K&C Phase 3

Forest Cover Change and Biomass Mapping in Vietnam and Cameroon

Thuy Le Toan, Stephane Mermoz, Ludovic Villard
CESBIO
Toulouse, France
Project Objective

To demonstrate the feasibility of forest information generated from ALOS-PALSAR to support Carbon Cycle Science and International Conventon (REDD) in two projects:

- Forest cover change and biomass mapping in Vietnam. Vietnam is a country where the planting trees programme is very active during the last decade.

- Forest cover change and biomass mapping in Cameroon using ALOS PALSAR data, as a research part of the REDDAF project, also as a contribution to the GEO-FCT, Cameroon being one of the National Demonstrator.
VIETNAM: Reforestation and forest regrowth

- Vietnam: one of the most important rate of deforestation in the last 40 years and the most important rate of reforestation in the last 20 yrs

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction of primary forest</td>
<td>6.94%</td>
<td>15.6%</td>
<td>1.21%</td>
</tr>
<tr>
<td>Increase of planting trees</td>
<td>7.8%</td>
<td>6.4%</td>
<td>4.7%</td>
</tr>
</tbody>
</table>

- Planting trees
 - for agroforestry: rubber, coffee, fruit trees
 - for wood, fiber, fuel: acacia, eucalyptus .., with very fast turn over
 - for coastal environment (mangrove)

- Need to quantify removal and increase of carbon stocks, required in carbon calculations
Red: forest cleared 2007-2008
Yellow: clearings between 2008-2009
Blue: young growing rubber

Multi-temporal PALSAR image over Dau Tieng, Vietnam
(R: 2007; G: 2008; B: 2009). The area is part of the extensive rubber plantation programme

Thuy Le Toan, K&C 17, Tokyo 27-29 March 2012
Project Objective: Demonstration of the use of PALSAR data to measure carbon stocks and their changes associated to the de/af/reforestation programme

Method: Since the statistics in Vietnam are structured from local to national administrative units (district → province → region → country), the test is done in prototype provinces.

Expected results
- Mapping in prototype provinces & country for 2007-2010 data
- Methodology developed for ALOS 2 data

Thuy Le Toan, K&C 17, Tokyo 27-29 March 2012
Collaboration in Vietnam

Dr Tran Tuan Ngoc
National Remote Sensing Centre,
Hanoi, Vietnam

Prof. Pham Van Cu
Vietnam National University, Hanoi.
Hanoi, Vietnam

Dr. Lam Dao Nguyen
GIS & Remote Sensing Research Center (GIRS)
HCMC Institute of Resources Geography (HCMIRG)
Vietnam Academy of Science and Technology (VAST)
Ho Chi Minh City, Vietnam
Prototype province

The province of Thaibinh is selected for its active programme of tree plantation

Total area: 469.912,2 ha, Forest area: 208.922,1.

Natural forest

Forest plantation

16%

84%

Thuy Le Toan, K&C 17, Tokyo 27-29 March 2012
Biomass mapping using ALOS-PALSAR implemented in Vietnam
Forest and LC at Hoa Binh province from SPOT 5

Area: 469.912 ha,
Forest: 208.922 ha (55%)
In situ data following IPCC guidelines with 20 x 20 m plots
More adapted to tree plantations, not to natural forest

Natural forest

Plantation of *Acacia Mangium*
In situ plots from forest inventory used to calibrate relationship between biomass-backscatter.
Forest biomass map using PALSAR data in Hoa Binh (2010)

December 2010
RS C-VN & CESBIO
Validation results

Validation results:

- $R^2 = 0.8008$
- $R^2 = 0.9726$
- RMSE = 2.9 t/ha

Graph showing the relationship between in situ biomass and retrieved biomass with a map indicating locations.
Forest statistics to be used for the Hoa Binh province

Area of forest classes in the province of Hoa Binh

<table>
<thead>
<tr>
<th>Forest Type</th>
<th>Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regenerating forest</td>
<td>91,260.700</td>
</tr>
<tr>
<td>Deciduous broadleaf forest</td>
<td>40,277.300</td>
</tr>
<tr>
<td>Montane forest</td>
<td>21,304.200</td>
</tr>
<tr>
<td>Re-forestation</td>
<td>56,078.800</td>
</tr>
<tr>
<td>Other forests</td>
<td>24,576.000</td>
</tr>
</tbody>
</table>

