BIOMASS PRODUCT FROM ALOS-PALSAR

Thuy Le Toan Centre d'Etudes Spatiales de la Biosphère, Toulouse, France

ALOS

Unique observing system in the forthcoming decade for

-. Deforestation /harvest

L. Above ground biomass accumulation (low biomass)

Mass balance equation (Inventory approach)

 Δ C= Δ Above Ground Biomass + Δ Below Ground Biomass + Δ Litter + Δ Soil Carbon

Process equation (Dynamic Vegetation Model Approach, Productivity Efficiency Approach)

△ C= Gross Primary Production- Autotrophic respiration-Heterotrophic respiration - Loss by disturbances

4

Current assessment of biomass at local scale

Comparison of biomass measurement at a BOREAS site by two different teams

Biomass as a function of regrowth age at an Amazon site, using different

measur ements

Spatial distribution of biomass in the Amazon Comparison of current methods (Houghton et al., 2001)

Recent research results indicated that young forest is C source, because Respiration of dead biomass (heterotrophic) > NPP

--> Forest is source after disturbances: Siberia: until few decades (Schulze et al., 2000) Canada: until 10 years (Amiro et al, 2001) US: 10-20 years (Law et al., 2001) UK: 15-15 years (Grace et al., 2003)

Knowledge of forest biomass in the low range (<50 t/ha) critical for the assessment of carbon budget

8

Carbon flux measured from clearfell and 30 yr old forest stands

Photosynthetic Efficiency

From NDVI (e.g. Spot/Vegetation)

Incoming Radiation (e.g. ECMWF)

Autotrophic respiration = function of Temperature and Biomass (Biomass map (1°) by Olson (1985) used in models)

ALOS data source for biomass

Generality of the relations L-HV-Above ground biomass

Mapping of biomass using L-band ESAR data Büdingen forest, Land Hessen, Germany

DVM predicted Carbon fluxes NPP(red) and soil respiration (blue)

10

JERS, January-February, Siberia site, 1994 (a), 1997 (b)

Eriksson et al, 2003

18

JERS interferometric coherence, May-June 1998 Siberia site

- 1. Boreal forest
- 2. Regeneration in tropics
- 3. Temperate forest

Proposed ALOS Large Scale Forest Observation focused on the Terrestrial Carbon Science

Multitemporal PALSAR acquisitions over critical regions

- Deforestation monitoring (forest/non forest mapping)
- Biomass mapping
- Regrowth monitoring (during the lifetime of ALOS)

Algorithm development & validation :

- C. Schmullius (SI BERI A)
- •M. Hallikainen (Scandinavian forest)
- K. Mc Donald / Boreas(N. American forest)
- D. Hoekman (tropical forest)
- R. Lucas/ I NPE/LBA (Amazon)
- •S. Quegan (temperate forest)

Pilot users assessment:

- Inventory method: IIASA for Siberia
- DGVM: PIK, Centre of Terrestrial Carbon Dynamics
- Light use Efficiency Method:

•....

Data exploitation:

Gamma Remote Sensing

22

Science plan

- 1. Direct and inverse modelling : Analysis at team members test sites Direct and inverse modelling
- 2. Algorithms development and implementation Inversion techniques, data handling, GIS.
- 3. Validation & accuracy assessment

4. Pilot users assessment

Integration in carbon and vegetation models and assessment

5. Dissimilation plan