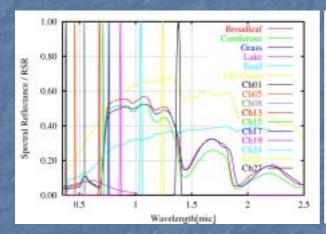
GLI processing and products

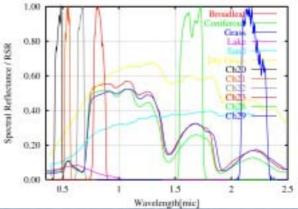
NASDA/EORC ADEOS-II GLI Land Hirokazu Yamamoto E-mail : kath@eorc.nasda.go.jp

What is ADEOS-II GLI?

- ADEOS-II has been launched on Dec. 14, 2002.

- GLI is an optical sensor for global observation.
- GLI has 1km and 250m resolution channels.
- GLI has 23 channels in VNIR, 6 channels in SWIR,
- and 7 channels in MTIR (36 channels).

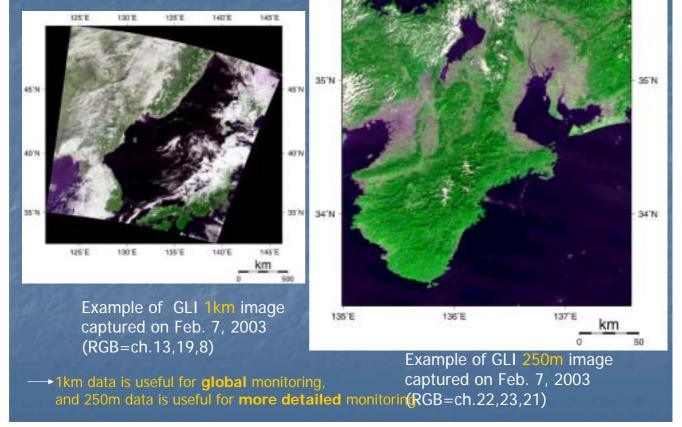

Specification

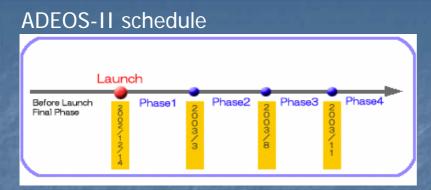

Spectral Range	0.375-12.5um
Channels	36
Swath	±45" (1600km)
Tilting	0 ⁺ .±20 ⁺
Recurrent Period	4 days
Path (Orbit) Period	101 m in
Number of Path	
(orbit)	
per recurrent	57path/4day
period	(14.25path/day)
	26 Scene/path
Number of Scene	(1 scene=138scan,

GLI	Wavelength	Resolution	Radiance[W/m	[W/m2/sr/		C		
Ch.	Range[nm]	[m]	^2/st/mic]	mic]	S/N			
Ch1	375-385	1 000	365	59	600	C		
Ch2	395-405	1 000	139	70	800	c		
Ch 3	407-417	1 000	130	65	800	1		
Ch4	438-448	1 000	109/560#	54	800	C		
Ch5	455-465	1 0 0 0	108/624#	54	800			
Ch6	485-495	1 000	86	43	800	e		
Ch7	515-525	1 000	64/539#	31	600	Ē		
Ch8	540-550	1 000	56/549#	28	600	-		
Ch9	560-570	1 000	47	23	800	ī		
Ch10	620-630	1 000	33	17	800	12		
Ch11	661-671	1 000	26	13	800			
Ch12	675-685	1 000	24	12	800			
Ch13	673-683	1 0 0 0	438	12	200			
Ch14	705-715	1 000	18	10	700			
Ch15	705-715	1 000	311	10	250			
Ch16	744-754	1 000	14	7	550			
Ch17	759-767	1 0 0 0	350	6	130			
Ch18	855-875	1 000	9	5	450			
Ch19	860-870	1 000	304	5	130			
Ch20	425-495	250	624	36	200			
Ch21	520-570	250	549	25	150			
Ch22	630-690	250	150	14	100			
Ch23	770-880	250	257	21	140			
Ch24	1040-1060	1 000	203	8	300			
Ch25	1100-1170	1 0 0 0	200	8	350			
Ch26	1230-1250	1 0 0 0	138	5.4	70			
Ch27	1360-1400	1 000	94	1.5	120			
Ch28	1540-1740	250	69	5	109			
Ch29	2100-2320	250	30	1.3	105			
	‡ : piecewise linear 1km Land 250m Land							

