scale 
mapped. Climate data used DAYMET weather data which is a 
model that generates daily surfaces of temperature, 
precipitation, humidity, and radiation over large regions of 
complex terrain.  

 

III. RESULTS AND SUMMARY 
 
Algorithm development has been completed during Phase 

1. Figures 4 and 5 illustrates the primary image processing 
steps and PALSAR products generated from the rice 
monitoring system. To streamline reporting results are 
summarized by project focus and region.  
 
A. Assessing impacts of rice managements 

 
1. Mapping rice in the Sacramento Valley, USA 

 
A minimum threshold identifies water within a given pixel 

(fig 6). Water at this stage can be a flooded rice paddy, a 

natural water body, or a manmade irrigation feature. A branch 
in the decision tree then applies a maximum or range threshold 
based off either empirical data or image statistics. This process 
results in a classification product delineating rice fields 
according to the rules and data used in the decision tree (fig. 7). 
A semi-automated data cleansing process enhances data 
products based on user defined rules. For example, a spatial 
analysis process eliminates single, isolated pixels to streamline 
data products.  
 

 
Figure 6. Early rice paddy flood season (left) seen as dark color 
and full rice maturation (right) seen as light purple displayed in 
R:G:B (HH:HV:Difference) from PALSAR FBS/D. A 
decision-tree thresholding and segmentation approach identify 
rice paddies across the landscape using flood- and rice growth- 
backscatter response.  

Table 3. Study area 2 inundation status monitoring 
Approximately half of paddies (47% or 74,292 hectares) were 
flooded during December and 75% of rice paddies were 
flooded during at least one winter time period.   

Hydroperiod Area (hectares) Percent 

No Winter Flood 37866 24.4 

Dec Flood 74292 47.8 

Mar Flood 590 0.4 

Dec & Mar Flood 11176 7.2 

Apr Flood 8952 5.8 

Dec & Apr Flood 17341 11.2 

Mar & Apr Flood 159 0.1 

Dec, Mar, Apr Flood 5083 3.3 



 
PALSAR-derived rice maps identified nearly 75,000 

hectares of rice paddies undergoing cultivation during the 
temporal FBS overpasses in 2007. Figure 7 displays rice 
paddies and associated flood regimes near the Biggs 
Experimental Agricultural Station in the northern Sacramento 
Valley, California, USA. ScanSAR WB1 imagery with 
regional coverage twice every 46 days was used to identify 
inundation status for each rice paddy. Approximately half of all 
rice paddies in the Sacramento Valley were flooded during a 
portion of the month of December. During Phase 1 image dates 
used were 12/5/2006, 3/7/2007, and 4/17/2007 to characterize a 
typical winter cycle. Approximately half of paddies (47% or 
74,292 hectares) were flooded during December and 75% of 
rice paddies were flooded during at least one winter time 
period (table 3, fig 8).  
 

 
Figure 7. Mapping rice paddies and rice paddy hydroperiod 
with FBS (HH: 12.5m) and ScanSAR WB1 (HH:100m), 
respectively. Approximately 75,000 hectares of rice paddies 
were cultivated in the rice growing season of 2007 in the 
Sacramento Valley, California, USA. Of these, approximately 
half (47%) were identified as flooded during December.   
 
 

 
Figure 8. Study area 2 (Sacramento Valley, California, USA) 
inundation status monitoring with ScanSAR imagery with 
regional coverage twice every 46 days. Approximately half of 
paddies (47% or 74,292 hectares) were flooded during 
December and 75% of rice paddies were flooded during at least 
one winter time period. 
 
 

2. Accuracy of Biggs, USA rice products 
 

A field-campaign and ancillary reference information found 
the FBS rice paddy products to possess very high overall 
accuracy (fig 9). The rice paddy map classification had an 
overall accuracy of 96% (449 / 469 = 0.9573). Approximately 
20 points were interpreted as misclassifications giving an 
overall omission error of 0.0426. Kappa statistics had a khat 
value of 0.912609 with a variance and z-score value of  
0.00036530 and 47.748, respectively with a p-value 
significance of <0.00001.  

Fieldwork was performed to assess the accuracy of the 
winter flood products for characterizing inundation status. Two 
ScanSAR mode scenes were pre-processed and merged to 
complete coverage over the Sacramento Valley, USA. The 
overpass date was January 20, 2009. The clusters were 
approximately 50km north of Sacramento and 25km west of 
Oroville. Ground truth data was collected using a GPS-camera 
at approximately equal intervals. Road transects were carried 
out and points were systematically collected. GPS-photos were 
collected to perpendicular to the road every using the major 
routes bisecting the two clusters. A total of 130 points were 
collected. Interpretation of the ground truth photos resulted in 
an overall accuracy of 96% (124/129). One point was thrown 
out due to error. 
 



 
Figure 9. Two GPS-enabled camera ground truth points at Site 
2 showing correct classifications of flooded rice paddies. 

 

The misclassified points were distributed among five 
categories of errors (fig 10). The majority of these errors were 
related to temporal challenges. This means that the rules used 
in the decision tree classifier to define the rice paddies 
eliminated a potential rice field due to shifts in flood cycles, 
harvest date, and/or overpass timing. Three errors were related 
to spatial problems where a point fell just outside a rice 
polygon or classified rice pixel. Three were related to 
confusion with dynamic wetland areas. 

 Temporal=12 
 Spatial=3 
 Riparian=3 
 Grain=1 
 Unknown=1 

 
Figure 10. Ground-truth points from the Biggs, California, 
USA winter flood assessment found overall accuracy of 95%. 
ScanSAR imagery was classified into a binary map of water 
and nonwater pixels to characterize rice paddy inundation. 
Point 2 illustrates a misclassification caused by slight flooding 
from accumulated rain fall and saturated soil at the location.  

 
The accurate rice products in this region then served as 

parameterization for the biogeochemical simulations using the 
DNDC model. Figure 11 illustrates simulations using the 
PALSAR-derived parameterizations (ie, inundation status and 
rice paddy). Results found that flooding regime decisions 
significantly impacts methane and greenhouse gas emissions.  

 
 

 
Figure 11. DNDC simulations uses PALSAR-derived rice 
information. Simulations found that flooding cycle decisions 
can substantially impact methane and GHG emissions. 
 
 
B. Mapping paddy rice in China 
 

The PALSAR backscatter coefficient (σ ° ) images in 
different dates were stacked into a three-layer composite image 
(fig. 12). After upland hardwoods were masked out, the non-
forest composite image was put in a Support Vector Machine 
(SVM) algorithm for a five-class thematic map was produced. 



Waterbodies were easily identified with clear boundaries. The 
urban area of Fuyang City was clustered in the upper center of 
the study area. The class map also demonstrated urbanization 
and intensified human settlement in lowland plains.  

It was shown that rice planting was the major land use type 
in lowland plains in the study area. Large-area rice cultivation 
could be easily identified from PALSAR images. However, 
except for the large flat plains along the Qiantang River in the 
middle of the study area, paddy rice fields were often small in 
size and fragmented with other land use surfaces. To 
demonstrate classification results of these small rice fields, a 
subset of class map was selected in the north of Xindeng Town, 
30km southwest of urban core of Fuyang City. Small rice fields 
were restricted by local topography and often clustered into 
narrow and long rice planting area. These areas were smaller 
and less continuous and resulted in a noisy and scattered 
pattern in the PALSAR class map. The under-classification of 
small rice fields was primarily caused by mixed pixels along 
field edges. These associated borders, however, were assigned 
rice in survey map because they were associated with rice 
cropping activities. In the subset, rice planting area detected in 
the PALSAR-derived map was 4.69×106 m2 while the area in 
the census map was 5.13×106 m2. Assuming survey map as 
ground truth, less than 10% of rice area was under-classified. 

Two hundred (200) random points in each class were 
selected and served as validation sites to test the accuracy of 
the class map. At each validation site, the reference land use 
type was recorded from survey map. An error matrix of the five 
classes was built to compare ground-surveyed and image-
classified results. The PALSAR class map in this area had an 
overall accuracy of 80.1% and Kappa statistics of 0.75. Paddy 
rice reached a user’s accuracy of 90% and producer’s accuracy 
of 76%. The relatively large commission error (24%) of rice 
mapping was primarily a result of misclassifying rice to 
dryland crop (19 out of 237) or orchard (16 out of 237). It was 
reasonable because of the similar backscatter amplitudes of 
these vegetative land use types. A large commission error also 
occurred where 21 out of 237 paddy rice fields were 
misclassified as water, a possible effect of open water in 
flooded rice fields. This may also partially result from land use 
change between PALSAR image acquisition (2006) and LULC 
ground survey (2005). For example, some rice fields in 2005 
may be abandoned or converted to fish ponds in 2006. 
Nevertheless, the conditional Kappa value of paddy rice was 
0.87, indicating that rice could be mapped at relatively high 
accuracy with multi-temporal PALSAR images. 
 

 
Figure 12. The PALSAR composite image (Jun.18, Aug.3, 
Sept.18, 2007) in Fuyang City, Zhejiang Province in the 
southeast China.  

 

With the remarkably high backscatter coefficients, urban 
structures were classified with the highest user’s accuracy of 
96.5% and conditional Kappa statistics of 0.95 (fig. 13). 
Similarly, because of the very low backscatter, water surfaces 
were also easily classified with a user’s accuracy of 80.5%. 
Some water bodies such as fishing ponds are small and shallow 
and sometimes covered with water vegetation, which 
contributed to large omission error (23.7%) of water surfaces. 
Dryland crops and orchards had the lowest accuracy 
(conditional Kappa value of 0.63 and 0.58, respectively), 
because of their backscatter similarity. Since the major 
objective of this portion of the research was rice mapping, the 
misclassification of these non-rice land uses was not 
investigated further.   

Comparing with other SAR sensors, PALSAR has a great 
advantage in rice mapping9. Firstly, PALSAR has multi-mode 
imaging capabilities to acquire SAR imagery at varying 
resolutions and swaths, which provides flexible applications to 
fulfill tasks at various scale, extent and accuracies as well as 
costs. For example, the PALSAR images at FBS mode (6.25m 
pixel size) applied in this study could extract small and 
fragmented rice planting area, while the ScanSAR-mode 
images (100-m pixel size) could be more efficient in regional 
rice mapping. Among all SAR systems that are currently 
operating or operated in past years, only Radarsat-1/2 have the 
same multi-mode feature.  

 



 
Figure 13. The class map derived from multi-temporal 
PALSAR images. The upland forest is masked out9. 
 

Secondly, except for a polarimetric sensor onboard the 
newly launched Radarsat-2 (in December 2007), PALSAR is 
the only sensor that could acquire imagery in multiple 
polarizations (HH, HV, and VV).  

Thirdly, as a successor of JERS-1 SAR, PALSAR is the 
only sensor that operates in relatively low frequency (L-band). 
L-band signals could penetrate deeper into rice canopy and 
therefore, may contain more information about total rice 
biomass than C-band signals of other systems. It has been 
demonstrated in past studies that different rice biophysical 
parameters were sensitive to backscatter in different 
polarizations and frequencies10. This information could be 
applied in radiative transfer models to quantify rice biophysical 
properties such as leaf area index and fresh biomass, which is 
closely related to rice production. 
 
C. Modeling rice attributes 

 
This portion of the study examined L-band scattering 

properties of paddy rice with multitemporal PALSAR imagery, 
field measurements (fig 14), and a radiative transfer model11. 
Leaf volume scattering and leaf-ground double bounce in L-
band were found the major scattering components that 
increased with plant height and leaf mass amount. In tillering 
and heading stages, HH backscatter was more sensitive to 
rice’s structural variation while VV backscatter remained 
almost constant along rice growth cycle (fig. 15).  

