PALSAR Intensities and Coherence for Forest Cover and Forest Change Mapping and Biomass Retrival

K&C Initiative

An international science collaboration led by JAXA

ALOS

Christiane Schmullius, Christian Thiel, Christian Hüttich, Martyna Stelmaszczuk, Tanvir Ahmed Chowdhury

Friedrich-Schiller-University, Jena

seit 1548

Science Team meeting #17 – Phase 3 JAXA RESTEC HQ, Kamiya-cho/Tokyo, March 27-29, 2012

Outline

K&C Initiative An international science collaboration led by JAXA

□ Area of Interest

LOS

- Project objectives and schedule
- □ Financial support
- □ Support to JAXA's global forest mapping effort
- Deliverables

♦ MS 1: Forest biomass retrival using POLSAR data

Area of Interest

K&C Initiative An international science collaboration led by JAXA

□ Central Siberia: 92° - 104° E & 54° - 60° N

□ Special focus on:

LOS

✤ Several forest inventory sites

✤Krasnoyarsky Kray, Irkutsk Oblast

K&C Initiative An international science collaboration led by JAXA

LOS

Project objectives and schedule

K&C Initiative

An international science collaboration led by JAXA

- To implement and develop three different approaches of forest biomass retrieval based on ALOS PALSAR:

LOS

Kazachinskoe Region Krasnoyarsk Kray, Siberia

ALOS

K&C Initiative An international science collaboration led by JAXA

Project objectives and schedule

K&C Initiative

An international science collaboration led by JAXA

Relation to the K&C thematic drivers

LOS

□Forest and biomass is clearly linked to the "3C" thematic drivers: international **Conventions**, **Carbon cycle science**, **environmental Conservation**, namely:

✤ biomass is identified by the UNFCCC as an ECV

✤ to improve methods for measuring global biomass within UNFCCC REDD mechanism

 ↓ to monitor carbon emissions due to deforestation and forest degradation.

Project objectives and schedule

K&C Initiative

An international science collaboration led by JAXA

Project milestones

LOS

□MS 1: Forest biomass retrieval using POLSAR data – 31.03.2012

□MS 2: **Forest biomass** retrieval using **INSAR** coherence and backscatter – 31.03.2013

□MS 3: **Forest biomass** retrieval using multi-temporal **ScanSAR** data – 31.03.2014

□MS 4: Forest cover and **forest cover change** mapping – 31.03.2014

Financial support

K&C Initiative

An international science collaboration led by JAXA

□ To achive the objectives following financial support is used:

↓ ZAPAS project - EU-Russia Space Dialogue (EU FP7)

OS

Programmatic Context

ALOS

K&C Initiative

An international science collaboration led by JAXA

- **FP7 Cooperation Work Programme "Space"**
 - Activity: 9.3 Cross-cutting activities Area 9.3.2: International Cooperation SPA.2010.3.2-01 EU-Russia Cooperation in GMES
- Continuation of EC- and GMES-cooperation activities with Russia
- Joint and synergistic exploration of EO data provided by ESA and ROSCOSMOS
- Exchange of methodological know-how in processing Earth Observation data

- ALOS K&C Initiative An international science collaboration led by JAXA
 Overcome uncertainties in Carbon Accounting based on: ZAPÁS
 In-Situ and multi-scale Earth observation synergies
 - Combining regional land cover mapping and biomass products

GSV + GLC2000 - Central Siberia - Pixel size

Gienet

- □ GIONET stands for GMES Initial Operations Network for Earth Observation Research Training
- □ The aim of the project is to provide skilled personnel for the GMES land monitoring and emergency information services.
- □ Period of the project: 2011-2014
- □ 7 full network and 4 associated partners
- □ 14 Early Stage Researchers from 12 countries
- □ 14 doctoral topics

ALOS

K&C Initiative

An international science collaboration led by JAXA

The estimation of forest biomass still meets problems related mainly to saturation.

How to overcome this problem:

- use SAR data time series
- use the combination of INSAR coherence and backscatter intensity information.

Supervisor: Prof. Ch. Schmullius; Co-supervisor Dr. Ch. Thiel
 Data: ALOS - PALSAR

Support to JAXA's global forest mapping effort

Support to JAXA by delivering following methodology and products:

1.forest cover and forest cover change mapping.