Ch30 3.715		345	H: 300	0.07/0.07	1000	
	1.000	1	L: 250	0.71.0.78		
Ch21	6.7	307	285	0.02/0.03	1000	
			200	0.27/0.32		
Ch32	7.3	322	300	0.02/0.83	1000	
			200	0.24/0.27		
Ch33 7.5	324	300	0.02/0.02	1000		
			200	0.21/0.24		
Ch34	8.6	350	300	0.03-0.05	1000	
			199	0.47/0.49		
Ch35	10.8 354		300	0.04/0.05	1000	
		1.1.1.	199	0.24/0.30	11.000	
Ch36	12	12 358		300	0.04/0.06	1800
202	199	and the second	199	0.23-0.27	100.00	
10		1 km land		(3) (5) (5) (5) (5) (5)		

Relative Spectral Response of GLI 1km and 250m land channels





RSR of 1km land channels With typical spectral reflectance RSR of **250m** land channels With typical spectral reflectance

Narrow band

Broad band

Phase1(2002/12/14 - 2003/4/14)

Initial Checkout of the satellite and system adjustment and processing of L0 etc. Phase2(2003/4/15 - 2003/12)

Adjustment of level 1 GLI product and calibration/validation phase

Now!

Data Distribution	n Schedule (AMSR, GLI)
	Phase1 Phase2 Phase3 Phase4
Level-1 Product Plor Specific user	Samelina della
Public User	

L1B is possible to be provided to CAL/VAL PIs. CAL/VAL PIs can process Level 1 data after Apr. 15 (CAL/VAL phase). Raw uala

Level 1A(GLI 1km,250m):

Reformatted L0

- Bit string(13bits) of L0 is transformed into byte unit(16bits).
- Radiometric and Geometric correction coefficients are attached.

Level 1B(GLI 1km,250m):

Radiometric corrections and Geometric corrections are applied.

- Band registrations are done.
- Projection coefficients attached.
- Ocean/Land flags attached.
- Image data are grouped to 3, VNIR, SWIR, MTIR

Level 2A(GLI 1km):

-precise geometric correction parameter(PGCP)-16 days composite data(L2A_LC)

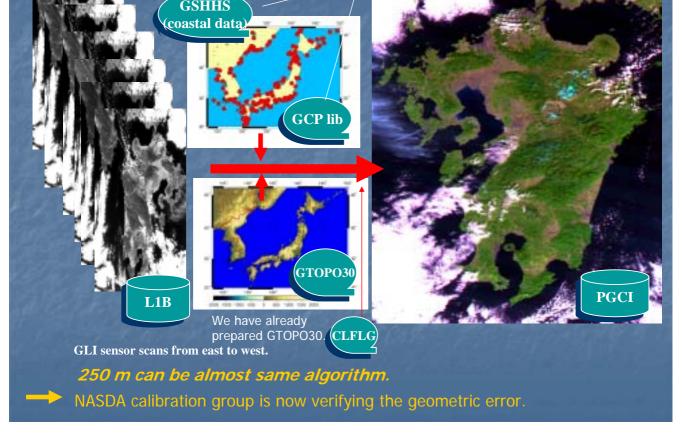
Level 2(GLI 1km):