 

 
Figure 14. Top) Poyang Lake field site measuring valued rice 
ecosystem attribute: haulm weight, plant height, water depth, 
paddy density, and planting patterns. Measurements were used 
to develop model parameters to forecast growth cycles and 
PALSAR backscatter responses. Bottom) Fresh haulm weight 
was quantified and converted into density-adjusted biomass. 
These measurements were correlated against PALSAR FBS 
HH 12.5m to identify optimal algorithms and map paddy 
attributes. 

 

These results show that multi-temporal L-HH backscatter 
may be more useful in rice biophysical mapping and modeling 
studies. HV backscatter was affected by multiple interactions 
between radar signals and rice canopies and cannot be 
accurately simulated via 1st-order canopy scattering model. 



 
Figure 15. The scatterplot of modeled and PALSAR observed 
HH backscatter in three rice growth stages11. 

 

D. Ongoing efforts 
 

During the extension period assessments will be performed 
on products for Java and Poyang Lake. Due to data delays the 
Pan Asian maps are now underway as well. Extensive field 
campaigns with partner projects will provide additional 
accuracy information.  
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Abstract�— Lake size is a strong control on lake function and on 
how lakes interact with the environment. For example, lake 
size is strongly related to carbon burial rates in lake sediments. 
Lake size distribution (how many small, medium, and large 
lakes, occur per unit area) can be used to extrapolate lake 
function to landscapes at local, regional, and global scales. 
Lake size distribution can be parameterized as: 

m = log(number of lakes/unit area) / log(lake size) �– b 

Where m less than -1 (m < -1) indicates that small lakes occupy 
greater area than large lakes and vice versa. A digital database 
describing lake size distribution and lake shape can therefore 
be used to investigate and estimate lake-landscape interactions 
at various scales but this database does not currently exist.  

Here the capability of high resolution ALOS PALSAR data is 
examined for mapping lakes across multiple study sites 
covering over 100,000 km2 of the Canadian landscape. 
Classification of lakes versus land was done by expert systems 
based threshold analysis and also by using derivatives of the 
frequency histograms of the SAR image digital numbers. The 
expert system approach produced better accuracy but cannot 
be applied automatically. Accuracy varied between sample 
regions and across the lake size ranges, however; overall, the 
PALSAR lake classification differed from existing 
hydrographic spatial datasets for total lake area by up to 18%. 
Comparisons between datasets cannot be perfect because they 
were not created over the same time period.  Due to its short 
time of collection and singular data source, the ALOS data is 
superb for capturing current conditions, establishing a 
baseline, and comparing to future conditions. 

Estimates of carbon burial for the sample regions were made 
based on the lake size distribution determined from the 
PALSAR classification and on literature estimates of carbon 
accumulation for various lake sizes under different climatic 
conditions. Carbon accumulation in lake sediments in the 
Canadian boreal region alone could account for as much 13.4 
Mt of CO2 equivalent per 100,000 km2 per year.  

 

Index Terms�—ALOS PALSAR, K&C Initiative, wetlands, 
carbon, lakes. 

 

I. INTRODUCTION 
Carbon accumulation in lake sediments has long been 

recognized as an important component of the global carbon 
cycle [1-6].  Of the many parameters which influence carbon 
accumulation rates, lake size has been identified as a simple 
predictor of carbon burial rates in lake sediments [3, 5, 7].  A 
database describing lake size distribution can therefore be 
used to investigate and estimate lake-landscape interactions.   

Accurate and reliable lake census data is a fundamental 
first step in extrapolating carbon accumulation rates to 
regional and global scales.  The majority of available 
hydrographic data is generally limited in both spatial and 
temporal resolution (e.g. Global Lakes and Wetlands 
Database [8]).  This is because the majority of these datasets 
do not come from a single data source produced by a single 
method nor are they acquired from a single time period.   

In Canada the CanVec hydrographic dataset produced by 
Natural Resources Canada (NRCan) constitutes one of the 
most comprehensive and freely available hydrographic 
datasets [9].  The CanVec dataset demonstrates very good 
spatial accuracy.  However, its temporal resolution is limited; 
especially in remote areas and can span up to 50 years or 
more.  This can limit direct application to studies examining 
regions undergoing potential hydrological change over short 
time scales such as the northern boreal forest of Canada.    

The Phased Array L-band Synthetic Aperture Radar 
(PALSAR) sensor on board the Advanced Land Observing 
Satellite (ALOS) launched in early 2006 by the Japanese 
Aerospace Exploration Agency (JAXA) has provided a 
unique opportunity to construct a global lake database.  
PALSAR�’s all weather night and day acquisition capability 
affords continuous global coverage and allows for the 
construction a database from a single source over a single 
period of time (24 months).  One of the inherent benefits of 
L-band radar systems such PALSAR is its capacity to detect 
water bodies.  L-band radar can penetrate through sparse 
vegetation while also being less sensitive to water surface 
roughness.  This makes it ideal for differentiating water from 
land under variable conditions. 

A. Relevance to the K&C drivers 
The objective of the global lake census is to establish a 

baseline map of lake size distribution and how this is 



controlled at regional and global levels. An up to date and 
temporally constrained lake database paired with existing 
and new carbon accumulation rates will allow for an 
improved first order estimate of the role lake sediments play 
in the storage of carbon.   

Under the framework of JAXA�’s K&C Initiative and the 
three C�’s: Conventions, Carbon and Conservation- the global 
lake census will help to determine the role lakes play in the 
terrestrial carbon cycle now, and with changes that may 
occur under future climate conditions. This information in 
turn can be used to guide policy on carbon trading, wetland 
conservation, and creating and enforcing conventions needed 
to maximize carbon uptake from the atmosphere as well as 
ecological protection in general.  

 
 
 

B. Work approach 
 
 

The methodological approach in developing the global 
lakes census has progressed in a series of steps: 
 

i.) Lake classification 
We utilized high resolution PALSAR FBS and FBD 12.5 

meter images to produce a binary classification of lakes and 
land for 9 pilot regions across Canada (Fig. 1).  PALSAR 
images were filtered and reduced to 8-bit to minimize 
speckle and data depth. A single threshold digital number 
(DN) was selected for each region as cut-off value between 
lakes and land.  This simple classification method has been 
applied successfully in previous studies identifying water 
bodies in RADAR imagery [7, 10].  The main advantage of 
the threshold approach over more complex classification 
methods is computational efficiency.  This is especially 
important for very large datasets such as the one proposed 
here.  

Threshold selection was first attempted quantitatively 
based on a first derivatives approach.  This method relies on 
the bimodal nature of the RADAR imagery where the first 
mode represents water bodies and the second mode 
represents land (Fig. 2).  The first derivative quickly 
identifies the inflection point between the two modes and 
provides a logical starting point for a threshold DN.  
Histograms from each pilot site demonstrated the same 
characteristic bimodal shape. However, each differed in how 
quickly and at what DN value the transition between the 
lakes and land occurred. This made it difficult to rely solely 
on first derivatives to produce an accurate classification.  
Therefore an expert based tuning approach was employed to 
improve classification accuracy.  This involved increasing or 
decreasing the DN around the first derivative inflection point 
until better classification accuracy was achieved. 

 
Figure 1.  Pilot regions used for the methodological development of lake 
classification.. Each pilot region consisted of 12.5 m PALSAR FBS FBD 
imagery.  Corresponding AVNIR-2, SPOT and  Landsat imagery was also 
used when available to aid in accuracy assessment.  All 9 regions were used 
in the development of the lake classification and in the extrapolation of 
carbon accumulation rates to regional scales.  The three large pilot sites 
(shown in red) were used as test sites for the derived lake size distribution 
thematic map. 

ii.) Accuracy assessment 
Direct field campaigns have not been feasable up to this 

point becasue of the remote location and large geographic 
distance between study sites.  Therefore classification 
accuracy assessment was limited to compairisons to existing 
hydrographic data (CanVec) and ancilliray satellite imagery 
from the Advanced Visible and Near-Infrared Radiometer 
(AVNIR-2) on board the ALOS platform, as well as SPOT 
4/5 (Satellite Pour l'Observation de la Terre) and Landsat 7 
imagery.  When utilizing anicilliary data, the ALOS AVNIR-
2 imagery provided the most accurate assessment becasue of 
the near simultaneous aquistion time to that of the PALSAR 
images.  Lake area and count from both the PALSAR lake 
classification and the CanVec lake polygons where divided 
across 5 size classes ranging from less than 0.01 km2 to over 
100 km2 allowing for direct comparison. 

iii.) Carbon accumulation estimates 
A preliminary assessment of carbon accumulation for 

Canadian lake sediments was calculated based on the 
PALSAR lake classification data and published lake 
sediment carbon accumulation rates.  We used lake sediment 
accumulation rates from 140 Finnish boreal lakes covering a 
wide range of landscapes and lake sizes [5].  Finnish 
accumulation rates were selected because they were based on 
a large lake census and vary as a function of lake size.  This 
allowed for easy application across our PALSAR lake size 
distributions, simplifying the process.  A large part of 
Canada has similar physiographic conditions to boreal 
Finland; however there are many regions which are 
relatively dissimilar.  In order to apply the Finnish data to 
these areas, a scale factor was introduced in an attempt to 
make the carbon accumulation rates more representative of 
the Canadian landscape. Here we based the scale factor on a 
simplified version of the terrestrial ecozones of Canada [11] 



to produce three regions: the boreal forest, the southern arctic 
and the northern arctic (Fig. 1).  Combined, these regions 
account for almost 86% of the Canadian landmass and 
represent some of the major shifts in the physiographic 
conditions.  The remainder of Canada represents some 
challenging and diverse landscape complexities; therefore 
they have been left out of the analysis for now.  Future 
regional carbon estimates on the Canada-wide 50 meter 
mosaic will include other carbon accumulation rate estimates 
from the literature, as they come in, along with new field 
based measurements. 

-60

-40

-20

0

20

40

60

80

9000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500

Raw DN

dy
/d

x 

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

Fr
eq

ue
nc

y

dy/dx histogram

LAKES LAND

Figure 2.  An example of the first derivative approach to threshold value 
selection.  The inflection point between the first mode (water) and the 
second mode (land) is where the first derivative is equal to zero shown by 
the red vertical line.  This provides a starting threshold for a classification 
and can be tuned according to an initial accuracy assessment. 

 

 

 
Figure 3  Left:  The PALSAR mosaic from Northern Quebec, Ungava 
Peninsula and the corresponding threshold based lake classification.  Right:  
Frequency of lakes within each size class ( class 1: < 0.1 km2, class 2: 0.1 �– 
1.0 km2, class 3:  1.0 �– 10 km2, class 4: 10 �– 100 km2, class 5: > 100 km2).  
Lake count increases tenfold with decreasing lake size class. When 
frequency is log scaled the data becomes linear and can be fitted with linear 
best fit line where slope (shown in red) is representative of lake size 
distribution [12]. ALOS K&C © JAXA/METI. 

iv.) Derived thematic product 
The PALSAR lake classification describes the lake size 

distribution for each of the pilot areas.  For the three large 
pilot areas (Fig. 1), size distribution was parameterized and 
thematically mapped to visually show how it changes across 
the landscape.  The density of lakes generally increases from 
large lakes to small lakes.  This increase is roughly tenfold 
when going from one lake size class to the next smaller class 
at a log scale [12, 13].  This relationship can therefore be 
defined by a simple log linear regression (1) (Fig. 3). 

 

log(lake density) = mlog(lake size) + b  (1) 

 

The slope (m) of the line will vary as a function of the 
underlying lake size distribution.  A more negative slope is 
indicative of proportionally more small lakes whereas a more 
positive slope value indicates proportionally more large 
lakes.  This simple relationship can be utilized to 
thematically express how lake size distribution changes 
across the landscape.   

