

K&C Phase 3 – Brief project essentials

Application of PALSAR for regional assessments of forest disturbance, rice agriculture and wetland habitats.

William Salas
Applied GeoSolutions, LLC (AGS)
Durham, NH USA, wsalas@agsemail.com

Team includes:

- Nathan Torbick, Steve Hagen and Rob Braswell (AGS)
- Sandra Brown and Nancy Harriss (Winrock International)
- ➤ Jiaguo Qi (MSU)
- ➤ Xiangming Xiao (OU)

Project objectives and schedule: Phase 3: Move to GHG decision support

- ☐ Map rice agricultural intensification across Monsoon Asia (6/11-12/14)
- □ Develop rice GHG MRV prototype for two Provinces in Vietnam (10/12-12/13)
- ☐ Implement a first-of-its-kind greenhouse gas (GHG) emission reduction offset demonstration initiative with rice producers in the USA (2012-2014)
- □ Evaluate remote sensing tools (PALSAR and optical) for mapping forest degradation in Guyana (6/13 6/14)
- ☐ Provide geofield photo database to support JAXA cal / val

K&C Phase 3 – Brief project essentials

Ongoing

- •Quantifying changes in agricultural intensification and expansion in monsoon Asia during 2000-2010 (NASA)
- •Implementing GHG offset projects in USA rice (USDA)
- •Prototyping MRV tools for Vietnam at the regional scale (USAID)
- •India REDD / Guyana Forest Degradation / Mapping mangroves Camau Peninsula, Vietnam and Sunderbans, India (USAID and Winrock/GFC)

Recent/Previous

- •Developing land cover classification products in monsoon Asia over the period of 2004-2007 through integration of Landsat and ALOS/PALSAR images
- •Mapping rice and modeling HPAI in Java

Rice Project areas: Monsoon Asia and USA Multi-scale approach

Broad scale: Monsoon Asia

Local scale: cal / val sites in

Bangladesh, China, India, Indonesia,

Thailand, Vietnam

Sacramento Valley & Midsouth

Science Team meeting #18

JAXA TKSC/RESTEC HQ, Tokyo, November 7-9, 2012

ALOS K&C Initiative An international science collaboration led by JAXA Phase 2 Example rice products to drive GHG Modeling: **Mapping Rice Extent Mapping Hydroperiod Mapping Intensity** 84,000 Meters 21,000 42,000 o Watershed scale: Multitemporal FBS/D used to distinguish rice paddy hydroperiod, cropping intensity, calendar, biomass Background Secondary Forest / Bush o Illustrated with HH (Nov, Aug, Mosaic Vegetation / Crops Feb), 12.5m ground pixel spacing Urban / Settlement / Built Rice land use

Phase 2 Example rice products: Regional Mapping

ALOS

An international science collaboration led by JAXA

Phase 2 Example rice products: Estimating Production

- Coupling 50 mosaics with ScanSAR improved area estimation
- Generating maps of rice extent, hydroperiod, and cropping intensity with multitemporal dual pol 50m Mosaics and SLT ScanSAR strips to estimate production
- Java, Indonesia shown with assessment using BPS govt statistics (R:0.89)

Phase 3 Deliverables

- Maps of rice agroecological attributes (extent, hydroperiod, cropping intensity, production) across Monsoon Asia
- □ Maps of rice intensification between 1997 2010 in Monsoon Asia
- Maps of irrigation patterns, habitat, rice management and GHG emissions for USA rice
- □ MRV / Rice maps and GHG emissions for USA
- MRV prototype system for strategic regions in Vietnam
- □ Map of cerrado biomass in 1996, 2007, and 2012 for the state of Goiás with associated uncertainty (Hagen)
- Degradation assessment: Guyana Logging
- Maps of carbon and (wetland) forest patterns for India sites (TBD)

Support to JAXA's global forest mapping effort

- Help cal /val with geofield photos and survey attributes
- Compare with MODIS & Landsat forest map products (evergreen, deciduous, rubber, etc...) (products developed by Xiao et al.)

List ground truth data that will be shared with JAXA

- Global Geofield photos (>57,000 GPS points, most with land cover information from field survey. Collaboration with Xiangming Xiao at University of Oklahoma)
- Forest biometric data from northeast USA and Cerrado (Brazil).

ALOS

K&C Initiative An international science collaboration led by JAXA

IFPRI GHG Mitigation and Pro-poor Program

Vietnam Rice GHG MRV

- Goals: Pilot Rice GHG MRV system for 2 Provinces: An Giang and Hanoi.
- ☐ Background: National strategy for Low Emissions

Development

- ☐ Funding USAID AILEG program
- Collaborators:
 - > MARD IAE Vietnam
 - **➤ Can Tho University in Vietnam**
 - > EDF
 - > Abt Associates in US
 - > IFPRI.

Source: Vietnam 2nd National Communication to the UNFCCC

Vietnam Rice GHG MRV

- Components of Rice GHG MRV
 - Rice observatory (multi-sensor, including PALSAR)
 - > Spatial information on extent, cropping cycles, development to drive DNDC
 - ➤ Field sites for measurement of rice GHG (CH4 and N2O): benchmark sites for baseline and mitigation assessment
 - > GIS data server (data on soils, weather, topography)
 - ➤ Field survey system on rice management and reference data for validation of RS products (gps mobile device apps)
 - ➤ Modeling system: DNDC model cal/val, includes uncertainty system.
 - > WebGIS Decision Support Tool: data dissemination & visualization
- Longer term implementation goal: scale up to national and regional scales

MRV Pilot Provinces: An Giang and Hanoi

- On-going field studies measuring GHG emissions (CH4 and N2O) with IAE, Can Tho Unversity and EDF VLCRP
 - Assessing water management (MD, AWD)
 - > Residue management, biochar amendments
 - > Province wide survey of rice management practices
 - > 2-3 years of continuous GHG measurement
- Outcomes:
 - > DNDC validation
 - Stats on mgmt
 - Mitigation potential
 - Development of uncertainty metrics using MC framework

Measurement process
error identifying training classes
sampling / allometric equations
MODIS sensor uncertainty
lab error on soil C meas.

Modeling and extrapolation modeling uncertainty, including model structure and parameters

To propagate uncertainty, why MC framework and not quadrature?

- With Monte Carlo framework, we make fewer assumptions about data distributions
- M.C. allows us to preserve full data distributions (or pdfs) instead of estimating
- Link uncertainty from different sources
- Downsides: data and computational intensive.

300 million ha of forest x 1 ha pixels x 2 bytes ~ 600 MB / layer n ~ 600 to 1000 layers -> 360 to 600 GB per data product

Rice GHG Protocol and Verification System

- CAR and ACR rice protocols based on DNDC model with detailed uncertainty quantification
- □ CDM has DNDC based rice methodology
- □ Working with CA ARB on development of rice protocol (first compliance protocol).
- □ Transparency is key, need to keep project development and verification costs down for a successful ag offsets program (transaction costs must be low otherwise there will not be a market).
- □ Google project: Landsat, MODIS, PALSAR, other data
 - > RS based rice extent, wet versus dry seeded system, winter flooding
 - ➤ Reduce costs for project developers (eligibility) and validators (100% coverage of fields with know uncertainties)

Guyana Degradation

Current agreement with Norway call for a 500 meter buffer, with 50% loss of carbon due to degradation.

Focus: can RS be used to identify degradation, coupled with

field surveys (Winrock, GFC)

RS Approaches

- > Crown tracing
- > Gap fraction unmixing
- > VIs
- ➤ Will add PALSAR

Science Tear JAXA TKSC/RESTEC HQ,