

The PALSAR Systematic Observation Strategy

Ake Rosenqvist & Masanobu Shimada

JAXA EORC

The Systematic Observation Strategy (Basic Observation Scenario – BOS) for ALOS PALSAR

- Fine resolution satellite archived traditionally fragmented and heterogeneous
- ALOS the first fine resolution satellite mission to implement a fixed systematic data acquisition plan
- Implemented as a top-level **foreground mission** with a priority second only to that of special observation requests and emergency observations (e.g. earthquakes, natural disasters) and sensor calibration/validation.
- Designed to serve all ALOS user categories
- Aims to accommodate systematic global-scale, fine-resolution, monitoring of the environment through spatially and temporally consistent acquisitions over all land areas on the Earth on a repetitive basis.

Objectives of the ALOS Observation Strategy

- Aimed to support the ALOS PALSAR science objectives, and serve all user categories
- Improve initial poor simulation results due to request conflicts between the many ALOS user groups:
 - JAXA internal requests (K&C science programme, Cal/Val, InSAR, ...)
 - METI/ERSDAC (geology, resource exploration)
 - Japanese Gov't Agencies (M-Environment, M-Forestry & Agriculture, Coast Guard, Geographical Survey Inst. ...)
 - ALOS PI programme
- Creation of a systematic archive of L-band SAR data, in which a consistent time series of data can be found for any arbitrary point, or region, on the Earth.

The Systematic Observation Strategy - Factors considered*

Spatio-temporal consistency over regional scales

- Semi-continental wall-to-wall coverage
- Acquisitions within a short time window (46-day cycle)

"Adequate" temporal repetition;

Plan individually adapted to forest and wetlands monitoring

Accurate timing;

• Regional seasonality a major driver

Consistent sensor configuration;

- Limitation of the PALSAR operational modes
 - Creation of consistent archyes
 - Minimising request conflicts

Long-term continuity

• Repetition to EOL the target, continuation with ALOS-2

Approach to minimise programming conflicts

Step 1: Reducing the number of operational modes to a small number of "default observation modes" $(132 \Rightarrow 6)$

Step 2: Designating each 46-day cycle to a specific default mode.

Step 3: Separating conflicting requests into ascending and descending operations.

Ascending passes:

- Dedicated to global-scale, dual-season monitoring
- Fine-res, HH+HV @ 34.3° (Forest & Land Cover)
- Fine-res, HH @ 34.3° (Solid Earth, Forest & Land Cover)
- Quad-pol @ 21.5° & 23.2° (Pol-InSAR R/D)

Descending passes:

- Dedicated to regional-scale, every-cycle repeat monitoring
- ScanSAR HH 5-beam (Wetlands & Rapid-deforestation)

[&]quot;Best trade-off" sensor modes based on scientific requirements, identified in collaboration with a science advosory group.

Observation matrix plan concept

Geographical observation units

Fixed observation modes (ascending passes)

PALSAR Ascending acquisitions

PALSAR Ascending acquisitions 2009/2010

PALSAR Ascending acquisition plan

- 3-5 global PALSAR coverages annually
 - Fine-res HH+HV @ 34.3° (summer/dry season)
 - Fine-res HH @ 34.3° (winter/wet season)
 - Scansar HH (descending)
- Bi-annual global coverage in InSAR mode (boreal annual)
- Repetition during ALOS life-time (April 2011)

To minimise seasonal bias in the PALSAR time series, each region is covered the same time (months) every year, witin a 46-day time period.

PALSAR Descending acquisition plan (ScanSAR)

PALSAR Descending

- 1 in 3 passes acquired to reduce data

- Optical sesors have priority in case of conflict

- One Global ScanSAR coverage/year

- Intensive 46-day monitoring of globally significant wetlands

Year		2	005			2006								2007								2008								
Month	6 7	7 8	9 1	0 11	12	1 2	3	4 5	6	7 8	9 1	0 11	12	1 2	3 4	4 5	6	7 8	9 1	0 11	12	1 2	3 4	4 5	6	7 8	9 1	0 11	12	
Satellite cycle	5	6	7	8	9	10	11			14	15		17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	
West Siberia																														
Lena Delta																														
Volga Delta																														
Amur																														
East China paddy	y																													
Tibet																														
India paddy																														
Mainland SE-Asia	a																													
Insular SE-Asia																														
Luzon																														
New Guinea																														
North Australia																														
Murray-Darling																														
Finland																														
Pripet-Biebrza																														
Tigris marshes																														
Niber Basin																														
Congo Basin																														
Okavango-Mozar		е																												
Senegal wetlands	s																													
ASF mask																														
BOREAS SSA																														
Quebec-Everglad	les																													
SE USA																														
Mexico																														
Amazon Basin																														
Pantanal																														

ALOS BOS in operation

Acquisition success rate: Strip map (Asc):~80%, ScanSAR (Desc):~72%

Acquisition results available online at

http://www.eorc.jaxa.jp/ALOS/en/kc_mosaic/kc_mosaic.htm

500 m browse mosaics showing acquisition results for each 46-day cycle available as KML files.

PALSAR pass definition

Figure 1.4.1 RSP pass definition concept. RSP pass numbers begin and end at ascending crossing of the Equator.

PALSAR pass order

Ascending passes

Figure 1.4.2 RSP pass map [ascending passes]. Numbers in black indicate the relative day of acquisition during a given 46-day repeat cycle (Note: path numbers depend on off-nadir angle and are here are given for illustration only).

PALSAR pass order

Descending passes

Figure 1.4.3 RSP pass map [descending; ScanSAR]. During standard operations in ScanSAR mode, data volumes are reduced by 2/3 by decreasing acquisitions to 1 out of every 3 ScanSAR passes.