A grid with 100 km2 cells was overlain on top of the lake 
classification for the three large pilot sites.  For each grid cell 
the underlying lake size distribution was log transformed and 
fitted with the log linear regression line (1).  The resulting 
slope values were then assigned to the corresponding grid 
cell (Fig.4).  A cell size of 100 km2 was selected for 
evaluation purposes.  A final grid cell size for the 50m 
mosaic is under evaluation. 

C. Satellite and ground data 

i.) ALOS data 
Analysis thus far has focused on 12.5 meter (level 1.5 

processing) Fine Beam Dual (FBD) and Fine Beam Single 
(FBS) polarization PALSAR imagery obtained from ALOS 
User Interface Gateway (AUIG).  All images were acquired 
during the summer months- between June and August- of 
2007 and 2008 to minimize ice cover interference in the far 
north.  Corresponding AVNIR-2 images (processing level 1-
B2) where also obtained from AUIG for the same time 
period when available.  

ii.) Other data 
The CanVec hydrographic dataset is produced by NRCan 

and was obtained through the Geogratis web portal 
(www.geogratis.ca).  The CanVec dataset is relatively new 
and free cartographic reference product, although the source 
data spans more than 50 years.  CanVec aims to accurately 
represent topographic entities across the Canadian landmass 
with thematic information grouped into 11 distribution 
themes- including hydrographic data.  Data originates from 
the best available sources; mainly the National Topographic 
Data Base (NTDB), the Geobase initiative, and recent 
updates from Landsat 7 imagery. 

The SPOT 4/5 and Landsat 7 imagery were obtained 
from the Geobase web portal (www.geobase.ca) for the pilot  
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areas.  Images cover a time period from 2005 to present 

for SPOT 4/5 and 1999-2003 for Landsat 7. 

II. RESULTS AND SUMMARY 

i.) Lake classification and Accuracy assessment 
The PALSAR lake classification generally 

underestimated total lake area when compared directly to 
CanVec hydrographic data (Table 1).  Differences in total 
lake area between CanVec dataset and the PALSAR lake 
classification ranged from 1.83 to 18.04%.  Some of the 
larger differences within each size class between CanVec  

 

and PALSAR can be explained by simple class shifts.  For 
example in the McKenzie Delta the PALSAR classification 
overestimates the area of lakes in the > 100 km2 class by 
104.17% compared to CanVec.  If this difference is shifted 
into the next lower size class (10 -100 km2) it accounts for 
most of this discrepancy.  This is because of differences in 
the way PALSAR and CanVec define lakes.  If a lake or 
water body has very narrow channels, these regions can be 
lost in PALSAR classification because of resolution 
limitations.  This can result in a single lake being split into 
two or more lakes resulting in a different size classification. 
However, it may be that a lake that is split like this is 

Pilot area Lake Area 
(km2) < 0.1 0.1 - 1.0 1.0 - 10 10 - 100 100 < Total 

PALSAR 20.42 58.96 118.41 151.82 205.52 555.13 
CanVec 23.23 57.51 124.98 173.20 206.54 585.46 

Difference -2.82 1.45 -6.57 -21.38 -1.02 -30.34 Alberta 
(%) -12.12 2.52 -5.25 -12.35 -0.49 -5.18 

PALSAR 20.97 47.83 53.17 24.20 215.03 361.20 
CanVec 11.92 36.91 63.52 27.39 228.22 367.95 

Difference 9.06 10.92 -10.36 -3.18 -13.19 -6.75 
British 

Columbia 
(%) 76.01 29.60 -16.31 -11.62 -5.78 -1.83 

PALSAR 55.44 276.06 326.00 374.69 945.66 1977.86 
CanVec 58.70 288.17 300.76 445.31 997.38 2090.32 

Difference -3.26 -12.11 25.24 -70.62 -51.72 -112.47 Manitoba 
(%) -5.55 -4.20 8.39 -15.86 -5.19 -5.38 

PALSAR 228.78 587.29 478.88 243.35 507.03 2045.32 
CanVec 281.43 654.52 543.53 542.11 248.34 2269.93 

Difference -52.65 -67.23 -64.66 -298.76 258.69 -224.61 McKenzie Delta 
(%) -18.71 -10.27 -11.90 -55.11 104.17 -9.89 

PALSAR 214.08 457.29 655.90 436.50 432.70 2196.47 
CanVec 286.63 571.10 715.54 358.31 574.09 2505.68 

Difference -72.55 -113.81 -59.64 78.18 -141.39 -309.21 
North West 
Territories 

(%) -25.31 -19.93 -8.33 21.82 -24.63 -12.34 
PALSAR 76.32 116.20 78.78 138.74 0.00 410.04 
CanVec 113.57 139.63 82.84 164.23 0.00 500.27 

Difference -37.25 -23.43 -4.06 -25.49 0.00 -90.23 Victoria Island 
(%) -32.80 -16.78 -4.90 -15.52 0.00 -18.04 

PALSAR 92.16 379.71 501.66 600.46 428.94 2002.93 
CanVec 92.34 383.66 526.56 534.68 669.39 2206.62 

Difference -0.19 -3.94 -24.90 65.78 -240.45 -203.69 ELA 
(%) -0.20 -1.03 -4.73 12.30 -35.92 -9.23 

Figure 4.  The development of a thematic lake size distribution map.  A PALSAR image is first classified for lakes and subsequently grided to a specific cell size 
(in this case 100 km2).  For each grid cell the underlying lake size distribution was log transformed and fitted with the log-log linear regression line (1).  The 
resulting slope values are then assigned to the corresponding grid cell as a raster. ALOS K&C © JAXA/METI. 
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Table 1.  Summary lake count estimates for PALSAR lake polygons compared to CanVec lake polygons across six size classes for the 6 small pilot areas. 



behaving more like two small lakes with respect to carbon 
accumulation and so a PALSAR classification may be 
superior for this application. This is under evaluation.  

Comparisons between datasets cannot be perfect because 
they are not time synchronous. The hydrographic data spans 
up to 50 years whereas the ALOS data comes from one short 
period of 24 months.  This relatively short collection time 
and single data source give the ALOS product a strong 
advantage when comparing the current conditions as a 
baseline to changes in future conditions.   

ii.) Carbon accumulation estimates 
A summary of preliminary carbon accumulation 

estimates for Canadian lake sediments is shown below in 
Table 2.  Based on these estimates for every 100,000 km2 of 
boreal, south arctic and north arctic a total of 3.65, 2.45 and 
0.48 Mt of carbon could be accumulating every year in 
Canadian lakes.  This is equivalent to the CO2 emissions of 
over 4.5 million cars per year.  Carbon estimates here were 
restricted to a relatively small area of 100,000 km2 because 
of the limited footprint covered by the pilot areas.  With 
improvements to carbon accumulation estimates and a 
complete lake size distribution based on the 50m PALSAR 
mosaic these estimates will be refined and extended to 
represent all of Canada. 

Lake size km2 Boreal South Arctic North Arctic 

<0.1 0.15 0.24 0.08 

0.1-1 1.07 0.94 0.20 

1-10 1.10 0.79 0.10 

10-100 0.76 0.28 0.11 

>100 0.57 0.20 0.00 

Total Carbon in 
megatonnes (Mt) 3.65 2.45 0.48 

Mt CO2 Equivalent 13.39 9.00 1.77 

Number of Cars1 2,579,000 1,733,000 342,000 

1Based on EPA average annual emissions for passenger cars, April 2000. 
(http://www.epa.gov/oms/consumer/f00013.pdf) 

Carbon accumulation rates for each size class are based on Pajunen 2004 [5] 

 

iii.) Derived thematic product 
 The derived thematic slope maps for the three large 

pilot areas are shown in Figure 5.  Each coloured box 
represents the lake size distribution of the underlying grid 
cell.  Red grid cells indicate a higher proportion of small 
lakes to large lakes whereas green grid cells represent areas 
where there are more large lakes than small lakes. Carbon 
accumulation in lakes varies as a function of lake size [5].  
With a higher density of small lakes, red grid cells will 
accumulate more carbon than green grid cells.  Mapping lake 
distribution as shown allows for easy visual identification of 

high lake density regions and should allow for easy 
extrapolation of carbon accumulation rates to regional scales. 

 
 
Figure 5. Lake classifications (left) and the derived lake size distribution 
maps (right) for each of the three large pilot areas (top to bottom): the North 
West Territories, Northern Quebec on the Ungava Peninsula, and the 
Experimental lakes in south western Ontario.   Each coloured grid cell 
represents the lake size distribution with red indicating areas where there are 
more small lakes than large, and green vice versa. The grid cells were 
classified according to the slope of the regression fit to a classification of 
lake size as per Meybeck (1995) [13].  ALOS K&C © JAXA/METI. 
 

iv.) Future work 
An initial lake classification for all 9 pilot sites has been 

completed resulting in a digital map describing the number, 
size, and location of lakes.  Accuracy has been validated by 
comparisons to other existing digital lake databases and 
corresponding high-resolution satellite imagery.  
Additionally the derived slope maps have been completed 
for the three large pilot sites.   

Preliminary estimates of carbon accumulation in lakes 
have also been completed for the pilot study areas.  This has 
provided an initial assessment of lake carbon accumulation 
which has been scaled up to 100,000 km2 regions of Canada.  
However, these preliminary estimates are limited by the 
small footprint covered by the pilot sites and will improve 
greatly with the utilization of the Canada wide coverage 50m 
PALSAR mosaic to be completed during the extension 
phase. 

Slope
-0.74 - -0.64

-0.64 - -0.59

-0.59 - -0.54

-0.54 - -0.48

-0.48 - -0.38

-0.38 - -0.10

Table. 2  PALSAR derived carbon accumulation in Canadian lakes per 
100,000 km2 per year 
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Abstract— We utilize L-band Synthetic Aperture Radar (SAR) 
datasets from the JERS-1 SAR and the ALOS PALSAR to map 
and monitor wetlands in boreal North America and Boreal 
Eurasia.  JERS SAR datasets employed include data acquired, 
archived and assembled as part of the Global Boreal Forest 
Mapping (GBFM) project. ALOS PALSAR data include data 
supplied by the AUIG. We utilize multi-temporal JERS-1 data 
extending over the last year of JERS mission operations to map 
variability on open water in Alaska. We apply a novel 

classification approach to the summertime and wintertime JERS-
1 SAR mosaics to develop the first synoptic wetlands map 
encompassing all of Alaska. We apply this classification 
algorithm to map wetlands within selected hydrologic basins in 
northern Eurasia, utilizing both JERS SAR and PALSAR data to 
map wetlands ecosystem features in those regions.  We show 
initial results for employing these mappings within a hydrologic-
methane modelling construct which will eventually provide a 
diagnostic tool for assessing methane flux dynamics from these 
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ecosystems. We demonstrate the capability of L-band SAR to 
observe landscape freeze-thaw state within boreal ecosystems for 
examining spatial and temporal character of seasonal freeze/thaw 
transitions in a complex boreal landscape. This work has formed 
the basis for assembly of extensive global-scale Earth system data 
record (ESDR) to include ALOS PALSAR mappings of critical 
wetlands regions with both fine beam and ScanSAR data sets. 
ESDR assembly will be supported under Phase 2 of the Kyoto & 
Carbon Science Panel activities.   

