

K&C Phase 4 – Status report

Forest Aboveground Biomass Mapping in Mexico using SAR, optical and airborne LiDAR data

Urbazaev, M.¹, <u>Thiel, C.¹</u>, Schmullius, C.¹, Migliavacca, M.², Reichstein, M.², Cook, B.³, Dubayah, R.⁴

¹Friedrich-Schiller-University Jena ²Max-Planck-Institute for Biogeochemistry Jena ³NASA Goddard SFC ⁴University of Maryland

> Science Team meeting #23 Tokyo, Japan, January 16-20, 2017

Fig. 1: CCI Land cover

K&C Initiative An international science collaboration led by JAXA

Study area

OS

Data / Methods

Data / Methods

Data / Methods

ALOS **K&C** Initiative An international science collaboration led by JAXA Landsat mosaic 2012 RGB: Band 5 (SWIR), Band 4 (NIR), Band 3 (Red)

Data / Methods

Fig. 1: CCI Land cover

Results A: AGB based on LiDAR metrics

K&C Initiative

An international science collaboration led by JAX

AGB modeling for LiDAR transects using *different regression models (k-fold CV)* response variable: field-estimated AGB spatial predictors: LiDAR metrics

LOS

	R2	Mean R2	RMSE (t/ha)	Mean RMSE (t/ha)
Cubist	0.27-0.66	0.54	18.71-33.4	25.42
RandomForest	0.29-0.76	0.58	17.2-30.5	23.69
Nultiple Linear Regression	0.5-0.78	0.61	20.43-26.46	23.04

Data / Methods

ALOS

K&C Initiative

Results A: AGB based on LiDAR metrics

Bias at different AGB ranges

Fig.: Bin-averaged (3 t/ha bin) HV backscatter against LiDAR-based AGB (left) and NFI-based AGB (right)

AGB versus PALSAR

OS

K&C Initiative An international science collaboration led by JAXA

Fig.: Bin-averaged (3 t/ha bin) HH backscatter against LiDAR-based AGB (left) and NFI-based AGB (right)

Data / Methods

Data / Methods

K&C Initiative

An international science collaboration led by JAX

Wall-to-wall AGB estimation using PALSAR and Landsat data

Response variable: 1) NFI-based AGB; 2) LiDAR-based AGB

Predicting variables:

LOS

- PALSAR backscatter 2007-2010 (dual pol) (JAXA global mosaics)
- Backscatter texture metrics (homogeneity, variance, entropy)
- Landsat mosaic 2012 (Band 3 (red), 4 (NIR), 5 (SWIR), 7 (SWIR), NDVI)
- Landsat tree cover 2010
- SRTM DEM
- SRTM DEM Slope

Spatial resolution: 100 m (1ha)

Models: Cubist (cran.r-project.org), RandomForest, MLR

Validation: 30% of NFI data

Data / Methods

K&C Initiative

An international science collaboration led by JAXA

Two AGB modeling scenarios:

- AGB modeling based on NFI data (4,794 NFI plots)
- AGB modeling based on LiDAR-AGB (312 LiDAR covered NFI plots) (347,979 LiDAR samples)

Validation with 2,415 NFI plots

LOS

K&C Initiative An international science collaboration led by JAXA

ALOS

An international science collaboration led by JAXA

ALOS

LOS

LiDAR as cal data

300

K&C Initiative

An international science collaboration led by JAX

Validation results of the AGB map based on LiDAR data (RandomForest)

LOS

LiDAR-AGB minus NFI-AGB

OS

K&C Initiative

An international science collaboration led by JAX

Impact of modelling approach on AGB estimation

ALOS

Stepwise linear regression Cubist **Random Forests** R2=0.45 R2=0.35 300-R2=0.5 300 300 RMSE= 29.51 t/ha RMSE= 33.57 t/ha RMSE= 31.18 t/ha Bias= 0 t/ha Bias= -2.75 t/ha Bias= 0.89 t/ha 250 250 250 n=7209 n=7209 n=7209 Estimated AGB [t/ha] Estimated AGB [t/ha] Estimated AGB [t/ha] 50 50 50 0-0 0 150 2 INFyS AGB [t/ha] 50 100 200 250 3Ó0 50 0 150 2 INFyS AGB [t/ha] 200 3Ó0 50 100 0 150 2 INFyS AGB [t/ha] 200 250 300

Fig.: Predicted AGB against NFI-based AGB

using stepwise linear regression (left), Cubist (middle) and Random Forests (right) *k*-fold cross-validation (*k*=10)

	R2	Mean R2	RMSE (t/ha)	Mean RMSE (t/ha)
Cubist	0.38-0.48	0.45	29.18-33.98	31.14
RandomForest	0.44-0.56	0.5	26.47-32.84	29.45
Multiple Linear Regression	0.31-0.39	0.35	32.01-38.81	33.51

Results B: Wall2Wall AGB Mexico

Impact of modelling approach on AGB estimation

LOS

Results and significant findings thus far

K&C Initiative

- Similar goodness-of-fit statistics of NFI and LIDAR based results
 - Accurate estimates at hexagon and state scales (both approaches) compared to the NFI data
 - Spatial discrepancies at pixel level
- Different spatial patterns in particular in regions with high AGB (Lancadon and Chimalapas forests, Yucatan peninsula)
- A stratified NFI sampling with bigger plot size (~1ha) over LiDAR transects should result in higher accuracies

Deliverables – Papers and reports

K&C Initiative

An international science collaboration led by JAX

<u>1. Published</u> (please provide PDF file)

Urbazaev, M., Thiel, C., Migliavacca, M., Reichstein, M., Rodriguez-Veiga, P., Schmullius, C. (2016). Improved Multi-Sensor Satellite-Based Aboveground Biomass Estimation by Selecting Temporally Stable Forest Inventory Plots Using NDVI Time Series. *Forests*, 7(8), 169. doi:10.3390/f7080169

Urbazaev, M., Thiel, C., Migliavacca, M., Reichstein, M., Cook, B., Dubayah, R. & C. Schmullius (2016): Forest Aboveground Biomass Mapping in Mexico using SAR, Optical and Airborne LiDAR Data. 67th International Astronautical Congress, 26-30 September 2016, Guadalajara, Mexico. **Proceedings Paper IAC2016**.

2. Submitted/in preparation

• Journal Paper (Remote Sensing Letters, expected publication date: 2017)

Urbazaev, M., Thiel, C., Migliavacca, M., Reichstein, M., Cook, B., Dubayah, R. & C. Schmullius (<u>in</u> <u>preparation</u>): A comparative analysis of NFI-based and LiDAR-based forest aboveground biomass maps in Mexico. **Carbon Balance and Management**.