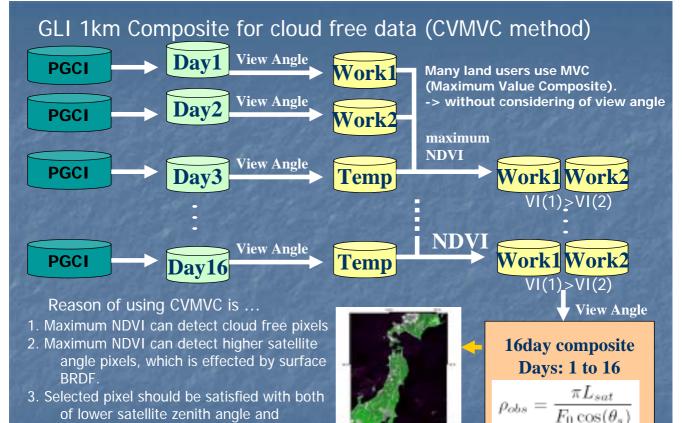
-Atmospheric corrected reflectance (ACLC) -Vegetation Index (VGI;NDVI,EVI)

Most land users may use L1B, L2A or L2.

GLI land higher algorithm (L2A or L2)

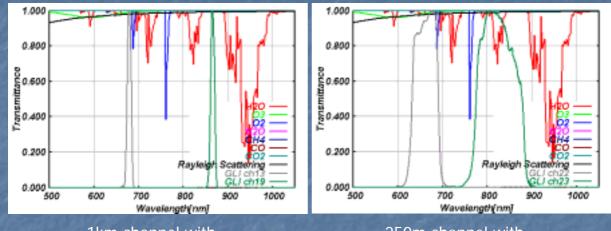
1. Precise Geometric Correction

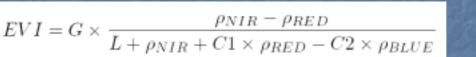

2. 16days Composite


3. Atmospheric correction (after validation)

4. Vegetation Index (NDVI,EVI)

But


CI I 1km algorithm has propored but there is no higher algorithm for 250m date

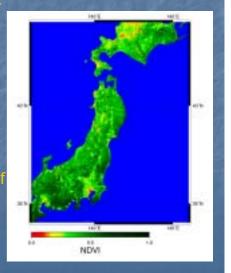

	Scattering	Much of the computation during atmospheric correction requires intensive CPU time due to floating point processing.				
ACLC This algorithm will be applied after calibration and validation.	Solution 1.	L2A_LC leaves the STSG (Sun-Target- Sensor Geometry) data. Atmospheric corrected reflectance can be applied after composite.				
250m can be same algorithm ??	Solution 2.	Optical depth of molecular scattering and STSG conditions can be expressed by LUT (Look-Up table) using standard atmospheric model and elevation (depends on temperature and pressure).				

Relative Spectral Response and gaseous transmittance

1km channel with gaseous transmittance (Red and Near Infra-red) 250m channel with gaseous transmittance (Red and Near Infra-red)

Red and NIR 250m channels have SENSITIVITY OF ATMOSPHERIC COMPENSATION $NDVI = \frac{\rho_{NIR} - \rho_{RED}}{\rho_{NIR} + \rho_{RED}}$

Normalized Difference Vegetation Index (NDVI): -> "continuity index"


This index could be extended to provide a longer term data for use in operational monitoring studies.

Enhanced Vegetation Index (EVI):

-> "optimized index"

This index can enhance the vegetation signal with improved sensitivity in high biomass regions and improved vegetation monitoring through a decoupling of the canopy background signal and a reduction in atmosphere influences

250m can be same algorithm

VGI (NDVI,EVI)

--- GLI 250m land algorithm (idea) ---

product

Precise geometric correction \longrightarrow

Composite Atmospheric correction

Vegetation Index (NDVI,EVI) ----

Almost same as 1km algorithm. It should use both of elevation data and GCPs data. same as 1km algorithm