Statistics of biomass, province of Hoa Binh

<table>
<thead>
<tr>
<th>Biomass (tons)</th>
<th>Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regenerating forest</td>
<td>310,362.5</td>
</tr>
<tr>
<td>Deciduous broadleaf forest</td>
<td>141,557.25</td>
</tr>
<tr>
<td>Montane forest</td>
<td>61,684.75</td>
</tr>
<tr>
<td>Regenerating forest</td>
<td>191,708.5</td>
</tr>
<tr>
<td>Other forests</td>
<td>85,136.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biomass (tons)</th>
<th>Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td><10 t/ha</td>
<td>155,831.5</td>
</tr>
<tr>
<td>10-25 t/ha</td>
<td>105,196</td>
</tr>
<tr>
<td>25-50 t/ha</td>
<td>97,761.75</td>
</tr>
<tr>
<td>50-75 t/ha</td>
<td>51,018.5</td>
</tr>
<tr>
<td>75-100 t/ha</td>
<td>27,011.25</td>
</tr>
<tr>
<td>>100 t/ha</td>
<td>25,871.5</td>
</tr>
</tbody>
</table>

K&C Initiative
An international science collaboration led by JAXA
Deliverables: Vietnam

- Forest biomass for prototype provinces (31.04.2012)
- Forest cover and cover change for Vietnam (31.03.2013)
- Forest biomass for all prototype provinces (31.03.2013)
- Forest biomass for Vietnam (31.03.2014)
Cameroon

CESBIO participates to:

1) the REDDAF project (REDD in Africa),
 Coordinator: GAF, Germany, Partners: Mesa-Consult, Germany, SIRS, France, CESBIO, France, Joanneum Research, Austria, and Geospatial Technology Group, Cameroon)

2) GEO-FCT project for Cameroon, which is National Demonstrator

CESBIO objective:
Biomass assessment using Remote Sensing data (mainly PALSAR)
REDDAF Study site 3: Direct EO biomass assessment

Adamawa test area: interface between humid forest and savanna

- Deciduous shrubland with sparse trees
- Mosaic of forest-savanna
- Evergreen low land forest
Cameroon Forest-savanna ecosystem

- An important ecosystem in Cameroon:
 - 5.9 M ha forest-savanna mosaic
 - 4.5 M ha forest-agriculture mosaic
- No carbon inventory (Cerruti et al., 2008)
- Prone to loss of carbon at forest edges in populated rural area
- Potential of SAR data to estimate biomass and to detect changes

- Motivation for demonstration study on biomass mapping and biomass change detection using ALOS-PALSAR of 2007 to 2010.
Data processing flowchart

- Includes research components
- to be simplified after testing/validation
- based on in-house and free software for wider implementation
Processing chain adaptation

Shift of \(\approx 3 \text{db} \)

\[\rightarrow \text{radiometric calibration needed} \]

Calibration developed:

\[|S_{XY}|^2_{i, corrected} = a_i |S_{XY}|^2_i + b_i \]

\[i = \{1, ..., n\} \quad \{a_i, b_i\} \in \mathbb{R}^2 \]
Calibration

- Regression using Principal component analysis (PCA)
- Selection of the stable points (criteria: $r^2>0.9$)
- Pair 1-2: $G_{1-2} = \sigma_2/\sigma_1$ and $O_{1-2} = \mu_1 - \mu_2 (\sigma_2/\sigma_1)$ with σ the std and μ the mean
- Pair n-n+1: $G_{n-n+1} = \sigma_n/\sigma_{n+1}$, $G_{n-1-n} \ldots G_{1-2}$ and $O_{n-n+1} = \mu_n + \ldots \mu_1 - [\mu_{n+1} \cdot G_{n-1-n} \ldots G_{1-2} (\sigma_2/\sigma_1)]$

Stop criteria

Before calibration

After calibration
Multitemporal filtering

\[
\gamma^o_{HV} -8 \text{ dB}
\]

-20 dB

\[
\gamma^o_{HV} -8 \text{ dB}
\]

Multilook (ML)

<table>
<thead>
<tr>
<th>ENL</th>
<th>Mean (dB)</th>
<th>SD (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-15.10</td>
<td>0.92</td>
</tr>
<tr>
<td>20</td>
<td>-14.70</td>
<td>1.58</td>
</tr>
<tr>
<td>250</td>
<td>-12.19</td>
<td>0.64</td>
</tr>
</tbody>
</table>

\[
\gamma^o_{HV} -8 \text{ dB}
\]

Mean = -15.10 dB
SD = 0.92 dB

\[
\gamma^o_{HV} -8 \text{ dB}
\]

Mean = -14.70 dB
SD = 1.58 dB

\[
\gamma^o_{HV} -8 \text{ dB}
\]