Index Terms—ALOS PALSAR, JERS-1 SAR, K&C 
Initiative, Wetlands, Freeze/Thaw, Carbon Flux 

I.  INTRODUCTION 
Wetlands act as major sinks and sources of atmospheric 

greenhouse gases and can switch between atmospheric sink 
and source in response to climatic and anthropogenic forces. 
Despite their importance in the carbon cycle, the locations, 
types, and extents of northern wetlands are not accurately 
known, in part because suitable remote sensing data with large-
area coverage, and their respective classification algorithms, 
have not been available. The timing of spring thaw can 
influence boreal carbon uptake dramatically through 
temperature and moisture controls to net photosynthesis and 
respiration processes. With boreal evergreen forests 
accumulating approximately 1% of annual net primary 
productivity (NPP) each day immediately following seasonal 
thawing, variability in the timing of spring thaw can trigger 
total interannual variability in carbon uptake on the order of 
30%. Satellite remote sensing is particularly advantageous for 
complete synoptic study of the behavior of wetlands 
ecosystems, surface water dynamics, and large-scale seasonal 
freeze/thaw dynamics across the high latitudes, allowing useful 
inference of recent greenhouse gas emissions as well as 
supporting prediction of processes governing future land-
atmosphere carbon exchange. 

 Phase I of our research under the Kyoto and Carbon 
Initiative focused on development and demonstration of 
capabilities for mapping and monitoring of northern wetlands 
ecosystems and on characterization of seasonal freeze/thaw 
cycles in northern high latitude ecosystems. We map wetlands 
ecosystems in Alaska and Northern Eurasia with L-band 
Synthetic Aperture Radar (SAR). We investigate the 
characterization of spatio-temporal heterogeneity in seasonal 
freeze-thaw transitions in boreal land cover with SAR.  

Wetlands mapping activities include the mapping and 
monitoring of water bodies and demonstration of the capability 
of multi-temporal SAR to characterize the change in surface 
water seasonally. We employ a supervised decision tree 
approach to classify open water for all of Alaska using time 
series data from the Japanese Earth Remote Sensing Satellite 
(JERS-1) SAR collected during 1997-1998 as part of the 
Global Boreal Forest Mapping (GBFM) mission. We 
demonstrate the utility of L-band SAR for mapping and 
monitoring surface water dynamics. 

We used the summer and winter JERS SAR mosaics, 
topography, ground-based measurements of land cover, our 
open water map of Alaska, and other ancillary data layers 

derived form the SAR and DEM datasets to classify wetlands 
regionally for all of Alaska. We develop a powerful 
statistically-based decision tree classification scheme to derive 
the new wetlands data set. The derived 100 meter resolution 
map is the first synoptic map of Alaska wetlands generated 
from a consistent and contiguous data set. 

We apply these classification techniques to PALSAR data 
to develop open water and land cover mappings of several 
hydrologic basins in Northern Eurasia. Techniques for 
integrated these products within a process modeling construct 
that integrates modeling of land surface hydrology with 
modeling of land-atmosphere methane flux are under 
development. We perform an initial assessment of the potential 
of the utilization of the wetlands mappings for assessment of 
surface hydrologic processes for supporting the 
characterization of land-atmosphere carbon exchange, 
performing an initial comparison of our SAR-based products 
with hydro-methane model derivatives both to assess the utility 
of the SAR products for supporting hydro-methane modeling 
and to validate performance of the modeling construct. We find 
the SAR-based land cover products provide a capability for 
assessment of land surface hydrologic parameters that support 
the assessment of methane emissions from wetlands 
ecosystems.  

Development of the integrated remote sensing / process 
modeling framework is continuing, supporting the efforts of 
the  Northern Eurasia Earth Science Partnership Initiative 
(NEESPI), a program of internationally-supported Earth 
systems science research for developing a comprehensive 
understanding of the Northern Eurasian terrestrial ecosystem 
dynamics, biogeochemical cycles, surface energy and water 
cycles, and human activities and how they interact with and 
alter the biosphere, atmosphere, and hydrosphere of the Earth 
(http://neespi.org/). 

II. DESCRIPTION OF THE PROJECT 

A. Relevance to the K&C drivers 
The overarching objective of our project is to develop 

products that demonstrate, support, and provide a capability for 
characterization of carbon cycling processes in boreal/Arctic 
wetlands ecosystems and as related to seasonal freeze/thaw 
cycles in ecosystems in boreal/Arctic regions. We capitalize on 
the systematic acquisition strategies implemented for the JERS 
SAR and the ALOS PALSAR specifically focusing on high-
latitude wetland regions to prototype products over North 
American and Eurasian sites. We use multi-temporal datasets 
to address issues of seasonal change, including seasonal 
freeze/thaw state change. These prototype land cover 
classification and freeze-thaw state products are developed to 
provide unique and key information for use with ecosystem 
process models for assessing land-atmosphere carbon 
exchange. 

Wetlands exert major impacts on biogeochemistry, 
hydrology, and biological diversity. The extent and seasonal, 
interannual, and decadal variation of inundated wetland area 
play key roles in ecosystem dynamics. Wetlands contribute 
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approximately one fourth of the total methane annually emitted 
to the atmosphere and are identified as the primary contributor 
to interannual variations in the growth rate of atmospheric 
methane concentrations. Climate change is projected to have a 
pronounced effect on global wetlands through alterations in 
hydrologic regimes, with some changes already evident. In 
turn, climate-driven and anthropogenic changes to tropical and 
boreal peat lands have the potential to create significant 
feedbacks through release of large pools of soil carbon and 
effects on methanogenesis. Despite the importance of these 
environments in the global cycling of carbon and water and to 
current and future climate, the extent and dynamics of global 
wetlands remain poorly characterized and modeled, primarily 
because of the scarcity of suitable regional-to-global remote-
sensing data for characterizing their distribution and dynamics.   

In the northern high latitudes open water bodies are 
common landscape features, having a large influence on 
hydrologic processes as well as surface-atmosphere carbon 
exchange and associated impacts on global climate. It is 
therefore important to assess their spatial extent and temporal 
character in order to improve hydrologic and ecosystem 
process modeling. Spaceborne SAR is an effective tool for this 
purpose since it is particularly sensitive to surface water and it 
can monitor large inaccessible areas on a temporal basis 
regardless of atmospheric conditions or solar illumination.  

B. Overview of Work approach 
Our project focused on a combination of local-scale 

hydrological basin study sites and regional-scale study areas in 
North America and Eurasia. Dataset assembly, algorithm 
development, and algorithm prototyping were initially 
conducted in boreal North America, primarily in Alaska. We 
employed multi-temporal L-band SAR data from JERS-1 and 
ALOS PALSAR to map open water bodies in Alaska and 
Eurasia. A supervised decision tree-based approach was used 
to generate open water maps. We expand the JERS-based open 
water maps of regions within Alaska to the entire Alaska 
domain. Multi-temporal SAR imagery is applied to prototype 
the capability for monitoring seasonal hydrologic dynamics. 
We assembled regional-scale monthly JERS-1 SAR mosaics 
from data acquired during 1998. Digital Elevation Models 
(DEMs) and derived slope were also employed in the decision 
tree classifier. These supplementary data aided significantly in 
improving the classification performance in topographically 
complex regions where radar shadowing was prevalent. 

We integrate the open water map with the SAR imagery 
into a decision tree-based classification construct to derive a 
wetlands map of the whole of Alaska. The resulting product is 
the first synoptic map of wetlands derived from a single data 
source covering all of Alaska. Having developed and 
prototyped these approaches for open water and wetlands 
mapping, we apply these techniques to develop open water and 
wetlands mappings of selected hydrologic basins in Northern 
Eurasia.  

For study regions in Eurasia, PALSAR data was used to 
map open water and its change over selected study basins. We 
also made use of JERS SAR data in Eurasia as needed to 

develop open water products supporting our land surface 
process modeling. Supplementary data from Landsat were used 
to further refine the open water classification. 

C. Satellite and ground data 
We utilize JERS-1 SAR datasets acquired as part of the 

Global Boreal Forest (GBFM) project and PALSAR data 
available to us through the systematic acquisitions detailed in 
the Kyoto and Carbon (K&C) Science Plan. For our Alaska 
effort, we used JERS SAR datasets. JERS data were processed 
and acquired from the Alaska Satellite Facility and assembled 
at JPL under the Global Boreal Forest Mapping (GBFM) 
project. For our Eurasia effort we used fine-bean single pol 
(HH) and dual-pol (HH+HV) data available though the AUIG. 
Landscape classification approaches and associated algorithm 
development and testing were carried out with the JERS data in 
Alaska, then subsequently applied and extended using 
PALSAR data over the Eurasian basin-scale study sites. 

Derivation of the remote sensing-based mappings makes 
use of important ancillary data sets incorporated within the 
classification construct. These include DEMs, Landsat 
imagery, and ground measurements acquired from external 
project sources and applied here for training and validation. 
DEMs from the Shuttle Radar Topography Mission (SRTM) 
were employed for the Eurasian basin regions where the basins 
fall within the domain of the SRTM datasets (i.e. south of 60 
deg. N latitude; http://srtm.csi.cgiar.org/). For Alaska, we 
employ the GTOPO30 Global 30 Arc Second Elevation Data 
Set available from the U.S. Geological Survey 
(http://eros.usgs.gov/#/Find_Data/Products_and_Data_Availab
le/gtopo30_info). Landsat data were used to supplement the  
landcover classification efforts in Eurasia. The Landsat data 
were available to us from a database assembled by the 
Cartography lab at JPL. 

III. WETLANDS MAPPING: ALASKA 

A. Open Water Mapping and Monitoring in Alaska 
Dual season winter and summer JERS SAR mosaics of 

Alaska assembled from imagery collected primarily during 
1997 and 1998 were used extensively in prototyping 
classification schemes and in developing wetlands mappings of 
Alaska (Figure 1). We applied the summertime JERS SAR 
mosaic to map open water at local and regional scales. Figure 2 
shows a map of open water for Alaska developed applying a 
Maximum Likelihood Estimator (MLE) to the summertime 
SAR mosaic. Various approaches were tested in mapping open 
water including supervised and unsupervised schemes. The 
resulting product represents open water condition for the time 
of acquisition of the SAR images making up the mosaic. 

Time series JERS SAR imagery from 1998 was applied to 
map seasonal change in open water at approximately 44-day 
repeat intervals. Figure 3 shows a series of mappings 
developed over a sub-region of Alaska’s North Slope near the 
Kuparuk River. The map of open water were developed during 
the 1998 non-frozen period and applied to examine change in 
surface open water during the non-frozen period. The open 
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water change maps show regions where the area of open water 
increases relative to the early growing season as well as those 
locations where open water area decreases. 

These efforts are being extended to develop similar 
mappings with PALSAR data. We are also extending the work 
with JERS to include Canada to support development of 
wetlands maps across boreal North America. 

B. Wetlands Mapping in Alaska 
We utilized the summer and winter JERS SAR mosaics 

(Figure 1) to develop a synoptic wetlands map of Alaska 
(Figure 4). Because of the temporal compositing time required 
in assembly of the mosaics, significant variability exists in land 
surface hydrologic features that give rise to pass-to-pass 
variability (striping) in the SAR mosaics. To account for this 
within our classification schema, we utilized a statistically-
based decision tree classification approach based on the 
random forest software (Breiman, 2001).Random forest 
generates a large number of decision trees (i.e. a forest) based 
on ground reference (training) data and input data layers 
generated from remote sensing and ancillary data sources. Each 
decision tree is generated through an iterative process wherein 
nodes are split according to the pixel values in each input data 
layer covered by the training data. This continues until nodes 
can no longer be split. Each pixel to be classified is run through 
every decision tree in the forest. The final class assigned to the 
pixel is that class selected by the most decision trees in the 
forest. Classification accuracy is determined by comparing the 
final classified product to training data withheld during the 
generation of the forest.  The resulting product represents the 
first synoptically-generated wetlands map available for all of 
Alaska. 

