KC#27 Project Report

Assessing multi-sensor Earth observation time-series data for enhancing the credibility and integrity of nature-based climate solutions in Southeast Asia

Mari Trix L. Estomata

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection

of the Federal Republic of Germany

Akash Verma

K&C Initiative

An international science collaboration led by JA2

Centre for Nature-based Climate Solutions Faculty of Science

K&C Science Team meeting #27 Tokyo, Japan, September 9-10, 2023

K&C Initiative An international science collaboration led by JAXA

The data I have!

The data I want!

ALOS

LOS An international science collaboration led by JAX

Project outline and objectives

Component 1: Estimation of aboveground forest carbon stocks and flows in tropical SEA using of multi-sensor time-series satellite dataComponent 2: Detecting deforestation and forest degradation.

Three K&C thematic drivers (Carbon cycle science, Climate Change, and Environmental Conservation)

PALSAR/PALSAR-2 data access

 Requested and obtained ALOS PALSAR Fine Beam Dual (FBD) for Palawan and S. Leyte in the Philippines

Background

K&C Initiative

An international science collaboration led by JA

- <u>Multi-sensor remote sensing data</u> may improve the estimation of aboveground forest carbon stocks.
- <u>Scarcity of forest inventories in tropical forests</u>, compels us to use the pre-existing forest inventory datasets to calibrate remote sensing data. However, these forest inventories were likely executed with **different objectives and sampling designs**.

Knowledge gap

 Little information exists about the <u>accuracy of above-ground carbon estimates from</u> <u>combined datasets</u> across various forest types and geographies, particularly in the tropical forests of Southeast Asia (Dupuis et al., 2020; Miettinen et al., 2014).

What we did!

K&C Initiative An international science collaboration led by JAX

• We **pooled forest inventory datasets** from GIZ REDD+ field inventory plots from three study sites in the Philippines

OS

 Used <u>Multiple Linear Regression</u> to model AGB from forest inventory data and satellite data, specifically <u>L-band SAR and Landsat</u>.

Two research objectives!

- Assess if **individual sensor vs combined sensor** data produces accurate AGB estimates.
- Assess if a **'global' model developed from pooled forest plot data** accurately estimates forest carbon **compared to site-specific models**.

ALOS

Table 1. Summary of forest plot design and characteristics for each study site.

Study sites				
Plot information	NSM	SLY	VAM	
Sampling design	Stratified systematic grid	Stratified systematic grid	Random design	
Plot dimension	Circular (4 m, 14 m, and 20 m)	Circular (6 m and 12 m)	Square (50x50 m, 50x20 m, and 20x20 m)	Square (50x50 m)
Plot area	0.126 ha	0.045 ha	0.250 ha	0.250 ha
Tree sampling method	Nested	Nested	Nested	Full
Total number of plots	122	382	45	20
Year of data collection	2014	2011–2012	2013	

K&C Initiative An international science collaboration led by JAXA

ALOS

 Table 1. Summary of forest plot design and characteristics for each study site.

Dist information	Study sites				
Plot information	NSM	SLY	VAM		
Sampling design	Stratified systematic grid	Stratified systematic grid	Random design		
Plot dimension	Circular (4 m, 14 m, and 20 m)	Circular (6 m and 12 m)	Square Square (50x50 m, (50x50 m) 50x20 m, and 20x20 m)		
Plot area	0.126 ha	0.045 ha	0.250 ha 0.250 ha		
Tree sampling method	Nested	Nested	Nested Full		
Total number of plots	122	382	45 20		
Year of data collection	2014	2011–2012	2013		

K&C Initiative An international science collaboration led by JAXA

(i) Square, nested plots (ii) Square, full sampling plots

ALOS

Table 1. Summary of forest plot design and characteristics for each study site.

		Study sites			
Plot information	NICRA				
	INDIVI	SLT	VAIVI		
Sampling design	Stratified systematic grid	Stratified systematic grid	Random de	esign	
Plot dimension	Circular (4 m, 14 m,	Circular (6 m and 12	Square	Square	
	and 20 m)	m)	(50x50 m,	(50x50 m)	
			50x20 m,		
			and		
			20x20 m)		
Plot area	0.126 ha	0.045 ha	0.250 ha	0.250 ha	
Tree sampling method	Nested	Nested	Nested	Full	
Total number of plots	122	382	45	20	
Year of data collection	2014	2011–2012	2013		

K&C Initiative An international science collaboration led by JAXA

Workflow

2015

NSM

PALSAR2

REDD+ Forest inventory data VAM NSM SLY 2010 2011 2012 2013 2014 **SLY & VAM** PALSAR1 PALSAR data

ALOS

An international science collaboration led by JA2

2500

2000

500

1000

1500

2000

2500]

Results – Site Specific Models

200

-200

500

1000

1500

2000

- The combined sensor models performed 1. better than individual PALSAR-only or Landsat-only models for all study sites. 🤓
- But even the best models for NSM and 2. SLY, had low R² and high RMSE values.