Mean = -12.19 dB
SD = 0.64 dB

\[
\gamma^o_{HV} -8 \text{ dB}
\]

Mean = -11.89 dB
SD = 2.31 dB
In situ ground data collection

- Campaign from 15 January to 5 March 2012 by Mesa-Consult (REDDAF project)
- CESBIO team(3): 18-28 January for plot selection

- 21 plots
- Plot size: 1 ha,
- Geolocation accuracy (max of 10 meters)
- Plot parameters: species composition, forest structure, understory conditions, average biomass and error from biomass distribution
- Individual tree measurements (biomass, tree height, allometric equation, DBH, wood density and basal area)
- Ancillary data (soil type, slope, elevation, climate data, management)
In situ ground data collection

In situ plot size requirement:

- At least 1ha in tropical forest for natural variability
- At least 1 ha for radar validation because of speckle effect

- Existing plots are not adapted

Effect of plot size, tropical forest

\[
CV_{\text{total}} = \left(CV_{\text{allom}}^2 + \frac{b^2}{A} \right)^{1/2}
\]

Chave, 2011
Allometry (Chave et al. 2005) will be used:

Dry forests: \(AGB = \exp(-2.187 + 0.916 \times \ln(RD^2H)) \equiv 0.112 \times (RD^2H)^{0.916} \)

Moist forests: \(AGB = \exp(-2.977 + \ln(RD^2H)) \equiv 0.0509 \times RD^2H \)

Where D: dbh [cm]; R: wood specific gravity [g/cm³], H: height [m]

Thuy Le Toan, K&C 17, Tokyo 27-29 March 2012
Ground data collection: January-March 2012, Mesa-Consult & CESBIO
DBH measurements
Thuy Le Toan, K&C 17, Tokyo 27-29 March 2012

Red: Cameroon Adamawa
Black: Cameroon
Mitchard et al., 2011
Red: Cameroon Adamawa multidates 2007-2010 with ground data 2012
Black: Cameroon Mitchard et al., 2011
Blue: Vietnam Hoa Binh

Thuy Le Toan, K&C 17, Tokyo 27-29 March 2012
\[AGB = \frac{1}{c} \times - \ln \left[1 - \frac{\text{ALOSH} \gamma - a}{b} \right]. \]

<table>
<thead>
<tr>
<th>Date</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(r_p)</th>
<th>RMSE (t.ha(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/08/2007</td>
<td>-18.4</td>
<td>7.5</td>
<td>0.026</td>
<td>0.81</td>
<td>36.5</td>
</tr>
<tr>
<td>14/08/2008</td>
<td>-18.4</td>
<td>7.4</td>
<td>0.026</td>
<td>0.88</td>
<td>32.2</td>
</tr>
<tr>
<td>29/09/2008</td>
<td>-18.2</td>
<td>7.3</td>
<td>0.026</td>
<td>0.87</td>
<td>33.1</td>
</tr>
<tr>
<td>17/11/2009</td>
<td>-17.8</td>
<td>6.8</td>
<td>0.026</td>
<td>0.86</td>
<td>33.9</td>
</tr>
<tr>
<td>05/07/2010</td>
<td>-18.5</td>
<td>7.5</td>
<td>0.026</td>
<td>0.88</td>
<td>33.5</td>
</tr>
<tr>
<td>Total</td>
<td>-18.0</td>
<td>7.1</td>
<td>0.026</td>
<td>0.75</td>
<td>33.7</td>
</tr>
</tbody>
</table>
Biomass mapping result
Biomass map of the Adamawa region using PALSAR
Bayesian inversion results using γ^o_{HV}

RMSD = 37 t.ha$^{-1}$

$r_p = 0.88$
Change in forest biomass

July 26, 2007 (left) June 18, 2010 (right). The area (15 km x 17 km) is on the East part of the Mbam and Djerem National Park.

No visible change in this less populated area.
Change in biomass

Change of biomass in the Pangar Djerem Reserve at the edges of the forest:

21 km
Deliverables for Cameroon

- Forest cover and cover change in Adamawa (31.04.2012)
- Forest biomass in Adamawa (31.04.2012)
- In situ data under CESBIO REDDAF project (31.03.2013)
Support to JAXA’s global forest mapping effort

The project can support JAXA’s global forest mapping effort in Cameroon and in Vietnam and help improve and validate the JAXA forest cover maps.

Ground truth data that will be shared with JAXA

- Vietnam: Ground data at prototype provinces: Hoa Binh, and planned provinces in the South and in the Centre
- Cameroon: Data from REDDAF (Adamawa region of forest-savanna)
Thank you JAXA!