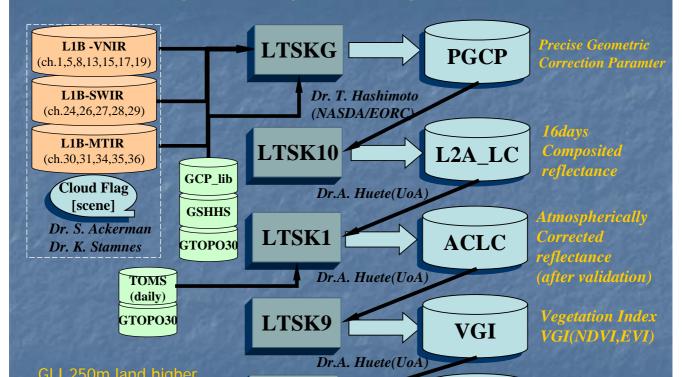
Characteristics of 250m channels (center of wavelength, band width and so on) are different from 1km channels.

Especially, 250m channels may have sensitivity of atmospheric compensation.

same as 1km algorithm

- 1. CAL/VAL phase starts from Apr. 15, 2003. And verification is now ongoing.
- 2. GLI 250m land algorithm should be developed as soon as possible.
- 3. 250m algorithm will be almost same as 1km algorithm, but 250m channels may have sensitivity of atmospheric compensation.
- 4. Collaborate with Prof. Tateishi and Dr. Ake.
 - The GLI Acquisition Strategy (250m) -> Dr. Ake (NASDA/EORC)
 - Precise Geometric Correction (1km,250m)
 - -> Dr. Hashimoto (NASDA/EORC) - Composite & Atmospheric Correction & VIs (1km,250m)
 - -> Dr. Yamamoto(NASDA/EORC)
 - Land classification (250m) -> Prof. Tateishi (Chiba Univ.)

If you are interested in ADEOS-II/GLI, please contact to me (kath@eorc.nasda.go.jp).

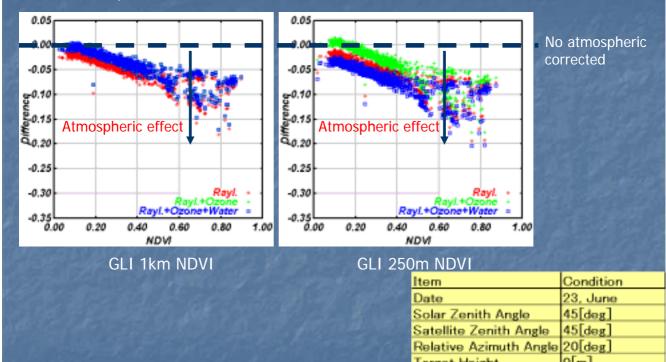

Appendix.

1. Increased channels for land and ocean observations compared to previous optical sensors, which leads to a higher observation capability.

2. More channels of 250 m level high resolution (ch.20,21,22,23,28,29) than the most advanced U.S. satellite sensor, MODIS.

3. Better aerosol observation over land by the near-ultraviolet channels(ch.1;380nm), which will be done for the first time by 1 km level resolution sensors.