2.biomass retrieval based on three different approaches: multi-temporal ScanSAR data, polarimetric data, INSAR winter coherence and backscatter from summer.

... to pan-boreal applications

K&C Initiative

An international science collaboration led by JAXA

local...

per Strasse 159

urger Strasse 159

Support to JAXA's global forest mapping effort

K&C Initiative

An international science collaboration led by JAXA

rger Strasse 159

Deliverables

K&C Initiative

An international science collaboration led by JAXA

D 1: Methods on forest biomass retrieval using **POLSAR** data

OS

- D 2: Methods on forest biomass retrieval using INSAR coherence and backscatter
- D 3: Methods on forest biomass retrieval using multi-temporal ScanSAR data
- □ D 4: Methods on **forest cover and forest cover** change mapping

K&C Initiative An international science collaboration led by JAXA

□ Results of the **PARAPOL** project

LOS

LOS

K&C Initiative An international science collaboration led by JAXA

]								
Test Sites	HV	HH/HV	VV/HV	HHVV coherence	Entropy	Alpha	Freeman Vol	VanZyl Vol	Yamaguchi Vol	Ground/ Volume
Shestakovsky-N	0.75	0.46	0.54	-0.82	0.76	0.76	0.71	0.72	0.72	-0.75
Primorsky-E	0.65	0.29	0.46	-0.59	0.60	0.58	0.61	0.61	0.63	-0.59
Primorsky-W	0.65	0.08	0.05	-0.23	0.25	0.19	0.63	0.64	0.64	-0.24
Chunsky-E	0.81	0.63	0.65	-0.78	0.73	0.76	0.82	0.82	0.82	-0.74
Chunsky-N	0.73	0.60	0.68	-0.72	0.69	0.70	0.75	0.76	0.76	-0.66
Chunsky-S	0.54	0.11	0.12	-0.41	0.38	0.32	0.49	0.50	0.50	-0.35
Chunsky-W	0.51	0.40	0.45	-0.54	0.51	0.52	0.50	0.50	0.51	-0.48
Bolshe-NE	0.86	-0.12	-0.23	-0.72	0.63	0.59	0.85	0.85	0.84	-0.62
Bolshe-SE	0.70	0.30	0.30	-0.68	0.57	0.53	0.67	0.68	0.68	-0.57
Bolshe-NW	0.82	0.21	0.59	-0.80	0.69	0.72	0.75	0.77	0.79	-0.75
Bolshe-SW	0.59	0.07	0.23	-0.48	0.37	0.39	0.50	0.53	0.54	-0.44

Linear Pearson correlation coefficients for growing stock volume against SAR parameters

RVOG-POLSAR model

ALOS

The water cloud model*

Ground-to-volume ratio:

$$\mu_{\max} = \frac{\sigma_{s}}{\sigma_{v}} \frac{e^{-\beta v}}{1 - e^{-\beta v}} \qquad R = \frac{\sigma_{s}}{\sigma_{v}}$$
$$V = \frac{1}{\beta} ln \left(1 + \frac{R}{\mu_{\max}} \right)$$

K&C Initiative

An international science collaboration led by JAX

We can use polarimetry orthogonality to isolate volume+surface terms:

two model parameters R and ß to be set...2 ways to solve this:

1.Use regression against sites of known biomass.

2.Fix ß and estimate R from the data itself (forest/non-forest mask). *ASKNE, J., M. SANTORO, G. SMITH & J.E.S. FRANSSON (2003): Multi-temporal repeat pass SAR interferometry of boreal forests. – *IEEE Transactions on Geoscience and Remote Sensing 41*, 7, 1540-1550.

ALOS

K&C Initiative An international science collaboration led by JAXA

LOS

K&C Initiative An international science collaboration led by JAXA

K&C Initiative An international science collaboration led by JAXA

ALOS

Acknowledgements

K&C Initiative

An international science collaboration led by JAXA

This work has been undertaken within the JAXA Kyoto&Carbon Initiative.

LOS

Financial support is provided by German Research Foundation (DFG) and the European Commission (GIONET, ZAPAS).

Thank you

Thank you for your attention! Please follow us on <u>eo.uni-jena.de</u>.