\mathbf{c}

Understanding the influence of rice paddies on atmospheric CH₄

Bill Salas and Thuy Le Toan

K&C Initiative, 4th Science Advisory Panel Meeting, May 2003, Tokyo

Factors Affecting CH₄ Biogeochemistry in DNDC

Production:	$P_{(CH4)} = f(DOC+CO_2, O_2, T, t, clay, pH);$
Oxidation:	$O_{(CH4)} = f(CH_4, O_2);$
<u>Plant transport</u> :	$T_{(CH4)} = f(CH_4, LAI);$
Ebullition:	$E_{(CH4)} = f(CH_4, T, clay, root mass).$

Regional DNDC Rice Validation

CHINA

Map of validation sites: 1 Mikasa, 2 Tsukuba, 3 Fengqiu, 4 Nanjing, 5 Jurong, 6 Suzhou, 7 Chongqing, 8 Yingtan, 9 Changsha, 10 Guangzhou, 11 Chiang Mai, 12 Surin, 12 Suruhan Pawi and 14

Cultivation Cycle and SAR Response

High specular (forward) scattering, very low backscatter. Moderate specular (forward) scattering, moderate backscatter. Low specular (forward) scattering, higher backscatter.

Source: Inoue et al. 2002

Temporal Changes in L-band σ Polarization and Incidence Angle Effects

Polarization and Incidence Angle Effects

Source: Inoue et al. 2002

K&C Irrigated Rice Products

• "Operational":

- Paddy Extent. Coverage to include all of Asia (China, India, SE Asia) which includes 90% of total rice area globally.
- Crop cycles. Map single-, double-, triple-rice and rice/upland double cropping.
- > Flood Duration. Period of inundation
- "Research":
 - Biomass/LAI development. Track biomass/LAI development.
 - Mid-season drainage. Quantify the presence of midseason drainage.

Standard Beam Radarsat Imagery: Jiangning County, China.

Note: letters indicate Locations of field sites.

2 0 2 4 Khurebet

Automated classification of rice paddy extent using a >3db shift.

Note: letters indicate Locations of field sites.

Accuracy > 93% Kappa> 0.89

(a) NDVI – NDWI in April 21-30, 1999

(d) NDVI – NDWI in July 1-10, 1999

(b) NDVI – NDWI in June 11-20, 1999

(e) NDVI – NDWI in August 1-10, 1999

© NDVI – NDWI in June 21-30, 1999

(f) A thematic map for the timing of flooding & rice transplanting

Green - 6/11-20 Yellow - 6/21-30 Red - 7/1-10

Plant Fresh Weight

Source: Inoue et al. 2002

Atmospheric methane increase has slowed and become more variable.

Globally averaged CH₄ (monthly varying) and deseasonalized CH₄ (smooth line) abundance plotted for 1983 to 1999 (Dlugokenkcy et al. 2001).

Instantaneous annual growth rate (ppbv/y) in global atmospheric CH_4 abundance from 1983 through 1999 calculated as the derivative of the deseasonalized trend curve above. Dotted lines are $\pm 1\sigma$. (Dlugokenkcy et al. 2001).

- China has ~20% of the world's rice cropland.
- China produces about 30% of the world's rice.
- Almost all rice in China is produced in flooded paddies.
- Water scarcity in the north led to implementation of mid-season draining/drying in the early 1980s.
- Mid-season draining/drying has spread throughout much of China.
- Mid-season draining/drying reduces methane emissions.
- What has been the impact on the atmosphere?
 - → DNDC biogeochemistry model
 - improved maps of rice distribution
 - → rough estimate of changes in water management

Observed and modeled CH₄ and N₂O fluxes from paddy with mid-season drainings, Jiangsu Province, China, 1997 (field data from Zheng et al. 1999)

- perturbed only by change in China rice paddy fluxes.
- eventually achieves new equilibrium.
- net global radiative forcing is dynamic.

Temporal Changes in L-band Sigma 0

- Triple cropping systems growth period can be <80 days, may not have 2 Scansar acquisitions...
- Short duration of intermittent draining 10-14 days (will likely miss it).
- Coverage maps for scansar acquisition plan does not include areas of rice in China. Are ScanSAR regions set?