200

-200

000

Field - measured AFCS (Mg C ha⁻¹)

2500]

Results – Site Specific Models

Combined	VAM-Model-3	-15768.63 + 1.91 B7_K11_VAR + 0.10 HV_K11_AVG + 135.72 B4_K3_IDM + 5030.31 HH_K5_ENT + 1782.07 B5_K11_IDM + 0.15 HH_K7_DIS - 0.0002 HV_K11_CON + 0.35 B6_K11_VAR - 132.85 B2_K3_COR + 466.37 B6_K3_IDM - 0.05 DIF + 224.85 B6_K5_COR - 1133.08 B6_K9_IDM - 119.39 B5_K5_COR + 0.33 HH_K11_DIS + 0.50 B2_K7_CON + 2447.94 B3_K11_ASM	0.82	42.92
VAM (Full; 0	.25 ha)			
PALSAR	VAM-Model-4	-465.33 + 0.11AVE + 343004.07HV_K3_IDM + 1160.78HV_K9_COR - 859.76HH_K9_COR	0.57	66.97
Landsat	VAM-Model-5	1995.67 – 309.62 B2_K3_IDM - 56960.03 B6_K5_ASM + 347.79 B5_K9_COR – 235.83 B7_K11_COR	0.58	66.04
Combined	VAM-Model-6	3267.79 + 0.03 AVE + 369350.37 HV_K3_IDM – 597.09 B7_K11_COR – 59248.92 B6_K5_ASM +	0.93	27.20
	28513.65 HV_K5_IDM – 776.84 HH_K11_COR – 298.02 B3_K3_ENT – 114.38 B7_K3_COR + 286.63 B5 K7 COR – 628.06 SATVI – 3757.41 B4 K7 ASM			

models of different sensor data types in VAM (nested sampling plots).

IX

An international science collaboration led by JAX

Fig. 7. Comparison of field-measured vs model-predicted aboveground forest carbon stocks from

models of different sensor data types in VAM (full sampling plots).

Results – Global Models

DS

K&C Initiative

An international science collaboration led by JAX.

Sensor Type	Model	Model Equation	R²	RMSE (Mg C ha ⁻¹)
Across all study sites				
PALSAR	Global-Model-1	–98993.44 + 0.03 HV_K11_AVG – 136.44 HV_K3_COR + 9141.20 HH_K5_IDM – 16846.50 HVoHH + 3295.85 HHoHV – 0.37 HH_K11_DIS + 0.00002 HV_K9_VAR + 21194.62 HH_K11_ENT – 34274.23 NDI + 0.15 HH_K7_DIS	0.13	245.71
Landsat	Global-Model-2	797.62 – 22.11 B6_K11_DIS + 9.36 B5_K7_DIS – 186.61 B2_K11_ENT – 790.29 NDTI + 164.64 B2_K3_ENT – 207.41 B7_K11_COR + 528.88 B2_K11_COR –309.72 B2_K9_COR + 561.77 LSWI + 13.24 B2_K11_DIS	0.19	237.13
Combined	Global-Model-3	-75859.24 - 27.12 B6_K11_DIS + 10.47 B5_K7_DIS - 131.16 B2_K11_ENT - 734.06 NDTI + 110.06 B2_K3_ENT - 142.04 HV_K3_COR + 13290.14 HH_K5_IDM + 14979.35 HH_K11_ENT - 3912.62 HH_K3_IDM - 27249.85 HV_K3_ASM + 297.23 B2_K11_COR - 219.31 B4_K7_COR + 26.81 HVg0 - 0.04 DIF - 179.36 B3_K3_IDM	0.24	230.61

The combined sensors model performed better than individual PALSAR-only or Landsatonly global models, but overall it was poor compared to all of the site-specific models

using combined sensors. X

Results – AGC estimate using site specific model for VAM

LOS

An international science collaboration led by JAXA

Fig. 9. Spatial distribution of aboveground forest carbon stock within Victoria-Anepahan mountain

range (VAM), using the combined sensor model calibrated with full sampling plots (VAM-Model-6).

Discussion and suggestions!

K&C Initiative

An international science collaboration led by JA

- 1. Using pooled datasets from various forest inventories will likely generate unreliable model estimates and predictions of aboveground forest carbon over larger scales (i.e., country or regional scales), even with combined sensor data, if forest characteristics vary substantially between and across forest landscapes.
- The larger 0.25-ha VAM plots generated better model-predicted estimates. We suggest using larger forest inventory plot sizes when combined with remote sensing data than smaller plot sizes. Moreover, better carbon estimates were achieved in VAM despite having a fewer number of large plots (i.e., 45 nested and 20 full sampling plots).
- 3. Between **nested and full tree sampling** of large plots in VAM, the **fully sampled plots produced better** estimates. Victoria-Anepahan mountains

Deliverables and other output

K&C Initiative

An international science collaboration led by JA2

Project deliverables

Component 1:

- Estimates of aboveground forest carbon
- Models developed using single and combined sensor data
- Accurate and spatially explicit maps of aboveground forest carbon stocks and flows

Component 2:

- Accuracy assessments of mapping forest cover and change
- Accurate forest cover, deforestation, and forest degradation maps
- Peer-reviewed publications brewing!
- Non-peer-reviewed publications (conference papers, reports etc.)
 ↔ 42nd Asian Conference on Remote Sensing (22-24 Nov 2021)

K&C Initiative An international science collaboration led by JAXA

Thank you JAXA for your support!

JOS

Arigato gozaimasu!