Product Delivery Report for K&C Phase 2

LOS

K&C Initiative

An international science collaboration led by JAXA

Laura Hess Earth Research Institute (formerly ICESS) University of California, Santa Barbara

Collaborators

JPL: B. Chapman, K. McDonald Inst. de Recherche pour le Développement: L. Durieux INPE: E. Novo, A. Affonso, E. Arraut INPA: B. Marshall UNESP: C. Beneditti, N. Imai

Science Team meeting #15 JAXA TKSC/RESTEC HQ, Tsukuba/Tokyo, January 24-28, 2011

Motivation: Science Questions

K&C Initiative

An international science collaboration led by JAX

LOS

- Hydrologic cycle: What is the floodplain storage component of the water budget of the Amazon basin? What is the interannual variability of wetland inundation, how is that related to ENSO cycles, and how might climate change affect these patterns?

- Carbon cycle: What are the contributions of wetlands to the carbon budget of the Amazon basin, including primary productivity, emissions of CH4 and CO2? What is their role in transformation of carbon exported from upland sites (i.e, terrestrial-aquatic linkages)?

- **Ecology**: What is the spatial distribution of the major wetland vegetation types found in the Amazon? How are the distributions, life cycles, and abundance of fish, birds, mammals, and other groups related to temporal cycles of inundation and water properties?

Motivation: Management and Sustainable Development

Basic information on wetland habitats is needed in order to address information requirements for:

- fisheries management
- sustainable forestry

LOS

- managing important species in traditional and commercial economies
- mapping and maintaining biodiversity
- location and management of conservation reserves, including Ramsar
- assessing human impacts on wetlands (water quality, dams, oil spills)
- modeling the role of wetlands as disease vector habitats

- documenting/predicting the effects of extreme flood and drought events on local communities

Amazon focus sites

K&C Initiative An international science collaboration led by JAXA

ALOS

Mamirauá Fine-scale Analysis (25 m)

ALOS

RGB = June HH, June HV, July HH

FBD: June 14 2007, July 30 2007 FBS: Oct 30 2007

K&C Initiative An international science collaboration led by JAXA

Mamirauá Reserve, Upper Amazon Floodplain, Brazil: November 2008

Mamirauá Reserve, Upper Amazon Floodplain, Brazil: November 2008

Mamirauá Reserve, Upper Amazon Floodplain, Brazil: November 2008

Fine-Beam PALSAR scene acquisition dates for Mamirauá, relative to Amazon River stage at Tefé

Stage level, Mamiraua gauge, 2006-2010

1. Rules-based classification of cover type using multi-temporal object statistics

K&C Initiative An international science collaboration led by JAXA

2. Assignment of flooded/non-flooded for each date using HH thresholding

LOS

Process Tree 🗾 👻 🗙	
 Segmentation 70 [shape:0.4 compct.:0.6] creating 'L1' classification 1 Scattering Type unclassified at L1: PermHiScat unclassified at L1: PermModScat Classification 2 PermHiScat PermHiScat at L1: BuildingsHiScat PermHiScat at L1: ClosedTreeHiBiomassUpland, ClosedTreeHiBiomassWetlar Classification 3 PermOrSeasLoScat PermOrSeasLoScat at L1: NonVegetated PermOrSeasLoScat at L1: ClosedShrubWetland, HerbaceousWetlandSeasor NonVegetated at L1: NonvegWetlandPermFlooded, NonvegWetlandSeasFlo Classification 4 PermModScat PermModScat at L1: ClosedTreeUBiomassUpland, HerbaceousWetlandSeasFlo S noData regions with MAXHH: Thematic Layer 1 = 0 at L1: NoDataMask 	Name PermHiScat Parent class for display Parent class for display Modifiers PermHiScat Shared All Contained Inherited Inherited MAXHY: Thematic Layer 1 >= 2906 MINHH: Thematic Layer 1 >= 4940 Inherited

ALOS K&C Initiative An international science collaboration led by JAXA

Mamirauá floodplain habitats (25 m, based on 3 imaging dates)

Structure	Inundation		Local term
Woody - tall	Flooded 0-1 mo/yr		Várzea forest: high levee
Woody - tall	Flooded 1-2 mo/yr		Várzea forest: high levee
Woody - tall	Flooded 3-6 mo/yr		Várzea forest: Iow levee
Woody - tall	Flooded 6-12 mo/yr		Chavascal
Woody - short	Flooded 6-12 mo/yr		Chavascal
Herbaceous	Seasonally flooded		Seasonal aquatic macrophyte
Non-vegetated	Permanently flooded		Open water

Methodological issues: Image segmentation Fine-Beam (12.5 m)

LOS

- need objective (and practical) criteria for selection of segmentation parameters

- do we fine-tune parameters for each image stack? (if we do/don't, will we have inconsistent object statistics across regions for the same cover type?)

- how well do segmentation algorithms handle large numbers of dates?