IV. WETLANDS MAPPING: EURASIA 

A. Open water and wetlands mapping in Eurasia 
Having developed and prototyped classification and 

mapping approached from JERS SAR in Alaska, we utilize 
PALSAR data acquired form the AUIG to map open water and 
wetlands land cover in northern Eurasia. We focus on a 
selection of basins within the Northern Eurasian Earth Science 
Partnership Initiative (NEESPI) domain (Figure 5). The effort 
here is to develop remote sensing-based products to support 
modelling of surface hydrodynamic processes and associated 
methane production. Primary controls to land-atmosphere 
methane flux in these ecosystems include soil temperature, 
water table position, and vegetation productivity. Thus 
development of open water and wetlands vegetation maps 
lends itself well to supporting the needed hydro-methane 
modeling infrastructure for understanding present methane 
emissions and forecasting effects of climate and land cover 
changes on future methane emissions.  

Fine-beam PALSAR imagery was acquired over each 
NEESPI sub-region. Mosaics of the PALSAR scenes covering 
the basins were assembled. Supplementary Landsat data were 
acquired and assembled over each basin. The PALSAR and 
Landsat data were coregistered to a DEM. Open water was 

derived utilizing a decision tree classification scheme applied 
to the combined PALSAR/Landsat/DEM datasets. Figures 6 
through 10 show PALSAR an Landsat data sets and derived 
open water maps for five of the hydrologic basins shown in 
Figure 5. A random forest classification approach was 
employed to develop wetlands vegetation maps (Chaya basin 
shown in Figure 11). 

B. Hydro-methane process modeling in Eurasia 
Our process modeling framework (Figure 12; Bohn et al 

,2007a,b) consists of the Variable Infiltration Capacity (VIC) 
hydrological model (Liang et al., 1994), enhanced with 
ecosystem process model components taken from the 
Biosphere Energy Transfer Hydrology (BETHY) terrestrial 
carbon model (Knorr, 2000), and coupled to the wetland 
methane emissions model of Walter and Heimann (2000). The 
models are linked as follows: the VIC (enhanced with carbon 
cycling processes from the BETHY model) component runs at 
an hourly time step, simulating, among other variables, soil 
temperature, soil moisture, and net primary productivity (NPP).  
At the end of the simulation, these hourly time series are 
aggregated to daily values, and VIC’s daily soil moisture is 
converted to a daily distribution of water table depths across 
the catchment.  Then, for each day, the resulting distribution of 
water table depths is discretized, and methane emissions are 
estimated (via the methane emissions model of Walter and 
Heimann (2000)) as a function of soil temperature, NPP, and 
water table depth for each water table value in the discretized 
distribution.  The total methane emission of the grid cell, then, 
is the area-weighted sum of the methane emissions from all of 
the discrete values of the water table depth.  

Initial development and testing of this modeling construct 
has been performed for the Bakchar Bog region of the Chaya 
basin (Figure13). A topographic wetness index was derived 
from SRTM DEM (Bohn et al ,2007a,b). This index was 
compared to the land cover map of the region derived using 
random forest classification of ALOS PALSAR imagery. 
Regions of high topographic wetness index correspond closely 
with areas of wetland as mapped with PALSAR. 

Multi-temporal JERS-1 SAR data were used to produce 
open water maps of this region. For the modeling component, 
two open water image swaths were chosen based on their 
overlap and day of acquisition (Bohn et al, 2006). The first 
swath was acquired on April 10, 1995 and the second on May 
23, 1995. These days represent wide variations in open water 
saturation. Change in saturated surface extent between day 100 
and day 143, year 1995, given by JERS open water 
classification are compared with the process-based modeling 
framework estimates for change in water table depth (Figure 
14).  

V. CHARATERIZATION OF LANDSCAPE FREEZE/THAW 
STATE 

Multitemporal SAR data were applied to examine spatial 
and temporal heterogeneity of seasonal land surface freeze-
thaw transitions for a complex boreal landscape. Figure 15 
shows JERS SAR applied to map landscape freeze-thaw state 
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for a region of complex land cover in interior Alaska. A 
seasonal change detection algorithm was applied to time series 
JERS images to derive landscape surface freeze-thaw state 
(Entekhabi et al., 2004). Combined with a land cover map, the 
freeze-thaw state may be discerned according to land cover. 
This approach facilitates examination of the spatio-temporal 
dependencies of the seasonal freeze-thaw transitions in 
complex, heterogeneous landcover situations (Podest 2005). 

Figure 16 shows JERS SAR applied to map landscape 
freeze-thaw state for a region of complex topography in 
interior Alaska. The seasonal change detection algorithm was 
applied to time series JERS images to derive landscape surface 
freeze-thaw state. Combining these maps with a Digital 
Elevation Model (DEM), the influence of surface topography 
on the spatio-temporal character of freeze-thaw transitions can 
be assessed. In the time series shown, differences in the spring 
thaw and autumn freeze series related to slope aspect can be 
seen. The difference in the timing of thaw between north and 
south facing slopes is notable in springtime as is the similar 
different in autumn freeze-up timing. During spring, south 
facing slopes are seen to thaw earlier than the north-facing 
regions. In the autumn, north facing slope freeze earlier that 
south facing slopes. 

VI. RESULTS AND SUMMARY 
The objective of our Phase I activity  was to develop 

products that demonstrate, support, and provide a capability for 
characterization of carbon cycling processes in boreal/Arctic 
wetlands ecosystems and as related to seasonal freeze/thaw 
cycles in ecosystems in boreal/Arctic regions. To this end, we 
have applied JERS SAR and ALOS PALSAR data to 
demonstrate their capability for mapping and monitoring open 
water and wetlands ecosystems in boreal landscapes. We used 
multi-temporal datasets to address issues of seasonal change, 
including examining seasonal open water change and spatial 
and temporal heterogeneity in boreal landscape freeze/thaw 
state. The wetlands products have been used to perform an 
initial assessment of a process modelling scheme for examining 
surface hydrology and associated land-atmosphere methane 
flux. We have developed the first synoptic map of wetlands 
across Alaska. 

These prototype land cover classification and freeze/thaw 
state products provide unique of key information for use with 
ecosystem process models for assessing land-atmosphere 
carbon exchange. In the northern high latitudes open water 
bodies are common landscape features, having a large 
influence on hydrologic processes as well as surface-
atmosphere carbon exchange and associated impacts on global 
climate. Efforts under Phase II of our K&C work will build on 
the data assembly capabilities and algorithm development tasks 
conducted in Phase I, extending and efforts to mapping and 
monitoring of important wetlands regions world-wide. Data 
provided by the K&C Initiative will support assembly of a 
global-scale Earth science data record of inundated wetlands. 
This data record will be made available to the larger Earth 

science community, supporting a broad range of scientific 
investigations.(McDonald, 2007) 
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Figure 1: Mosaics of JERS-1 SAR images covering Alaska. Data are drawn from the large database of SAR images collected as 
part of the Global Boreal Forest Mapping (GBFM) project. Shown are mosaics representative of summertime thawed (left) and 
wintertime frozen (right) conditions. The complete JERS SAR dataset images collected within the Alaska Satellite Facility (ASF) 
receiving station mask during 1997-1998 allow mapping of open water and wetlands for the Alaska domain. 
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Figure 2. The open water map above was generated using an MLE supervised based approach applied to the Alaska JERS-1 
summer mosaic. The product has spatial resolution of 100 meters. A DEM was used to mask out areas of high topography where 
radar shadowing was confused as open water.  
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Figure 3: Time series maps of open water and change in open water for a 40 km x 40 km region of the Kuparuk River basin on 
Alaska’s North Slope. These maps were derived from JERS SAR data collected during 1998. The top series of three maps show 
open water (blue) overlain on the JERS backscatter (grey scale). The lower two maps show the associated change in open water 
(derived from the open water maps above) during the short Arctic growing season. These change maps delineate regions of 
increasing (shown in red) and decreasing (shown in white) open water relative to open water conditions in June.  

 

 
 

   Open Water Change:  
July relative to June 

                         Open Water Change:  
                        August relative to June 

        August 1998               July 1998                 June 1998 



 10

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The wetlands map of Alaska generated from JERS radar imagery and ancillary data sets. The resolution of the map is 
100 m. Top-level vegetation class accuracy rates range between 69.5% and 95% and the overall accuracy rate is approximately 
89.5% based on all correctly classified pixels. The most prominent vegetated wetland classes are palustrine emergent, 
scrub/shrub, and forested. The other vegetation classes have only very small spatial coverage, not easily visible at the scale of this 
figure (Whitcomb et al., 2009). 
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Figure 5: Location of the hydrologic basins for which PALSAR fine-beam datasets were utilized in derivation of landcover 
mappings to support hydrologic and carbon cycle science. Located northern Eurasia, this research supports research being 
conducted as part of the Northern Eurasian Earth Science Partnership Initiative (NEESPI). PALSAR-based mappings of wetlands 
features within these basins are being used to validate and calibrate results from hydro-methane process models under development 
to provide a diagnostic capability for assessing the effects of climate change on land-atmosphere water and carbon fluxes in boreal 
wetlands regions.  
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Z. Dvina (PALSAR mosaic) 

 

 
Z. Dvina (PALSAR fused with Landsat) 

 

 
Z. Dvina (Open Water) 

 
Figure 6: Derivation of open water for the Z. Divina basin. A mosaic of fine-beam PALSAR images is assembled (top) and fused 
with Landsat data (middle). These combined data are used together with a DEM in derivation of an open water map (bottom). 
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Upper Volga (PALSAR mosaic) 

 

 
Upper Volga (PALSAR fused with Landsat) 

 

 
Upper Volga (open water) 

 
Figure 7: Derivation of open water for the upper Volga basin. A mosaic of fine-beam PALSAR images is assembled (top) and 
fused with Landsat data (middle). These combined data are used together with a DEM in derivation of an open water map 
(bottom). 
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Chaya basin (PALSAR mosaic) 

 

 
Chaya basin (PALSAR and Landsat fused) 

 

 
Chaya basin (open water perspective) 

 
Figure 8: Derivation of open water for the Chaya basin. A mosaic of fine-beam PALSAR images is assembled (top) and fused 
with Landsat data (middle). These combined data are used together with a DEM in derivation of an open water map (bottom). The 
open water ma p is shown in a perspective view draped over the DEM. 
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Syum (PALSAR mosaic) 

 

 
Syum (Landsat mosaic) 

 
Syum (open water) 

 
Figure 9: Derivation of open water for the Syum basin. A mosaic of fine-beam PALSAR images is assembled (top) and fused 
with Landsat data (middle). These combined data are used together with a DEM in derivation of an open water map (bottom). 
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Yeloguy Basin (PALSAR image) 

 

 
Yeloguy Basin (Landsat fused wit PALSAR) 

 

 
Yeloguy basin open water map 

 
 