GLI **1km** land algorithm on higher processing and products


						3	400	10	23	930	139						1
1	412.3	13	44.9			2		10		800							and the second second
1	443			0.58	153	- 4	443	10	54	600	109/960						and the second
						3			34	80.	0000024						
	453			243		28	450			200		1	483	- 63	82/80	191.6093.7	
3	40				101	- 6				890							
1	1 500	10	219	-954	91	,	130	10			64/539	_			-	_	
						-	343	10	28	630	36(549	_					G
	1 \$50	1.0		250	- 64	-				800	0 47				-		and a strategy of
1	2 320	10		7,90		9		10		800		-					
	645	50	21.0	1.29	693	_				100		_	660		10.001	1519234.4	R
	-			1.40	804	_							1 1000		1.011	1.04.014071.7	N.
3	4 678	1.0	8.7	1087	31	13	676	10	12	290	4.35	-			<u> </u>		and the second second second
						11	678	10	12	200	438	-	<u> </u>		<u> </u>		and the second second second
						14			10	790	30						
						15		10	10	250	301						
1	1 748	10	10.2	1946	74	16	749	10	7		1 14						
						- 13	163	9	6	130	230						
	858.5	33	34.7	304	285	- 20	825	110	24	340	202	4	845	325	1.08/99	157.4241.1	NR
	1 800	1.2	2.4	219	10	- 17	865	10	2	130							
1	908	20	34 34	163	185	19	663	10	3	130	34						AV-R STORE
1		10	3.6	33													
1	9 936	50	1.5	250	189												
		<u> </u>		-	<u> </u>	- 24		30	3	- 300		_	<u> </u>			<u> </u>	1
		L		-		25		30		360	0 167	_	L		L		
	5 1348	20	54	24	110	- 28	1240	20	3.4	- 30	130	-					AND I LAND
	5 1648	24	2.5	275	70	28	1640	280		105			1630	200	95/00	31.0697.52	SWID
	24.96	24	1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			28	2210	220		303			2230	300	61(19	31.0647.57 10.80/16.54	SWIR
2				0.05								-				10.0011.21	and the second
- 21		40	2.38	3	86.06					-		-					1 2 2 1 2 2 L 1 2
2	2 39.58	60 60 90	0.67	0.07	1.69							-			We	ran an	ply the
2	4506		0.19	0.00	216					-		-				pari ap	bij tile
2	4463.3	63	0.17	0.25	0.34										algo	rithm	or ETM+,
				0.25											aigu		0. 2
-7	7 6713	300	1.18	0.25	9.84	31	6700 7300	380 580							AVH	RR alo	orithm
2	712	300	2.10	0.25	31.13	30	7300	580								- alg	
						30		580							etc.		
	83.58	300	9.38	0.05	14.53	- 34	8600	580									
3	97.3	300	5.69	02	12.61												
		-				30	20800	1080					11508(1948	0.12000.00	9		
- 3	L LUIDI Design	500	9.15	0.05	13.27	- 26	12000	1080		_		-					TIR
				0.0	1209	.4	12000	1080			_						
- 2	1 1.30.50	300	1 1 16	0.20	9.41												
3	1 L9633	300	2.10	02	8.90					_		-					
		300		0.35													the second s
	148.00		1.00		Land Charged												
	1	1				· · · · ·				_	L		1			1	

Comparison of GLI sensor and Other Sensor's Specification

ADEOS-II GLI band	band22	band13	band23	band19	
ADEOS-II GLI center wavelength(nm)	660	678	825	865	
ADEOS-II GLI resolution(m)	250	1000	250	1000	
Landsat7 ETM+ band	band3	band3	band4	band4	
Landsat7 ETM+ wavelength(nm)	630-690	630-690	775-900	775-900	
Landsat7 ETM+ resolution (m)	30	30	30	30	
NO AA AVHRR band	band1	band1	band2	band2	
NO AA AVHRR wavelength(nm)	580-680	580-680	725-1100	725-1100	
NO AA AVHRR resolution(m)	1100	1100	1100	1100	
Terra MODIS band	band1	band1	band2	band2	
Terra MODIS center					

	Mandalgovi	prazilia National	
Site	(Mongolia)	Park (Brazil)	Konza (U.S.)
	1998/08/09		
Date	~1998/08/11	2000/05/05	2000/06/15
organization	Chiba Univ.	Uinv. Of Arizona	Uinv. Of Arizona
	S2320 (Soma		
Spectrometer	Optios Inc.)	FieldSpec HH	FieldSpec HH
Range	350nm-1050nm	269.2nm-1068nm	269.2nm-1068nm
Number of Channels	512oh	512ch	512oh
	Mobile	MQUAL	
	Measurement	(MODLAND Quick	
Method	System	Airborne Looks)	"Yoke"
Sensor Height	about 2m	about 200m	about 2m
			A TON
Att the first includes			6.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4

Example of simulation results