Effect of quantization level on single-date segmentation

K&C Initiative An international science collaboration led by JAXA

ALOS

Effect of number of imaging dates on total image objects

K&C Initiative An international science collaboration led by JAXA

LOS

K&C Initiative An international science collaboration led by JAXA

DS

Very high resolution: the down side Shadow and double-bounce effects using 12.5 m FBD

K&C Initiative An international science collaboration led by JAXA

ALOS

Where available (and for local scale), PRISM DEM can be used to ameliorate these effects

K&C Initiative An international science collaboration led by JAXA

ALOS

Beneditti 2010; PRISM DEM courtesy of T. Tadono

ALOS ScanSAR 19 May 2008

Classified ScanSAR (9 dates)

Mamirauá

Piagaçu-Purus

Forest, flooded 1-2 m/a Forest, flooded 3-6 m/a Forest, flooded > 6 m/a

- Strips received from JAXA in KC format are processed at JPL (terrain correction, radiometric calibration, and geocoding) by UTM zone tile

- Data is provided to UCSB in multi-date path (strip) stack format (unmosaicked) for Wide-Beam (ScanSAR), and mosaicked format for Fine-Beam

- Wide-beam stack layers for each path within the tile are 1) local incidence angle (Inc), SRTM DEM, SRTM Water Bodies, and SRTM slope for each path; and 2) for each date: multi-date HH amplitude, terrain-corrected HH amplitude (HHt), and days since launch (Date)

- Fine-beam mosaic layers are local incidence angle (Inc), SRTM DEM, SRTM Water Bodies, SRTM slope, single-date terrain-corrected HH amplitude (HHt) and HV amplitude (HVt), and days since launch (Date)

ALOS ScanSAR coverage: UTM Zone 20M, 2007 (all cycles)

ScanSAR 3-date Mosaic (Nonwetlands masked) 64ºW 64ºW 66ºW 207 AN STAT 0°N 2°S - % 8°-

R: May 2007 G: June-July 2007 B: August 2007

	No.	LCLevel4	LCLevel5	LCLevel6	LCL evel7	FID at e1	FID ate2	FID ate3
	45	Woody	Tree	Closed	Tall	0	0	0
C R Brown Street	46	Woody	Tree	Closed	Tall	0	0	0
	60	Woody	Tree	Closed	Tall	0	0	0
ROLAN ROLANS	61	Woody	Tree	Closed	Tall	0	0	0
	65	Woody	Tree	Closed	Tall	1	1	0
	66	Woody	Tree	Closed	Tall	1	1	0
	67	Woody	Tree	Closed	Tall	1	0	0
	69	Woody	Tree	Closed	Tall	1	0	0
	70	Woody	Tree	Closed	Tall	1	1	0
	71	Woody	Tree	Closed	Tall	1	1	0
	79	Woody	Tree	Closed	Tall	1	1	1
	80	Woody	Tree	Closed	Tall	1	1	1

- Raster products (wetland extent, vegetation cover, and inundation period) synthesize flooding information from many dates

- Knowledge of flooding state on individual dates is important for cross-product comparison and use in models, but increases product volume by roughly 10x when presented in raster format

- Flooding state for specific dates is therefore additionally formatted as shapefile and attribute (dbf) file giving flooding status for all available dates for each image object

- Attribute file also includes presence/absence of seasonal aquatic macrophytes, and LCCS hierarchical classes

Validation: Câmera Multispectral e Laser para Inventário Aéreo

Dana Slaymaker Resource Mapping

2 cm pixels

MS-4100 multispectral camera

Natural color camera permits very highresolution coverage even under low-light conditions.

Canon Mark III DS1 camera

CAMELIA:

Câmera Multispectral e Laser para Inventário Aéreo

Ground and canopy surfaces are profiled using alternating first and last laser returns. Tree heights and stereo-based crown delineation can be used for biomass estimation (Brown et al. 2005). Proof-of-Concept Field Experiment: Low-Cost Distributed Network of Water Level Gauges at the Mamirauá and Piagaçu Reserves

L. Hess, E. Arraut, R. Gielow, E. Novo, A. Affonso

iButton gauge locations, 2008-2009

nundation	period	(days), 2008	3-2009 flood
lov 2008		102	Oct 2009
		120	
		131	
		142	
		145	
		148	

K&C deliverables

K&C Initiative

An international science collaboration led by JAX.

Papers and Reports

1. Published

OS

- K&C Phase-1 report; Phase-2 report by Feb. 7
- 2 contributions to K&C Booklet
- Cristina Aparecida Beneditti, 2010. Object-based analysis of ALOS PALSAR imagery for land cover discrimination. Master's thesis (in Portuguese), State University of São Paulo, Presidente Prudente.
- J. Lowry, L. Hess, and A. Rosenqvist, 2009. Mapping and monitoring wetlands around the world using ALOS PALSAR: the ALOS Kyoto and Carbon Initiative Wetlands Products. pp. 105-20 in *Innovations in Remote Sensing and Photogrammetry*, ed. S. Jones and Karin Reinke.
- L. Hess, E.M. Novo, L. Durieux, A. Affonso, E. Arraut, B. Marshall, B.D. Chapman, and K.C. McDonald, 2010. Multi-scale mapping of Amazonian wetlands with ALOS PALSAR. *Eos Trans. AGU* 91(26), *Meet. Am. Suppl.*

K&C deliverables Papers and Reports

K&C Initiative An international science collaboration led by JAXA

2. Submitted/in preparation

OS

- PALSAR-based mapping of floodplain habitats at a Brazilian Ramsar site. To be submitted to ??.
- Backscattering characteristics of woody vegetation of Amazonian wetlands: RSE special issue
- Inundation mapping of central Amazonian wetlands with ALOS ScanSAR: RSE special issue? or possibly Earth Interactions

K&C deliverables

K&C Initiative

An international science collaboration led by JAXA

Data sets and Thematic products

2. Completed, but not yet delivered

- Fine-scale vegetation structure and inundation period mapping, Mamirauá Sustainable Development Reserve, Brazil (Ramsar site)
- ScanSAR-based vegetation structure and inundation mapping, upper Solimões floodplain
- *KC* strip-based mapping for UTM 20M (6 x 8 degrees), reduced resolution (6 arcsec)
- Very high resolution geocoded mosaics from aerial overflights
- Training/test polygons and statistics
- Field photos

OS

• (iButton data files?)