Figure 10: Derivation of open water for the Yeloguy basin. A mosaic of fine-beam PALSAR images is assembled (top) and fused 
with Landsat data (middle). These combined data are used together with a DEM in derivation of an open water map (bottom). 
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Figure 11.  Landcover mapping for the Chaya Basin region, focusing on inundated wetland features and derived using ALOS 
PALSAR with Random Forest classification scheme applied. Landcover classes and the percent regional area covered by each are 
provided in the key. 
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Figure 12. Modeling infrastructure utilized in the hydro-methane modeling schema. At left is the structure of the Variable 
Infiltration Capacity (VIC) model framework. The VIC model provides detailed information on surface hydrology processes, 
including soil temperature and water table depth. These are two key parameters necessary for estimation of land-atmosphere 
carbon exchange. At right if the process flow diagram showing the integration of the VIC model within a hydrology-methane 
modeling construct. This construct is being evaluated as an integrated approach for estimating land-atmosphere methane 
exchange, as a spatially explicit function of water table depth, soil temperature, and vegetation productivity (NPP) (Bohn et al 
2007). 
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Figure 13.  Location of the Chaya Basin study region where the hydro-methane modeling framework is being developed and 
prototyped. At left is a map of the topographic wetness index derived over the region from SRTM DEM.  At right is the landcover 
of the region, derived using random forest classification of ALOS PALSAR imagery. The Bakchar Bog observation site is 
marked with the yellow star, and the 100 x 100-km EASE-grid cell centered at (56˚ 29’ N, 83˚ 09’ E) is outlined in black (at left) 
and white (at right).  Note the close correspondence between areas of high topographic wetness index (> 14) in the panel at left 
and areas of wetland in the panel at right. 
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Figure 14. Comparison of change in surface inundation derived from JERS SAR (at left) with change in saturated water table 
derived from the hydro-methane modeling schema (at right) for the Bakchar Bog region of the Chaya Basin. JERS-based maps of 
open water were derived for year-day 100 and year-day 143 of 1995. Change in inundated area was computed for day 143 relative 
to day 100 and expressed as a change in inundated area fraction. Blue pixels contained open water on day 143 but not day 100. 
Red pixels contained open water on day 100 but not day 143. Model-based water table depth was computed for these same days. 
Saturated soil was defined as that region with water table depth less than 40 cm. The change in water table depth was determined 
from these modeled data. Change in saturated pixels is defined as the change in water table above 40 cm depth. At right, blue 
pixels had water table depth shallower than 40 cm below the surface on day 143 and deeper than 40 cm below the surface on day 
100. Pixel size is 30 arc seconds. The area identified where increase in saturated pixels is evident corresponds to regions of 
increased surface inundation as determined from the JERS mappings. 
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Figure 15: JERS SAR applied to map landscape freeze-thaw state for a region of complex landcover in interior Alaska. A 
seasonal change detection algorithm was applied to time series JERS images (top) to derive landscape surface freeze-thaw state 
(middle). Combined with a landcover map, the freeze-thaw state may be discerned according to landcover (bottom).This approach 
facilitates examination of the spatio-temporal dependencies of the seasonal freeze-thaw transitions in complex, heterogeneous 
landscapes. 
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Figure 16: JERS SAR applied to map landscape freeze-thaw state for a region of complex topography in interior Alaska. A 
seasonal change detection algorithm was applied to time series JERS images (top) to derive landscape surface freeze-thaw state. 
Combined with a Digital Elevation Model (DEM), the influence of surface topography on the spatio-temporal character of freeze-
thaw transitions can be assessed. In the time series shown, differences in the spring thaw and autumn freeze series related to slope 
aspect can be seen (e.g. bottom right graph). 
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Abstract—Using JERS-1 and PALSAR radar 
images provided by JAXA, we built regional 
and continental scale mosaics of Sahara that 
allowed to discover major geological features. 
The unique capability of L-band SAR to map 
subsurface structures in arid areas revealed 
several impact craters and paleo-rivers in 
Egypt and Libya. 
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INTRODUCTION 
 

Low frequency orbital Synthetic Aperture 
Radar (SAR) has the capability to probe the 
subsurface down to several meters in arid 
areas. Previous studies have shown that L-
band SAR is able to penetrate meters of low 
electrical loss material such as sand. The first 
Shuttle Imaging Radar (SIR-A)  obtained 
some of the first subsurface imaging results 
for a site located in the Bir Safsaf region, in 
southern Egypt: SIR-A L-band radar revealed 
buried and previously unknown paleodrainage 
channels, which afterwards were confirmed 
during field expeditions. Subsequently, SIR-C 
data were used to map subsurface basement 
structures that control the Nile's course in 
northeastern Sudan : numerous hidden faults 
were detected, thus helping to better 
understand the Cenozoic uplift of the Nubian 
Swell. More recent studies have shown that 
combining SRTM – Shuttle Radar 
Topography Mission – topographic data with 
SAR images better reveals subsurface 
features which still present a topographic 
signature. New paleodrainage flow directions 
have been mapped in the eastern Sahara, 
allowing better definition of drainage lines 
leading to oases and valleys, as well as a 
better understanding of the Nubian aquifer in 
Libya. 

While the geographical coverage of the 
Shuttle Imaging Radar missions was limited, 
a more complete L-band radar coverage of the 
eastern Sahara by the Japanese JERS-1 
satellite was used to realize the first regional-
scale radar mosaic covering Egypt, northern 
Sudan, eastern Libya and northern Chad. This 
data set helped discover numerous unknown 
geological structures, particularly impact 
craters: a double impact crater was found in 
southern Libya, in a flat and hyper arid area 
covered by active aeolian deposits. More than 
1300 small crater-like structures, distributed 
over an area of 40,000 km2, were also 
detected in the western Egyptian desert. 
Continental-scale exploration is now being 
conducted using higher quality data from the 
new high-performance PALSAR L-band radar 
of the Japanese ALOS satellite. A new mosaic 
of the eastern Sahara made from PALSAR 
scenes shows excellent data quality, allowing 
a better detection of subsurface features. 
Using this unique data set, we discovered a 
major paleodrainage river in eastern Libya. 
 
 
SUBSURFACE IMAGING USING JERS-1 
DATA 

 
JERS-1 was launched in 1992 and acquired 

L-band (1.275 GHz) SAR images of the Earth 
until end of 1998. It provided 18m resolution 
images in HH polarization, with an off-nadir 
angle of 35o. Due to power feed problems, the 
data present a high NE 0 (noise equivalent 0) 
of -18dB. It is a crucial parameter for 
subsurface imaging since buried structures are 
likely to have a low backscattering return. 
Also, geocoding of JERS-1 SAR data was 
poor, with location errors reaching several 
hundreds of meters. A complete L-band radar 
coverage of the eastern Sahara by the Japanese 
JERS-1 satellite exists and was used in 2003 
to realize the first regional-scale radar mosaic 



covering Egypt, northern Sudan, eastern Libya 
and northern Chad [1]. The production and 
scientific analysis of more than 1600 SAR 
scenes was used to study the near-surface 
geology hidden by the superficial sand layer, 
and we discovered numerous unknown 
geological structures. 

 
We thus revealed a double impact crater in 
southern Libya: the structure is located 110 
km west of Djebel Arkenu and 250 km south 
of Kufra oasis in Libya, at coordinates 
22o04’N, 23o45’E. It is a flat and hyperarid 
area covered by active aeolian deposits. The 
optical Landsat 7 image of the region shows a 
sandy region with large sand dunes trending 

SW-NE, while the corresponding L-band radar 
image extracted from our JERS-1 mosaic 
reveals two circular structures partially hidden 
by Quaternary deposits (fig. 1). The NE crater, 
6.8 km in diameter, is composed of concentric 
inner and outer rings separated by a 
depression filled with sediments. Its 
morphology is very similar to the Aorounga 
crater in Chad, corresponding to a typical 
complex crater. Shatter cones and breccia 
were observed during field work in April 
2003. Planar fractures were also found into 
rock samples, confirming the impact origin of 
the craters [2]. 

 
Figure 1.  Landsat 7 ETM+ image of the Arkenu double crater  (left), and  corresponding JERS-1 radar image (right) at a 

resolution of 50m  (JAXA/METI ). 
 

 
Figure 2. Surface view of the outcropping part of GKCF28 crater (40m in diameter, top) and corresponding GPR profile 

at 270 MHz (bottom) showing its subsurface shape. 
 



We also detected more than 1300 small 
crater-like structures distributed over an area 
of 40,000 km2 in the Western Egyptian Desert, 
close to the Gilf Kebir plateau. Sixty-two of 
them were visited in the field during February 
and December 2004 [3, 4]. Morphological 
observations, rock samples and ground-
penetrating radar data were obtained [5] (fig. 
2). Shatter cone-like features, breccia and sub-
planar fractures were observed in the vincinity 
of most of the craters, but the impact origin of 
the field still has to be confirmed: 
hydrothermal vent complexes could also 
explain some of our observations [6].  
Whatever its origin, the Gilf Kebir crater field 
is of great scientific interest and is a major 
element of the geological history of Western 
Egypt. Further field and laboratory studies are 

quired in order to better understand its 

FI
on, PALSAR 

allows in particular a better detection of fine 
paleo-hydrological networks [7].

 
F

26o36'E. PALSAR much better  reveals paleodrainage channels in the lower part of the scene (JAXA/METI ). 

re
nature and origin. 
 

RST RESULTS USING ALOS/PALSAR 
DATA 

In January 2006, the JAXA successfully 
launched the Advanced Land Observing 
Satellite (ALOS). It carries two high 

resolution optical sensors (AVNIR-2 and 
PRISM) and one full polarimetric L-band 
SAR, PALSAR. This phased array SAR 
provides high resolution (10m) imagery with 
variable incidence angle, with a much 
improved value of NE 0 around -25dB. The 
geolocation accuracy is better than 10m and 
the radiometric accuracy is better than 1dB. 
The PALSAR instrument is operated to 
provide systematic wall-to-wall observations 
of all land areas on the Earth on a repetitive 
basis. First acquisitions over North Africa took 
place during ascending cycle 9 in January 
2007 (Fine Beam mode, HH polarization, 
incidence angle 34.3o). We produced a first 
small mosaic of 50 PALSAR scenes, 
extending between 18-23oN and 24-30oE over 
southern Egypt and northern Sudan. 
Comparison between the JERS-1 SAR and 
PALSAR data clearly shows the superior 
capacity of the PALSAR sensor to map 
subsurface features (fig. 3). Due to its 
improved NE 0 and finer resoluti

igure 3. Landsat (top left), JERS-1 (top right) and PALSAR image (bottom) of a region located around 21o55'N, 



 
 

 
Figure 4. PALSAR mosaic from acquisition cycles 12 and 13, covering Sahara and Arabia (JAXA/METI ). 

 

 
prospecting in arid and semi-arid regions [8]. 

ain tributaries (north-eastern Tibesti, 

en 
China (Sinkiang and Badain Jaran deserts). 

 

A full coverage of Sahara in HH and HV 
polarizations was acquired in June and July 
2007 (ascending cycles 12 and 13). Using our 
own data processing chain, we produced a 
geocoded mosaic of Sahara and Arabia from 
more than 400 dual-polarization PALSAR 
strips (fig. 4). It covers latitude between 17-
37oN and longitude between 17oW and 60oE. 
This dataset constitutes a unique tool for the 
scientific community to study the paleo-
environment and paleoclimate of North 
Africa. It will also help build more complete 
geological maps in support to future water

 
We started the analysis of the PALSAR 

mosaic over eastern Sahara. As a first result, 
we mapped a major paleodrainage system in 
eastern Libya, that could have linked the 
Kufrah Basin to the Mediterranean coast 
through the Sirt Basin, possibly as far back as 
the middle Miocene. Images from the 
PALSAR sensor clearly reveal a 900 km-long 
river system (fig. 5), which starts with three 

northern Uweinat and western Gilf Kebir / 
Abu Ras) that connect in the Kufrah oasis 
region. The river system then flows north 
through the Jebel Dalmah, and forms a large 
alluvial fan in the Sarir Dalmah. The sand 
dunes of the Calanscio Sand Sea prevent deep 
orbital radar penetration and preclude detailed 
reconstruction of any possible connection to 
the Mediterranean Sea, but a 300 km-long link 
to the Gulf of Sirt through the Wadi Sahabi 
paleochannel is likely. If this connection is 
confirmed, and its Miocene antiquity is 
established, then the Kufrah River, 
comparable in length to the Egyptian Nile, 
will have important implications for the 
understanding of the past environments and 
climates of northern Africa from the middle 
Miocene to the Holocene [9]. Future work 
concern the analysis of tha PALSAR mosaic 
to map paleodrainage networks in western 
Sahara (Mauritania, Niger, Mali). We aslo 
plan to apply the same approach to study 
subsurface geology in arid regions of north

m



 
Figure 5.  The Kufrah River (in blue) mapped onto SRTM topography (left) and PALSAR mosaic (right). The red dotted 

line represents a possible path to the Mediterranean coast (JAXA/METI ). 
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Abstract—  

ALOS PALSAR, an orbiting L-band SAR 
launched by the Japanese Aerospace and 
Exploration Agency (JAXA) in 2006, has been 
pursuing a global observation strategy through 
its ALOS Kyoto and Carbon Initiative (ALOS 
KC) [6]. The objectives of the ALOS KC project, 
lead by JAXA, include systematic global scale 
acquisitions by ALOS PALSAR, and the 
production of products quantifying the 
geographic extent of forested, desert, and 
wetlands [2].  As a component of this task, large 
collections of dual polarization (HH and HV) 
data are being acquired over wetland areas 
around the globe.  Through the NASA 
MEASURES program, JPL will be leading an 
effort to utilize this data to produce a global 
inundated wetlands product.  One of the first 
steps will be to produce dual polarized 
continental-scale mosaics of SAR imagery.  
Image mosaics are desired to simplify image 
classification. However, flexibility in 
constructing the mosaic is required, in order to 
produce representative products.   The 
distribution and visualization of the image 
mosaics and products is also an important 
component of this work. 

Index Terms—ALOS PALSAR, K&C Initiative, Wetland 
Theme, Mosaic Theme, inundated wetlands 

I.  0BINTRODUCTION 

A. 4BScience objectives 
 

A NASA funded research task will be generating 
an Earth Science Data Record for global inundated 
wetlands.  Wetland extent and dynamics will be 
characterized using ALOS PALSAR imagery and 
other sensors. The extent and seasonal, inter-annual, 
and decadal variation of inundated wetland area 
play key roles in ecosystem dynamics. Wetlands 
contribute approximately one fourth of the total 
methane annually emitted to the atmosphere and are 
identified as the primary contributor to inter-annual 
variations in the growth rate of atmospheric 
methane concentrations. Climate change is 
projected to have a pronounced effect on global 
wetlands through alterations in hydrologic regimes, 
with some changes already evident. In turn, climate-
driven and anthropogenic changes to tropical and 
boreal peatlands have the potential to create 
significant feedbacks through release of large pools 
of soil carbon and effects on methanogenesis. 

B. 5BImage mosaics 
In assembling the ALOS SAR mosaics for the 

global inundated wetlands product, the mosaics will 
be ortho-rectified to the SRTM DEM (where 
available). The images to be mosaicked will be 
lower resolution image ‘strips’, often thousands of 
kilometers along track, rather than image frames 
which are roughly as long along track as the cross 
track dimension.  These image strips are produced 
as a special product of the ALOS KC project by the 
JAXA Earth Observation Research Center (EORC), 
and have a pixel spacing of under 100 meters.  
These acquisitions also include the cross-pol 



channel, for which the same georeferencing 
information may be used to project the imagery to 
the ground topography.   

 
C. Display and distribution of imagery and 

products 
 
The display of ortho-rectified Earth Imagery can 

be facilitated through Earth Image browsers such as 
Google Earth.  These Earth image browsers are easy 
to use, and enable visual comparison of ALOS 
imagery and derived products with high-resolution 
optical imagery.  They can also be a means for data 
discovery, in which you use the Earth image 
browser to geographically find the imagery or data 
that you require.   They can provide a public 
presentation at multiple resolutions of ALOS 
imagery and data, which is important due to the 
simultaneously fine resolution and large geographic 
extent of the ALOS Kyoto and Carbon Initiative 
products.  They also provide a platform for 
interaction with the data. 

 

II. 1BDESCRIPTION  

A. 6BRelevance to the K&C drivers 
The Wetlands theme of the ALOS KC initiative 

[2] will utilize ALOS image mosaics that have been 
ortho-rectified and projected to a simple ground 
projection.  This simplifies quantitative analysis (i.e. 
overlap regions are eliminated) and validation and 
verification (i.e. it is easy to geographically compare 
with validation data sets).   The mosaic theme of the 
ALOS KC initiative therefore enables this work by 
producing ortho-rectified image products.   The 
specific objective of ALOS KC phase 1 work was to 
produce prototype dual polarization mosaics of 
North and South America, and begin analysis of 
ScanSAR regions where rich multi-temporal image 
data will be acquired.  Another objective of this 
work is to explore how this image data may be 
visualized and distributed using commonly available 
and easy to use tools for this purpose. 

The most basic requirement for modeling 
regional to global methane or carbon dioxide 
emissions from wetlands is a digital wetlands map 
with an appropriate scale and classification scheme 
[2].  The ultimate results of this project to map the 

extent and dynamics of inundated wetlands will 
therefore improve our understanding of the carbon 
cycle as well as facilitate conservation of wetland 
areas simply by identifying the location and 
maximum and minimum extent of wetlands.  

B. 7BWork approach 
The JAXA Earth Observation Research Centre 

(EORC) provides slant range image strips for use by 
the ALOS Kyoto and Carbon Initiative [2].  These 
image strips can be thousands of km in length, but 
have a reduced resolution compared to that obtained 
during standard processing.  The calibration is the 
same as that performed during standard processing, 
but the file format is slightly different. 

First step for image mosaicking is the ortho-
rectification of the image data.  For these results, we 
use the software package from Gamma Remote 
Sensing [7] to orthorectify the data to a supplied 
digital elevation model (DEM).  The DEM data was 
constructed from the SRTM DEM, and other 
available DEM’s outside of the SRTM coverage 
area [8].  Since the image strips extend across 
continental scale regions, we project the imagery to 
SRTM–like ‘tiles’ of topography information, 
approximately 1deg x 1 deg in size.  The tiles are 
actually reconstructed from the SRTM data slightly 
larger than this to accommodate edge effects. The 
SRTM-like tiles of imagery may then be mosaicked 
into the desired larger regional image mosaics (see 
figure 1). 

 
Figure 1:  Three SRTM-like tiles (S04W062).  This tile is imaged by 

ALOS on three image strips.  During mosaicking, they would be assembled 
into a single image tile. .  © JAXA/METI 

 
Once the data has been ortho-rectified, the 

original strip map data may still be recalibrated, as 
an intermediate file describing the ortho-rectification 
is saved and may be reused.  Some image strips 
require radiometric corrections due to a cross track 
systematic error. The tendency is that the brightness 
of the image falls off in the near and far range.  



In order to assess the magnitude and character of 
the radiometric calibration, multiple single image 
strips were examined with similar results. The data 
were averaged in the along track direction for the 
entire duration of the image strips. Then, the mean 
and standard deviation of the image brightness was 
determined for each range pixel. After averaging 
over more than a thousand kilometres, the resultant 
mean trend for each image strip could represent the 
inverse of the required radiometric correction. As 
can be seen in figure 2, the nature of the trend for 
HH and HV are slightly different. 

 

Figure 2:  Top graph:  mean HH cross track (range) radiometric trend. A) 
All data.  B) Data within 1 standard deviation of mean.  Bottom graph:  mean 

HV cross track (range) radiometric trend.  A) All data.  B) Data within 1 
standard deviation of mean. 

 
However, when three strips were mosaicked 

together after correction for the inverse of this 
average radiometric trend, figure 3 shows that while 
this correction improves the radiometric accuracy 
required for a usable image mosaic, there are still 
changes in the radiometry in the near/far range 
overlap regions that appear to change along the 
image track. 

The final image mosaics will have a pixel spacing 
of 1 arcseconds, but the resolution of the data will be 
approximately 100 m. 
 

 
Figure 3:  Mosaic of three ALOS image strips (Alaska).  © JAXA/METI 

Once the image mosaics are generated, the 
display of ortho-rectified Earth imagery can be 
facilitated through Earth image browsers such as 
Google Earth.  These Earth image browsers are easy 
to use, and enable visual comparison of ALOS 
imagery and derived products with high-resolution 
optical imagery.  They can also be a means for data 
discovery, in which you use the Earth image 
browser to geographically find the imagery or data 
that you require.   They can provide a public 
presentation at multiple resolutions of ALOS 
imagery and data, which is important due to the 
simultaneously fine resolution and large geographic 
extent of the ALOS Kyoto and Carbon Initiative 
products.  They also provide a platform for 
interaction with the data.  

As can be seen in Figure 4, it is possible to 
control what resolutions are visible to the user.  As 



the user zooms into the image, progressively higher 
resolution imagery may be seen. 

Figure 5 shows how the imagery may be 
annotated, and displayed simultaneously with other 
imagery, such as Landsat imagery, which can be 
quite useful in interpretation of the data. 

 

Figure 4  Imagery may be displayed at full resolution using Earth image 
browsing software. © JAXA/METI 

Figure 5. ALOS PALSAR image frames annotated and displayed within 
Google Earth. © JAXA/METI 

 
It is also possible to view the ALOS imagery and 

products within an web browser. However, again, 
the large geographic extent and fine resolution 
constrain how this may be best implemented.    
Figure 6 shows an example of a zoomable interface, 
in which the regional scale imagery has been 
subdivided into geographic tiles that may be 
carefully examined within a standard web browser. 

 

Figure 6.  ALOS  image mosaic subdivided into a geographic tile, and 
displayed within a web browser with a zoomable interface. ALOS K&C © 

JAXA/METI 
 

C. 8BSatellite and ground data 
The ortho-rectification of the dual polarization 

ALOS PALSAR data is dependent on the DEM 
reference used.  For this work, the SRTM 90 DEM 
from CGIAR-CSI [8,9] was oversampled to one 
arcsecond pixel spacing and padded to overlapping 
and padded DEM tiles.  The ALOS dual polarization 
data is in the slant range projection from the JAXA 
EORC, and is from Summer 2007. 

 

III. 2BRESULTS AND SUMMARY 
 
Figure 7 shows a mosaic of the imagery from 

North America, without radiometric correction.  
This mosaic shows that while there are occasional 
gaps in coverage, the coverage during this period 
(summer 2007) was comprehensive and of good 
quality. 

Figure 8 and figure 9 show that these data reveal 
fine target features at the high resolution of the final 



image mosaics. Once the dual polarization mosaics 
are completed, the use of this data in combination 
with multi-temporal ScanSAR mosaics of wetland 
regions around the world will lead to the creation of 
a record of the extent and dynamics of inundated 
wetlands for most of the worlds major wetland 

regions. This work is only possible using an L-band 
SAR with a global and multi-temporal observation 
strategy such as employed by ALOS [6]. 

In future work, the regions outside of North and 
South America will be processed and analyzed.

  

 Figure 7.  Image mosaic of Northern North America. Color contours 
correspond to ground topography.  Image brightness corresponds to ALOS 

PALSAR HH. ALOS K&C © JAXA/METI  



 
Figure 8:  Mohave Desert in Southern California, USA.  Rosamond Corner reflector array is visible.  Colors correspond to HH – Red, HV – Green, HH/HV – 

Blue. © JAXA/METI 
 

 
 

Figure 9:  Los Angles, California, USA and the South Western USA.  Brightness is HH image brightness, color contours corresponds to ground topography. 
ALOS K&C © JAXA/METI 
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Abstract—The JRC contribution to the Kyoto & Carbon 
Initiative constitutes the continuation of the collaboration with 
JAXA (then NASDA) which started more than 13 years ago 
within the framework of the Global Rain Forest and Boreal 
Forest Mapping (GRFM/GBFM) projects. The JRC is here 
responsible for the generation of 50 m resolution ortho-rectified 
PALSAR mosaics over the African continent (on-going) and 
subsequently, over Siberia and Europe, for the year 2007. The 
data used are the slant range path data processed by JAXA 
EORC, each some 1000~2000 km in length. Comprehensive 
calibration procedures have been developed  to cope with the 
radiometric and geometric characteristics of the path image data. 

All data were acquired as a part of the systematic observation 
strategy implemented by JAXA for ALOS PALSAR, which is 
designed to provide consistent wall-to-wall coverage of all land 
areas twice pers year during the mission life of ALOS [1].        
319 path images were used for the generation of the Africa 
mosaic, out of which 276 of the passes were acquired during the 
main time window of June-August, 2007, another 27 passes 
during the next 46-day cysle (Sept-Oct, 2007), while 16 passes (i.e. 
5% of the total) had to be filled in from the 2008 acquisitions.  

  

This task addresses the theoretical and operational 
requirements for the assemblage of the K&C continental scale 
radar mosaics. The target is the generation of geo-coded 
terrain corrected continental scale imagery with high 
radiometric quality - supporting consequently the generation 
of thematic products. This goal and the high data volume 
associated with the mosaics' generation calls in turn for the 
development of a bespoke and highly automated processing 
chain. Accordingly, a major effort has been undertaken for 
designing algorithms and developing software that could meet 
the K&C requirements. By now, a fully automatic processing 
chain for K&C mosaicking is in place and under test in the 
generation of prototype Africa radar mosaics. The processing 
chain consists of a blending of bespoke IDL modules and 
functional components supplied by SARSCAPE, a 
commercially available radar processing software developed 
by SARMAP s.a, Switzerland. The main modules and the 
operation flow are:  

Index Terms—Africa, ALOS PALSAR, K&C Initiative, 
Mosaic Theme. 

I.   0BPROJECT STATUS 

A. 2BDevelopment of methods and software tools for the 
generation of K&C ALOS PALSAR mosaics.  
 
Analysis of the problems related to processing high 

volumes of K&C FBD dual polarization strip data has been 
carried out and resulted in the implementation of an automatic 
processing chain (see below). This effort sets the stage for the 
implementation of all the remaining subtasks, which is 
currently under way. However, please notice that 
improvements and refinements of methods and software code 
will be possibly undertaken in the extension phase if required 

in the course of further experiments or developments.  As it 
always happens in science and technology, the word 
"completed" should be taken with due care. From this 
standpoint, it is proposed that the code will be delivered to 
JAXA only when duly consolidated. In any event the current 
version of the code will be included in the K&C final report 
for phase 2006-2008.  

• House keeping routines to handle the ingestion and 
file structure of the JAXA strip data.  

• Adaptive calibration revision of the original slant 
range data sets. This module automatically checks for 
the presence of radiometric anomalies (power loss in 
range) and calibrates accordingly the data.  

• Extraction from a global Africa digital elevation 
model of subsets corresponding to the geographical 
extent of each strip data. The global Africa DEM was 
generated by the Consortium for Spatial Information 
(CGIAR-CSI).  It is based on Shuttle Topographic 



Mission data (SRTM) and missing data were filled 
using interpolation and auxiliary topographic data.  

• Generation of batch files for importing calibrated   
JAXA strip data and SRTM tiles into SARSCAPE.  

• Geo-coding into a geographic reference frame (un- 
projected latitude-longitude for Africa) using the 
solution of the range-Doppler equations (as 
implemented in SARSCAPE). This step also 
produces auxiliary data holding the effective local 
incidence angles for each pixel of backscatter data.  

• Compression of the geo-coded data sets.  
• Mosaicking of the compressed geo-coded strips    
               within a geographic bounding box and using inter- 
                strips blending.  
• The whole process is repeated for data acquired at 

HH and HV polarizations, resulting finally in a co-
registered set of 3 layer mosaics (backscatter HH, HV 
and local incidence angle).  

B. 3BDeveloping methodology for forest change and land cover 
mapping.  
Methods for forest structural parameters estimation from 

K&C imagery have been extensively investigated both from 
the theoretical and experimental stand-points. However full 
scale application of the methods to arrive at the generation of 
thematic products as required by subtasks 1.d will be possible 
only when the final version of the mosaics will be available. 
This task will therefore be completed in the extension phase.  

C. 4BDeveloping methodology for product validation and 
accuracy estimation. 
Classical methods were used for estimating the geometric 

accuracy of the geo-coded products. These methods call for 
tie-pointing with reference imagery (e.g. Landsat) of known 
accuracy. Radiometric calibration assessment is based on the 
assumption that slant range detected products delivered by 
JAXA are already nominally calibrated for range power 
spreading loss and effective scattering area. Radiometric 
checks are only performed in cases where calibration 
anomalies are detected (e.g. power loss in range) and consist 
of supervised profiling of selected areas featuring 
homogeneous distributed targets (e.g. forest). 

D. 5BGeneration of K&C PALSAR mosaics and related 
products. 
Two factors have delayed the task progress: i) some 

outliers in the PALSAR data acquisition plan, which made full 
coverage of the areas interest complete only later and by gap-
filling acquisitions; ii) technical complexities related to the 
new PALSAR data sets and the target specifications of the 
products to generate.  In our opinion, both aspects are typical 
of large scale projects and almost unavoidable when straddling 
into new terrain, as it is a case in point with the K&C 
continental scale mosaics. Moreover, notice that the project 
plan and priorities have been changed with respect to what 
originally stated in the JAXA-JRC agreement. This was due, 
on the one hand, to a change of priorities in the JRC research 
programs (focus shifted from Boreal towards Tropical regions) 

 
 

Figure 1.  Example of range power loss flaw in K&C strip data, and correction 
by automatic flaw detection and a range-dependent empirical function 

 
 and to the other hand, to a reschedule of the overall 
commitments of the K&C science team. Basically, the 
generation of the whole Africa mosaic, not initially foreseen, 
has now been taken over by JRC, while the generation of the 
Boreal area mosaic and the related thematic products has been 
postponed. This point will be further elaborated in section 2.1, 
because it is instrumental for the definition of tasks in the 
requested extension phase. Major difficulties encountered in 
processing PALSAR data in connection with the assemblage 
of K&C mosaics were:  

a) SAR focusing (JAXA SigmaSAR processor) in non-zero 
Doppler geometry. As a consequence the geo-coding 
algorithm, based on the solution of the range-Doppler 
equations, had to be redesigned.  

b) Missing information on Doppler centroid estimation in 
some early data acquisitions. JAXA supplied code to retrofit 
the data.  

c) Range power loss anomalies in some data sets (Fig. 1)  
d) Computational problems related to the high volume of 

data. This problem stems from the intrinsic large coverage 
character of the mosaics, but also from the geometry of the 
long K&C SigmaSAR strip data. The raster representation of 
this type of imagery, once projected into a geographic 
reference frame (viz. geo-coded),  tend to be quite inefficient, 
due to the large number of non significant data elements (e.g. 
pixels outside the imaged area). These features have an impact 
both on external and internal memory allocation, and on 
processing time. The problem has been partially alleviated by 
introducing a simple compression algorithm, after the geo-
coding step. The mosaicking procedure then de-compresses on 
the fly the data sets before pasting into external memory 

 
At the time of this writing, several prototype mosaics over 

Africa have been assembled. The scope of this experiments is 
to debug and validate the processing chain, in particular with 
respect to assuring a seamless assemblage of the strips, a fact 
that   depends   both  on   proper   geometric   and  radiometric  



 
 

Figure 2.  Prototype K&C mosaic over Madagascar.    
Processed by JRC    © JAXA/METI 

 
fidelity. An inter-strip blending algorithm assures a good 
visual perception of the mosaic, even in the presence of 
residual mismatches, due for instance to temporal changes, or 
local incidence angle effects. Some examples are reported in 
Fig. 2 and 3. Processing of a prototype full Africa mosaic is 
scheduled to be completed by end 2008. The generation of the 
Europe and Siberia mosaic will have to be shifted to the 
requested extension phase. Additional difficulties in the 
generation of this mosaic stem from the unavailability of a 
homogeneous digital elevation model (DEM). Indeed the 
SRTM derived DEM covers only up to 60 N in latitude. Work 
is in progress to generate a global DEM over Siberia by 
blending SRTM and GTOPO DEMs. Notice finally that an 
additional product, not originally foreseen by the agreement, 
has been developed in the K&C context by the JRC: a full 
coverage of Venezuela at 200 m resolution using PALSAR 
data in SCANSAR mode. This product is intended as a test 
bed to prove the capability of the K&C processing chain with 
respect to SCANSAR acquisition mode, and to support a 
specific JRC commitment towards the European 
Commission's delegation in Venezuela. 

 
Figure 3.  Subset of a prototype Africa K&C mosaic at full resolution, 

showing the seamless assemblage of two strips.  © JAXA/METI 

II. 1BPLANS FOR PHASE 2 

A. 6BCompletion of work from Phase 1 
The major driving forces that caused a change in the 

original planning have been discussed above and can be 
summarized as follows: 

• Complexity of the end-to-end project path, from data 
acquisition to generation of final products. This aspect touches 
upon both partners, JAXA and JRC.  

• Steering of research focus at JRC from Boreal to 
Tropical areas and in particular to Africa. The consequences, as 
far as the K&C first phase is concerned, were: 

1. Decision by JRC to take up the task for the generation 
of the whole Africa mosaic (not foreseen in the 
original agreement).  

2. Priority allocation of resources to solving 
methodological and computational problems related to 
this product, with consequent phasing out of other 
commitments originally listed at point 1.2.4.  

3. Delay in the task completion  

Given this scenario the JRC tasks were amended to bridge 
over to the extension phase in a way that would still assure the 
delivery of comparable "value" to JAXA in terms of products 
and methods: 

 
Task E1: Final version of the dual-polarization mosaic over 
the whole African continent. The mosaic will complemented 
by auxiliary data sets, such as the corresponding DEM, local 
incidence angle information, and a set of ground control point 
to document the geometric accuracy (notice that a prototype 
mosaic will be delivered still within phase one). Foreseen end 
time: April 2009. 
 
Task E2: Compilation of the Europe-Siberia mosaic, and 
auxiliary data sets (e.g. dual-resolution DEM). Foreseen end 
time: December 2009. 
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Task E3: Thematic products concerning land cover mapping 
in Africa.  

• Study of the transition zones at the border of the 
Congo basin, with emphasis of deforestation patterns, 
re-growth, forest fragmentation, embedded savannah  
(as detailed in the original work plan). Foreseen end  
time: December 2010. 

• Update of the GRFM Central Africa wetlands map. 
• Regional scale forest resource assessment and 
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Task E4: Research and development of methods for forest 
structural and bio-physical parameters retrieval using fusion of 
K&C radar mosaics, orbital earth observations in the optical 
domain, orbital LIDARs, and topographic information. The 
study will be conducted using test cases in the tropical and sub-
tropical domains. It will be an extension of work carried out in 
task 1.2.2 of phase 1 (see paper [2]). It will be conducted in 
collaboration with the department of geography, University of 
Wales at Aberystwyth. Foreseen end time: Dec 2011 
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For more information about the ALOS Kyoto & Carbon Initiative, 
please visit the K&C homepage at JAXA EORC: 

 
http://www.eorc.jaxa.jp/ALOS/en/kyoto/kyoto_index.htm 
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